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Endocrine disrupting chemicals (EDCs) can interfere with normal hormonal balance and
may exert adverse consequences on humans. The male reproductive system may be sus-
ceptible to the effects of such environmental toxicants. This review discusses the recent
progress in scientific data mainly from epidemiology studies on the associations between
EDCs and male reproductive health and our understanding of possible mechanisms asso-
ciated with the effects of EDCs on male reproductive health. Finally, the review provides
recommendations on future research to enhance our understanding of EDCs and male
reproductive health.The review highlights the need for (1) well-defined longitudinal epidemi-
ology studies, with appropriately designed exposure assessment to determine potential
causal relationships; (2) chemical and biochemical approaches aimed at a better under-
standing of the mechanism of action of xenoestrogens with regard to low-dose effects,
and assessment of identify genetic susceptibility factors associated with the risk of adverse
effects following exposure to EDCs.

Keywords: endocrine disruptors, bisphenol A, phthalates, polychlorinated biphenyls, dichlorodiphenyl-
trichloroethane, dichlorodiphenyldichloroethylene

INTRODUCTION
Endocrine disrupting chemicals (EDCs) are estrogen-like and/or
anti-androgenic compounds that disrupt and interfere with the
production, release, transport, metabolism, binding, or elimi-
nation of natural hormones in the body responsible for the
maintenance of homeostasis and the regulation of developmen-
tal processes (1). EDCs include persistent pesticides and herbi-
cides, methoxychlor, biocides, heat stabilizers, and chemical cat-
alysts, plastic contaminants, pharmaceuticals, or dietary compo-
nents. Those exogenous compounds can arise from industrial and
domestic effluents or agricultural and urban runoff. The general
population continues to be exposed to EDCs through ingestion of
contaminated food, inhalation of contaminated air and dust, and
skin contact, while some areas are subjected to greater risk due to
geographical and cultural reasons (2). Due to temporal downward
trends in semen quality and testosterone levels and increased rates
of testicular cancers among adult male populations (3, 4), scien-
tific researchers, and the general public have become increasingly
concerned regarding the potential risk of EDCs to men’s repro-
ductive health. Cellular models and animal toxicological studies
have demonstrated that EDCs can exert adverse effects on the male
reproductive system. In humans, there are a growing number of
epidemiological studies about EDCs and detrimental reproductive
function. However, a potential decline in human male reproduc-
tive health and a link to exposure to endocrine active chemicals in
the environment has been controversial for almost two decades.
This article focuses on the review of the human data regarding
the relationship between exposures to known or suspected EDCs.
It specifically focuses on bisphenol A (BPA), phthalates, polychlo-
rinated biphenyls (PCBs), and dichlorodiphenyltrichloroethane

(DDT)/dichlorodiphenyldichloroethylene (DDE) and men’s
semen quality, sperm DNA damage, reproductive hormone levels,
and reproductive diseases. This review provides: (1) an introduc-
tion to several common EDCs and their sources, (2) an overview
of the state of the human evidence for adverse impacts of EDCs
on male reproductive health, and (3) a description of possible
mechanisms of action for EDCs involved with detrimental male
reproductive functions based on in vitro and in vivo studies, and
(4) recommendations for future research needed to enhance our
understanding of the effect of EDCs on male reproductive health.

ENDOCRINE DISRUPTORS
Polychlorinated biphenyls are a class of synthetic chlorinated com-
pounds, which have been recognized as EDCs. PCBs were used
in industrial and consumer products such as transformers and
hydraulic fluids, and as an additive in paints, oils, and building
materials. The use and production of PCBs have been banned
since the 1970s, however, there has been no decrease or a slight
decrease in the environment since the middle of 1990s (5). There
is still considerable health risk from human exposure to PCBs from
consumption of contained foods (6).

Dichlorodiphenyltrichloroethane and its main metabolite
(p,p′-DDE) is a widespread, persistent environmental contami-
nant (7). Technical grade DDT is a mixture of p,p′-DDT (85%),
o,p′-DDT (15%), and o,o′-DDT (trace amounts). Both p,p′-
DDT and o,p′-DDT promote estrogenic activity (8). Reproduc-
tive abnormalities attributed to DDT/DDE exposure have been
reported in a variety of wildlife animals (9, 10) and in laboratory
rats (11). Epidemiological studies have recently addressed the link
between exposure to DDT and male reproductive health (12–15).
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Bisphenol A has been extensively used in production of poly-
carbonate plastic, epoxy resin, food packaging, and lacquers for
food cans. Human beings are primarily exposed to BAP via dietary
ingestion of leachings from the inner lining of cans and microware
containers during heating of food materials and via beverages in
polycarbonate bottles due to repeated usage or contact with any
acid/alkaline (16). BPA is prevalent in our environment and mea-
surable levels have been detected in the majority of individuals.
Estrogenic activity of BPA was confirmed and is the basis for the
recognition of the compound as a known endocrine disruptor.

