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Orthocoronavirinae), and Alphapironavirus (under Pitovi-
rinae). Alphacoronaviruses include several porcine coro-
naviruses of veterinary relevance, notably transmissible 
gastroenteritis virus (TGEV) and porcine respiratory coro-
navirus (PRCV) (Turlewicz-Podbielska and Pomorska-Mól 
2021). Members of the Orthocoronavirinae subfamily have 
been linked to major outbreaks, including the SARS and 
MERS epidemics, the COVID-19 pandemic, and numerous 
other pathogens of clinical, veterinary, and economic sig-
nificance (Woo et al. 2009; Letko et al. 2020; Jacob Mach-
ado et al. 2021). The ability of CoVs to infect a wide range 
of hosts, including mammals and birds, underscores their 
potential for zoonotic transmission and the emergence of 
new viral strains (Edwards et al. 2020; Kenney et al. 2021; 
Liu et al. 2023).

Bats are widely acknowledged as evolutionary reservoirs 
for Alphacoronaviruses and Betacoronaviruses, serving as 
natural hosts due to their unique immune responses and 
ecological adaptability (Drexler et al. 2012; Banerjee et al. 
2019; Cui et al. 2019). Studies in Portugal have confirmed 
the presence of genus Alphacoronavirus, subgenus Pedaco-
virus and Tegacovirus, in both cavernicolous (cave-dwell-
ing) and tree-dwelling bats (Hemnani et al. 2023, 2024), 
supporting the notion that habitat and social behavior play 
roles in viral prevalence and transmission (Maganga et al. 
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2020). Bats contribute significantly to coronavirus evolu-
tion through recombination and spillover, facilitating cross-
species transmission events (Leopardi et al. 2018).

Domestic pigs are not only susceptible to a variety of 
Alphacoronaviruses but also act as potential intermediate 
hosts, bridging wildlife reservoirs and human populations 
(Scarpa et al. 2021). Examples are viruses like TGEV, a 
classical enteric coronavirus, that historically causes severe 
diarrhea and high mortality in piglets (Liu and Wang 2021). 
However, its prevalence has significantly declined in many 
regions, likely due to the emergence of PRCV, a natu-
ral deletion mutant of TGEV with altered tropism for the 
respiratory tract (Turlewicz-Podbielska and Pomorska-Mól 
2021). PRCV typically causes mild or subclinical respira-
tory disease and induces partial immunity against TGEV, 
contributing to its displacement in swine populations (Antas 
and Olech 2024). These viruses illustrate the dynamic adapt-
ability of CoVs in pigs and the potential for emergence of 
novel strains under favorable ecological conditions.

The emergence of new porcine coronaviruses, driven 
by high-density farming, close human-animal contact, and 
interactions with wildlife reservoirs, highlights the need for 
ongoing surveillance (Duan et al. 2023). Although attention 
has