Phthalates are ubiquitous industrial chemicals that are reported
to adversely affect human reproductive outcomes. They are
divided into two distinct groups based on molecular weight and
with very different applications, toxicological properties, and clas-
sification: high molecular weight compounds (di-2-ethylhexyl
phthalate with alkyl chain lengths from 8 to 13 carbons) and low
molecular weight compounds [diethyl phthalate, dibutyl phthalate
(DBP)]. Phthalates also include three di-(2-ethylhexyl) phtha-
late (DEHP) metabolites, mono-(2-ethylhexyl) phthalate (MEHP)
and two oxidative metabolites, mono-(2-ethyl-5-hydroxyhexyl)
phthalate (MEHHP), and mono-(2-ethyl-5-oxohexyl) phthalate
(MEOHP). High molecular weight phthalates are primarily used
as plasticizers in the manufacture of flexible vinyl plastic which,
in turn, is used in consumer products, flooring and wall cover-
ings, and medical devices (17). Low molecular weight phthalates
are used in personal-care products as solvents and plasticizers
for cellulose acetate. Exposure through ingestion, inhalation, and
dermal contact are considered important routes of exposure for
the general population. Upon exposure, phthalates are rapidly
metabolized and excreted in urine and feces (17). Measurement
of urinary concentrations of phthalate metabolites has been used
as the most common biomonitoring approach for investigating
human exposure to phthalates.

ASSOCIATIONS BETWEEN EDCs AND SEMEN QUALITY
The testicle seems to be an important target organ for PCBs, which
can disrupt sperm production and development (18). PCBs had
a consistent, significant inverse association with sperm motility,
while its relationship with sperm concentration was less inconsis-
tent (Table 1). An association with lower sperm concentrations
likely occurred only at higher PCB concentrations. Men who had
serum PCB levels of 240 ng/g lipid and partners diagnosed with
an inability to conceive a pregnancy were associated with lower
sperm concentrations (19). Bonde et al. selected 2,2′,4,4′,5,5′-
hexachlorobiphenyl (CB-153) as a marker of PCB congeners and
found that the non-coplanar PCB congeners only affected sperm
motility, whereas the coplanar dioxin-like PCB congener CB-77
also reduced sperm counts (20).

The available epidemiological evidence suggests that exposure
to high DDT concentrations has links to semen quality (Table 1).
The studies in malaria-endemic areas, where DDT was sprayed
consistently, show an association between higher serum DDT con-
centration and decreased semen quality (13, 33). However, such
associations were not found in studies conducted in populations
where DDT/DDE concentrations were lower. DDT/DDE nega-
tively impacted sperm motility, morphology, count, and semen
volume in a South African population of 311 young males living

in a malaria area in the Limpopo Province (33). Other studies
also observed that DDT exposure adversely affected sperm quality,
mainly through decreased motility (12–15). DDT can negatively
affect sperm quality, especially when high concentration levels are
considered.

Various animal models of BPA exposure have shown multi-
ple effects on the male reproductive system, including inhibition
of the development of seminiferous tubules and spermatogenesis,
and impaired semen quality (43, 44). Increasing evidence from
epidemiological studies has revealed the relationship between
exposure to BPA and sperm quality, however, that relationship
seemingly occurs at high concentrations of BPA exposure. BPA
concentration at 1.55 ng/mL in male partners of sub-fertile couples
may influence sperm count (31) based on a reverse relationship
between BPA concentration and sperm count. A cross-sectional
study performed on a population of 20 healthy men showed that
serum BPA level positively correlated with quick forward progres-
sion of sperm and was inversely correlated with the percentage of
normal sperm (45). In a recent study of 360 fertile men, Men-
diola et al. demonstrated that no correlation existed between
urinary BPA levels and semen quality, while BPA was inversely
correlated with free androgen index concentrations (28). Meeker
et al. recorded a similar finding showing a non-significant trend
of increasing BPA levels related to lower sperm concentration,
motility, morphology, and higher levels of DNA damage (27). A
follow-up study on 190 male partners attending an infertility clinic
showed that urinary BPA concentration were not associated with
semen quality parameters, but they were positively associated with
sperm DNA damage (38).

Toxicological studies have consistently shown that phthalate
metabolites are reproductive and developmental toxicants. There
is evidence that pubertal and adult exposure to DEHP results
in testicular toxicity and impaired spermatogenesis (46, 47). In
the past decade, an increasing number of epidemiological stud-
ies have investigated associations between phthalate metabolites
and semen quality, but results have not been consistent. One
of the first studies investigated 168 men from sub-fertile cou-
ples and concluded that specific phthalate metabolites correlated
with lower sperm concentration and motility. There were dose–
response relations between mono-butyl phthalate (MBP) and
semen quality (motility and concentration), but limited evidence
existed for such relations between other phthalate metabolites and
poor sperm morphology and concentration (23). In a follow-up
study with emphasis on sperm motion parameters, the authors
reported that monobenzyl phthalate (MBzP), MBP, and MEHP
have associations with velocity, while no relationship was found
for mono-methyl phthalate (MMP) and any sperm motion para-
meter (48). A recent re-analysis of their data with 463 men again
found significant dose–response associations between MBP con-
centration and low sperm concentration and low motility (24). A
recent study of 344 men who had normal semen concentration
of 20–300× 106/mL showed that urinary phthalate metabolites
[5OH-MEHP, MEHP, mono-isobutyl phthalate (MiBP)] levels
were significantly associated with a decrease in sperm motility
(26). Weak associations between exposure to phthalate metabo-
lites and lower sperm concentration, motility and morphology in
adults have been reported by several studies (24, 25, 48, 49); at
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Jeng Endocrine disruptors and male reproductive health

Table 1 | Epidemiological studies on semen quality and endocrine disruptors including phthalates, BPA, PCB, and DDT/DDE.

Compound Study design Sample size and subjects Age Concentration Semen quality First author (year)

PHTHALATE

DEP Cross-sectional 300 Healthy males 29 0.64–3.11 µg/mL ↓ Concentration Pant et al. (21)

DBP Cross-sectional 300 Healthy males 29 0.18–1.65 µg/mL ↓ Concentration,

motility

Pant et al. (21)

DBP Cross-sectional 300 Healthy males 28–29 13.47 µg/mL ↓Motility, viability Pant et al. (22)

DEHP Cross-sectional 300 Healthy males 28–29 5.73 µg/mL ↓Motility, viability Pant et al. (22)

MEP Cross-sectional 168 Male partners of

sub-fertile couples

36 175.5 ng/mL No relationship Duty et al. (23)

MEP Cross-sectional 463 Male partners of

sub-fertile couples

36 180 ng/mL No association Hauser et al. (24)

MEP Cross-sectional 45 Male partners of sub-fertile

couples

35 121.9 ng/mL ↓ Concentration Wirth et al. (25)

MEP Cross-sectional 269 Male from infertility clinic 32 153.6 µg/mL No relation Jurewicz et al. (26)

MBP Cross-sectional 168 Male partners of

sub-fertile couples

36 16.1 ng/mL ↓ Concentration,

motility, morphology

Duty et al. (23)

MBP Cross-sectional 463 Male partners of

sub-fertile couples

36 17.3 ng/mL ↓ Concentration,

motility

Hauser et al. (24)

MBP Cross-sectional 45 Male partners of sub-fertile

couples

35 26.9 ng/mL No association Wirth et al. (25)

MBP Cross-sectional 269 Males from infertility

clinic

32 108.5 µg/mL No association Jurewicz et al. (26)

MEHP Cross-sectional 463 Male partners of

sub-fertile couples

36 8.0 ng/mL No association Hauser et al. (24)

MEHP Cross-sectional 168 Male partners of

sub-fertile couples

36 7.6 ng/mL No association Duty et al. (23)

MEHP Cross-sectional 45 Male partners of sub-fertile

couples

35 11.5 ng/mL No association Wirth et al. (25)

MEHP Cross-sectional 269 Males from infertility

clinic

32 18.4 µg/mL ↓Motility Jurewicz et al. (26)

MMP Cross-sectional 168 Male partners of

sub-fertile couples

36 7.5 ng/mL ↓Morphology Duty et al. (23)

MMP Cross-sectional 463 Male partners of

sub-fertile couple

36 3.6 ng/mL No association Hauser et al. (24)

MMP Cross-sectional 45 Male partners of sub-fertile

couples

35 1.1 ng/mL No association Wirth et al. (25)

MCPP Cross-sectional 45 Male partners of sub-fertile

couples

35 2.5 ng/mL ↓Morphology Wirth et al. (25)

BPA Cross-sectional 190 Male from infertility clinic 36 1.3 ng/mL ↓ Concentration,

motility, morphology

Meeker et al. (27)

BPA Cross-sectional 375 Male partners of

pregnant women

32 (18–53) 1.5 µg/L No association Mendiola et al. (28, 29)

(Continued)
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Table 1 | Continued

Compound Study design Sample size and subjects Age Concentration Semen quality First author (year)

BPA Cross-sectional 218 Males N/A 1.6–5.9 µg/L ↓ Sperm

concentration,

motility, viability, count

Li et al. (30)

BPA Prospective cohort 142 Male partners of

sub-fertile couples

34 1.55 ng/mL ↓ Concentration,

vitality, count

Knez et al. (31)

PCB Pilot study 29 Male partners of

infertile/sub-fertile couples

33 242 ng/g lipids ↓Motility Hauser et al. (19)

PCB Cross-sectional 303 Male partners of

sub-fertile couple

35 43 ng/g lipids ↓Motility Hauser et al. (32)

PCB Cross-sectional 303 Male partners of

sub-fertile couples

35 223 ng/g lipids ↓Motility Hauser et al. (32)

p,p′ DDT Cross-sectional 311 Healthy males 23 (18–40) 90.23 µg/g lipid ↓Motility Aneck-Hahn et al. (33)

p,p′-DDE Cross-sectional 24 Healthy male 21 (16–28) 77.9 µg/g lipid ↓ Volume, count Ayotte et al. (34)

p,p′-DDE Cross-sectional 116 Healthy males 27 45.0 µg/g lipid ↓Motility, morphology de Jager et al. (13)

p,p′-DDE Case–control 73 Healthy males 25 1.05 µg/g lipid No relationship Charlier and Foidart (35)

p,p′-DDE Cross-sectional 195 Healthy males 24–65 240 ng/g lipid

(80–887)

No relationship Rignell-Hydbom et al. (12)

p,p′-DDE Cross-sectional 212 Sub-fertile males 28–45 220 ng/g lipid

(72.5–7776)

No relationship Hauser et al. (15)

p,p′-DDE Pilot study 29 Male partners of

infertile/sub-fertile couples

33 354 ng/g lipid ↓Motility Hauser et al. (19)

DBP, Di-n-butyl phthalate; DEHP, Di(2-ethylhexyl) phthalate; MEP, monoethyl phthalate; MbzP, monobenzyl phthalate; MBP, mono-n-butyl phthalate; MEHP, mono-

2-ethylhexyl phthalate; MMP, mono-methyl phthalate; MEOHP, mono-(2-ethyl-5-oxohexyl) phthalate; MiBP, mono-isobutyl phthalate; MEHHP, mono-(2-ethyl-5-

hydroxyhexyl) phthalate; MCPP, mono-(3-carboxypropyl) phthalate, N/A, no data available.

the same time, some have not proven this connection to phthalate
metabolites (MBP or MBzP) (50). The aforementioned studies
have many important differences, including the age range of the
study populations, healthy status of the study populations, dif-
ferences in the analytical methods used to measure phthalates,
adjustment for covariance, and exposure concentrations.

DNA INTEGRITY
Sperm DNA integrity represents an essential requirement for
the accurate transmission of genetic information. The origin of
human sperm DNA damage involves certain mechanisms, includ-
ing (1) alterations in chromatin modeling during the process of
spermiogenesis, (2) apoptosis, and (3) oxidative stress (51). Sperm
DNA damage has been characterized using the Comet assay (39),
the sperm chromatin structure assay (SCSA) (52), and termi-
nal deoxynucleotidyl transferase-driven dUTP nick end labeling
(TUNEL) assay (53). Methods assessing sperm DNA integrity have
implications and applications for being a better predictor of both
in vivo and in vitro fertility than the WHO sperm parameters (54).

There is limited and contradictory epidemiological evidence
on whether PCBs can affect human sperm DNA (39, 52, 55).
PCBs positively associated with percentage of DNA fragmentation

analyzed by the TUNEL assay and the neutral Comet assay (20).
Hauser et al. observed no statistically significant consistent associ-
ations between the Comet assay parameters and any of the individ-
ual PCB congeners or sum of PCBs (39). Reasons for this inconsis-
tency might be different methodologies used to detect sperm DNA
damage, varying exposure ranges to and mixtures of persistent
organic compounds,and different inclusion criteria for the studies.

Spanò et al. studied whether p,p′-DDE was associated with
altered sperm chromatin integrity among European men. They
found no significant associations between p,p′-DDE serum con-
centrations and sperm chromatin integrity analyzed by the SCSA
(41). A following study conducted by Stronati et al. also observed
no correlation between p,p′-DDE and sperm DNA fragmenta-
tion of 652 adult Inuits. A study of a population of Mexican
men exposed to a mean concentration of 45,000 ng/g lipid from
DDT sprayed in the environment show that impaired sperm chro-
matin condensation was observed in 46.6% of participants (13).
Another study that was characterized by a mean p,p′-DDE level
of 90,230 ng/g for DDT reported 54.7% of the studied young
men had impaired sperm chromatin condensation. The percent-
age of damaged sperm chromatin structure measured by the flow
cytometric method had a weak, but positive relationship with
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Jeng Endocrine disruptors and male reproductive health

Table 2 | Epidemiological studies on DNA integrity and endocrine disruptors including phthalates, BPA, PCB, and DDT/DDE.

Compound Study design Sample size Age Concentration DAN integrity First author (year)

PHTHALATE

MEP Cross-sectional 68 Male partners of sub-fertile

couples

36 186.8 ng/mL ↑Tail distributed

moment

Duty et al. (36)

MEP Cross-sectional 379 Males from infertility clinic 36 171 ng/mL ↑ DNA damage Hauser et al. (37)

MEP Cross-sectional 269 Males from infertility clinic 32 153.6 µg/mL No association Jurewicz et al. (26)

MBP Cross-sectional 168 Male partners of sub-fertile

couples

36 18.2 ng/mL No association Duty et al. (36)

MBP Cross-sectional 379 Infertility clinic 36 17.9 ng/mL ↑ DNA damage Hauser et al. (37)

MBP Cross-sectional 269 Males from infertility clinic 32 108.5 µg/mL ↑ DNA damage Jurewicz et al. (26)

MEHP Cross-sectional 168 Male partners of sub-fertile

couples

36 7.1 ng/mL No association Duty et al. (36)

MEHP Cross-sectional 379 Infertility clinic 36 7.6 ng/mL ↑ DNA damage Hauser et al. (37)

MEHP Cross-sectional 269 Males from infertility clinic 32 18.4 µg/mL No association Jurewicz et al. (26)

MMP Cross-sectional 168 Males partners of sub-fertile

couples

36 6.1 ng/mL No association Duty et al. (36)

MMP Cross-sectional 379 Infertility clinic 36 3.6 ng/mL No relation Hauser et al. (37)

BPA Cross-sectional 190 Males from infertility clinic 36 1.3 ng/mL ↑ DNA damage Meeker et al. (27)

BPA Cross-sectional 132 Sub-fertile 37 Below limit of detection

(LOD)

↑ DNA damage Meeker et al. (38)

PCB Cross-sectional 212 Sub-fertile 28–45 226 ng/g lipid No association Hauser et al. (39)

PCB Cross-sectional 707 Males from general population 34 180 ng/g lipid ↑ DNA

fragmentation

Spanò et al. (40, 41)

DDT/DDE Cross-sectional 707 Healthy males 34 560 ng/g lipid No relationship Spanò et al. (40, 41)

p,p′-DDT Cross-sectional 195 Healthy males 47 240 ng/g lipid (80–887) No relationship Rignell-Hydbom et al. (12)

p,p′-DDE Cross-sectional 212 Sub-fertile males 28–45 220 ng/g lipid

(72.5–7776)

No relationship Hauser et al. (15)

p,p′-DDE Cross-sectional 680 Partners of pregnant women 34 750 ng/g lipid ↑ DNA damage Giwercman et al. (42)

p,p′-DDE Cross-sectional 707 Males from general population 34 790 ng/g lipid No association Spanò et al. (40, 41)

DDT concentrations. However, the percentage of DNA damage
and sperm chromatin structure defects were not correlated (56).
The finding was in agreement with other studies (40, 52). Some
epidemiological studies did not find any significant association
between DDT/DDE exposure and human sperm DNA (39, 52,
53). However, all of the preceding studies were characterized by a
relatively low level of exposure to DDT, as detected by the plasma
analysis of DDE, and where the main route of exposure to DDT
was through diet. Those studies suggested that additional fac-
tors (e.g., genetic background, lifestyle habits, characterization of
actual DDT mixture, and their xenohormonal activities) need to
be investigated in the future for a better understanding of the effect
of DDT exposure on sperm DNA integrity.

A few studies with cellular models indicated that BPA has
the potential to induce point mutation, double stranded DNA

breaks, and aneuploidy (57, 58; Table 2). Human studies of
BPA exposure and sperm DNA damage have been very lim-
ited. Meeker et al. assessed the relationship between urinary
BPA concentrations and sperm DNA damage in men recruited
through a United States infertility clinic. BPA has been associ-
ated with increased single-strand breaks of sperm DNA damage
among men. Since the studied population was recruited through
an infertility clinic, there is a limitation on the ability to gen-
eralize the results to the general population (27, 59). Another
follow-up study investigating relationships between urinary con-
centrations of parabens and BPA and male reproductive health
reported that both parabens and BPA were both positively asso-
ciated with sperm DNA damage. The study did not reach con-
clusions regarding causal relationships due to the cross-sectional
design (38).
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Limited animal and epidemiologic data exist on the potential
general population effects of phthalate exposure on sperm DNA
integrity. In a US study, an association between increased sperm
DNA damage and MEP was found, but there were no associations
with the other phthalate monoesters (36; Table 2). A follow-up
study with a larger sample of men and measurement of two oxida-
tive metabolites of DEHP reported consistent evidence of the
previous findings that MEP, a metabolite of diethyl phthalate, was
associated with increased DNA damage and MEHP, a metabolite
of DEHP, was associated with DNA damage after adjustment for
the oxidative DEHP metabolites (37). When analyzing six uri-
nary phthalate metabolites from 344 men with normal semen
concentrations (20–300 mln/mL) or slight oligozoospermia (15–
20× 106/mL), Jurewicz et al. reported that urinary MBP levels
were significantly associated with an increase in sperm DNA dam-
age (26). The same research group extended the preliminary study
by including a large sample of men and measurements of more
phthalate metabolites MEHP and MEOHP, two oxidative metabo-
lites of DEHP. Sperm DNA damage was associated with MEHP
after adjusting for DEHP oxidative metabolites (26). By contrast,
a Swedish study did not find associations between any of the
phthalate monoesters and sperm DNA damage measured with the

SCSA (50). A recent study of 232 general population men from a
Reproductive Center in Chongqing, China, showed no association
between phthalate metabolites and sperm DNA damage using the
alkaline single-cell gel electrophoresis assay (60).

REPRODUCTIVE SYSTEM TRACK
Two congenital anomalies are included in the definition of the tes-
ticular dysgenesis syndrome (TDS): cryptorchidism and hypospa-
dias. Cryptorchidism is the failure of one or both testicles to
descend into the scrotum, which likely occurs by 6 months of
age (61), thus study designs rely only on diagnosis in the deliv-
ery room are sub-optimal. Hypospadias, the condition in which
the opening of the urethra is on the ventral side of the penis
rather than that at the tip of the glans penis, can be diagnosed
reliably at birth. Hypospadias may arise during the first trimester
of in utero life and is classified as mild (first degree) to severe
(third degree), depending on where the urethra opens on the
penis. Eight studies have examined the relationship between cryp-
torchidism and/or hypospadias and DDT and/or metabolites of
DDT. Table 3 summarizes results from limited published studies
that have examined the association between PCBs and DDT and
either cryptorchidism or hypospadias. Two case–control studies

Table 3 | Case–control studies on relationships between cryptorchidism and hypospadias and endocrine disruptors including PCB and DDT/DDE.

Compound Country Outcome Biospecimen Cases Controls Results First author (year)

PCB Germany Cryptorchidism Maternal sera 18 30 Null Hosie et al. (66)

PCB Faroe Islands Cryptorchidism Umbilical cord 19 176 Null Mol et al. (63)

PCB France Cryptorchidism Cord blood 67 84 Null Brucker-Davis et al. (64)

Cryptorchidism Colostrum 56 69

PCB US Cryptorchidism Maternal sera 230 593 Null McGlynn et al. (65)

Hypospadias Maternal sera 201 593

PCB Italy Hypospadias Maternal sera 37 21 Null Giordano et al. (67)

PCB US Hypospadias Maternal sera 20 28 Null Carmichael et al. (68)

p,p′-DDT o,p′-DDE Germany Cryptorchidism Maternal sera 18 30 p > 0.05/p > 0.05 Hosie et al. (62)

p,p′-DDT o,p′-DDE Denmark and Finland Cryptorchidism Breast milk 62 68 p=0.47/p=0.97 Damgaard et al. (69)

p,p′-DDT o,p′-DDE Spain Cryptorchidism Placenta 48 114 p > 0.05/p > 0.05 Fernandez et al. (70)

Hypospadias

p,p′-DDE Germany Cryptorchidism Maternal sera 18 30 p > 0.05 Hosie et al. (62)

p,p′-DDE US Cryptorchidism Maternal sera 219 552 p > 0.05 Longnecker et al. (71)

Hypospadias Maternal sera 199 552 p > 0.05

p,p′-DDE US Cryptorchidism Maternal sera 75 283 p > 0.05 Bhatia et al. (8)
Hypospadias Maternal sera 66 283 p > 0.05

p,p′-DDE Denmark and Finland Cryptorchidism Breast milk 62 68 p=0.26 Damgaard et al. (69)

p,p′-DDE France Cryptorchidism Cord blood 67 84 p=0.43 Brucker-Davis et al. (64)

Cryptorchidism Colostrum 56 69 p=0.11

p,p′-DDE Italy Hypospadias Maternal sera 37 21 p > 0.05 Giordano et al. (67)

p,p′-DDE US Hypospadias Maternal sera 20 28 p=0.80 Carmichael et al. (68)
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of PCBs and cryptorchidism reported no relationship to risk
(62, 63), whereas a third offered measured support (64). One
ecologic study of PCBs and hypospadias reported an inverse
association (42). Because the sample sizes of prior studies may
have been too small to detect statistically significant differences,
a follow-up study was conducted among a large, well-described
population in which the serum samples were collected at a time
when PCB levels in the United States were higher. This study
analyzed PCBs in the third-trimester serum samples from the
mothers of 230 sons with cryptorchidism, 201 sons with hypospa-
dias, and 593 sons with neither condition between 1959 and
1965, and did not strongly support the hypothesis that PCBs are
associated with cryptorchidism or hypospadias. Because popu-
lation serum PCB levels at the time of sample collection were
considerably higher than levels at present, it is unlikely that
current PCB exposure is related to the development of either
anomaly (65).

In a rat model, DBP could prompt changes in testes and
male reproductive accessory glands, hypospadias, cryptorchidism,
retention of nipples, and reduced anogenital distance (48, 72).
Studies on laboratory animals have shown that exposure to
500–750 mg of DBP/kilogram during the critical period of male
reproductive development results in remarkable phenotypic alter-
ations in normal development (73). At birth, males presented
with reduced anogenital distance. In adulthood, the phenotypes
included cryptorchidism, epididymal agenesis, testicular atrophy
with germ cell loss, hypospadias, and absent or smaller seminal
vesicles and prostate (74). In humans, evidence demonstrating a
negative action of phthalates on the reproductive tract is also accu-
mulating. A relationship between anogenital distance and mater-
nal urinary concentrations of phthalate metabolites was noted in
85 boys studied by Swan et al. (3). That study investigated the
effect of prenatal environmental exposure to phthalates on genital
development in newborns.

CANCERS
Studies investigating an association of DDT with endometrial can-
cer (75) and prostate and testicular cancer (76) have been inconclu-
sive or do not support an association. Recently, increased exposure
to p,p′-DDE has been reported to associate with risk of both semi-
nomatous and non-seminomatous testicular germ cell tumors
(TGCTs) (77). This case–control study investigated pre-diagnostic
serum samples from 754 case subjects and 928 control subjects
enrolled in the US Servicemen’s Testicular Tumor Environmental
and Endocrine Determinants (STEED) for DDT exposure. Sub-
jects in the highest serum p,p′-DDE quartile (>0.390 µg/g lipid)
compared to those in the first serum p,p′-DDE quartile (0.157 µg/g
lipid) supported increased risk of TGCT in relation to exposure to
DDE and PCBs (78). On the other hand, DDE was not associated
with TGCT in a case–control study of 876 adult men in Washing-
ton State, U.S. (79). Finally, several small studies have suggested an
association between PCB exposure and prostate cancer (80, 81),
whereas no association was reported between PCBs and prostate
cancer in a recent Canadian study of 79 cases and 329 age frequency
matched controls (82).

As far as genotoxic and mutagenic effects of BPA are con-
cerned, most studies are carried out in in vitro systems, which

do not mimic the in vivo environment. BPA has been evaluated
in standard screens for mutagenicity including the Ames test,
mouse lymphoma, sister chromatid exchange, and mammalian
gene mutation assay. Most of the results indicated that BPA is not
mutagenic (83). However, some reports have indicated that BPA
has the potential to induce point mutation, double stranded DNA
breaks, and aneuploidy (57, 58). The National Toxicology Pro-
gram (NTP) has evaluated the carcinogenic activity of BPA and
concluded that it was not a robust carcinogen in the context of
adult exposure (84). However, careful analysis of the same data
documented several shortcoming of the NTP study with respect
to effects observed on hematology of mice and testicular tumors,
age of animal as well as use of strain of rats and mice and their sus-
ceptibility to carcinogenic agents (85). Recent studies have shown
that prenatal exposure to BPA causes hyperplasia of prostate in
male rats resulting in greater risk of prostate cancer (86). Cur-
rently, there are few in vivo genotoxicity studies carried out in
bone marrow cells of mice upon BPA exposure at different time
intervals (1–5 days), which document that BPA failed to induce
chromosomal aberrations and micronuclei formation (87, 88).
Based on a few in vivo studies, it is impossible to draw a defi-
nite conclusion about genotoxic activity of BPA as it is estrogenic
in nature.

Most evidence depicting cancer risk associated with exposure
to EDC is limited to cellular and animal models. Although some
evidence shows associated TGCTs, there is no conclusive evidence
to indicate an increased risk of testicular cancer in men exposed
to EDCs.

MECHANISM(S) OF ACTION ON EDCs AFFECTING THE MALE
REPRODUCTIVE SYSTEM
Endocrine disrupting chemicals have long been known for their
estrogenic properties and the ability to compete with endoge-
nous steroid hormones binding to receptors. EDCs were found
to disturb human male steroidogenesis, which alters reproduc-
tive hormones, a critical factor in spermatogenesis. Recent studies
provide new insights about other mechanisms, such as oxidative
stress, genetic susceptibility, and epigenetic effects, related to EDCs’
involvement with detrimental reproductive health outcomes.

STEROIDOGENESIS
Endocrine disrupting chemicals can act as anti-androgens, anti-
estrogens, and steroidogenic enzyme inhibitors that interfere with
steroid action/production as the mechanism to alter male repro-
ductive health. Also, EDCs can interact with thyroid hormones and
their receptors or with the brain and the hypothalamo-pituitary
axis (89). Certain EDCs could inhibit the enzymes involved in
steroidogenesis, which leads to the reduction of hormones. Uri-
nary phthalate metabolites and BPA levels were negatively associ-
ated with testosterone levels (29, 90), follicle-stimulating hormone
(FSH) (91), and luteinizing hormone (LH) (50). Phthalate esters
were observed to exert a direct effect on Leydig cell or Sertoli
cell structure with correlation of the in vitro and in vivo sys-
tems (92). DEHP was also observed to altered Sertoli and Ley-
dig cell function during development and inhibit testosterone
production (93). DEHPs can exert their anti-androgenic action
by directly inhibiting testosterone synthesis in Leydig cells (94),
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which has been proposed to be a result of cytochrome CYP 17
dysfunction (95). Some phthalates have also been shown to dis-
rupt the patterns of gene expression that regulate cholesterol and
lipid homeostasis or insulin signaling, which could also result
in lower testosterone synthesis (96). In addition, certain phtha-
late monoesters may interfere with the ability of Sertoli cells
to respond to their normal endogenous ligand of FSH (97).
The action site of the phthalate monoester was at the cou-
pling of the FSH receptor-ligand complex to the transducing
G-protein within the Sertoli cell membrane (97). Among phthalate
metabolites, MEHP did not affect steroidogenesis in the H295R
steroidogenesis assay nor alter testosterone production in MA-10
cells (98, 99).

Bisphenol A was also observed to have an inverse relation-
ship with reproductive hormones. A recent study showed that
the reduction of testosterone could be due to BPA-induced
inhibitory effect on the activity of ATP-binding cassette trans-
porters of the cellular membrane of testicular tissues (100).
BPA has affinity to bind to estrogen receptors [estrogen recep-
tor alpha (ERα) and estrogen receptor beta (ERβ)]. Knock-
out models for estrogen receptors have shown that they are
the pivotal players required for spermatogenesis, suggesting that
estrogen plays an important role in testicular development and
spermatogenesis (101).

Dichlorodiphenyltrichloroethane could cause a decrease in
transport of testicular androgen as a result of enhanced degra-
dation (102). DDT and its metabolites (o,p′-DDT, and p,p′-DDE)
can inhibit endogenous ligand binding to the estrogen and andro-
gen receptors. PCBs can disrupt estrogen receptor function by
mimicking the natural ligand and acting as an agonist (103).

OXIDATIVE STRESS
Recent evidence suggests oxidative stress may be one of the
mechanisms associated with the effect of phthalates acting as an
anti-androgenic compound on male reproductive health. Phtha-
lates, mainly DEHP, DBP, or DEP, have been reported to alter the
activities of marker testicular enzymes of laboratory animals asso-
ciated with the specific events of spermatogenesis, inducing ROS
production, lipid peroxidation, and apoptosis of spermatocytes.
One possible mechanism is that ROS generation might correlate
with DEHP-induced Ca2+ entry, potentially through the Ca2+-
mediated activation of the nicotinamide adenine dinucleotide
phosphate (NADPH) complex (104). Recently, limited epidemi-
ological studies have also reported that phthalate metabolites are
associated with oxidative stress. Fong et al. assessed the associa-
tion between urinary phthalate metabolites in polyvinyl chloride
workers. After adjustment for age, smoking status, and coffee con-
sumption, sperm apoptosis and ROS generation were positively
associated with urinary MEHHP, MEOHP, and MEHP (105). Spe-
cific signaling pathways mediate increased oxidative stress are
needed to confirm oxidative stress as a mechanism for the effect
on phthalate.

Bisphenol A could induce oxidative stress in fish spermatozoa
in vitro, which results in accumulation of LO and CP, together with
the modification of antioxidant system activity. These oxidative
responses were associated with spermatozoa quality depression,
as measured by a decrease in the values of spermatozoa motility

and velocity (106). Adverse effects of the monomer in male rats
may be due to induction of oxidative stress in sperm (107). With
limited evidence to date, it is pre-mature to recognize oxidative
stress as the mechanism associated with the effect of BPA on male
reproductive capacity.

EPIGENETIC MECHANISM
Possible negative actions on progeny via epigenetic toxic mech-
anisms have recently been suggested. Epigenetic changes include
multiple mechanisms such as DNA methylation, histone modi-
fications, and non-coding RNAs, which regulate gene expression
without affecting the gene sequence (108). Epigenetic modifica-
tions via DNA methylation are permanent changes, which are
transmitted to next generations (109). As indicated earlier, BPA
has reduced affinity to bind to estrogen receptors that could lead
to gene transcription and regulate DNA methylation in various
disease states. Doshi et al. demonstrated that neonatal exposure of
rats to BPA led to aberrant DNA methylation in testis, indicating
methylation mediated epigenetic changes as one of the possible
mechanisms of BPA-induced adverse effects on spermatogenesis
and fertility (110). Wu et al. observed that DEHP-induced changes
in DNA methylation, especially within CpG islands, and suggested
that changes in DNA methylation may be one possible mechanism
of DEHP-mediated testicular toxicity (111). Although emerging
observations further expand the possibility of epigenetic as a toxic
mechanism of EDCs but are yet to be verified in human studies.

FUTURE RESEARCH NEEDS
Current evidence has shown variability in study findings regarding
the relationship between endocrine disruptors and male repro-
ductive health. Some possibilities explain the variability. First
of all, many of the potential exposure–response relationships
described here have not been adequately explored. Second, there
are differences among the studies, including differences in sam-
ple size, study design, study populations, life stage, data analysis
approaches, and/or strategies for attaining data on exposure, end-
point, and important covariates. Third, limitations are inherent
in epidemiological studies. For example, humans are not exposed
exclusively to the chemical being investigated, but instead to a
mixture of chemicals, some of them acting through common path-
ways. In addition, no single compound can act as a surrogate
or marker for the others because the contaminant profile varies
among individuals. Finally, different chemicals may have different
toxicokinetics.

Current evidence has provided a better understanding of the
impact of exposure to endocrine disruptors on male reproductive
health along with possible mechanisms. However, future studies
are needed to address inconclusive outcomes: (1) a well-defined
epidemiology study with cohorts of men in various populations
is required to evaluate the potential effect of external factors on
male reproductive health. Such a study should not be limited to
the analysis of sperm concentration, as this may not be the best
biomarker of testis function and human fertility; (2) human expo-
sure assessment data does not uniformly support toxicity of the
substances at environmental concentrations. There is a need to
develop methods to better study mixtures of endocrine disrup-
tors, such as exposure to multiple phthalates at different levels

Frontiers in Public Health | Environmental Health June 2014 | Volume 2 | Article 55 | 8

http://www.frontiersin.org/Environmental_Health
http://www.frontiersin.org/Environmental_Health/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jeng Endocrine disruptors and male reproductive health

and how they may act additively or synergistically, or even antag-
onistically. Statistical methods should incorporate the biological
activity of the different phthalate metabolites, both the monoesters
and oxidative metabolites; (3) there is a clear need for chemi-
cal and biochemical approaches aimed at a better understanding
of the mechanism of action of xenoestrogens with regard to the
low-dose effects revealed during developmental exposure. These
approaches encompass several areas of study, such as signal trans-
duction via membrane and nuclear ER, and analytical chemistry to
measure these chemicals and their metabolites in tissues. Humans
are exposed to a variety of endocrine disruptors acting through
many different pathways at different times during their devel-
opment. This poses two problems for consideration: interactions
among chemicals acting through a common pathway and a sin-
gle chemical affecting different pathways. A limited number of
studies have shown that certain EDCs could induce epigenetic
change. More studies are needed to confirm the results and any
association with altered reproductive dysfunction and the etiol-
ogy of congenital anomalies by identifying tissue-specific genes
with changes in DNA methylation; and (4) identify susceptibility
factors that may increase risk of adverse effects following exposure
to EDCs. Genetic factors may modify the exposure–dose relation-
ship by altering the metabolism or excretion of EDCs. Additionally,
genetic factors may modify dose–response relationships by alter-
ing the biological response to a given internal dose. More research
in this area of susceptibility is critical to our understanding of
human health risks.
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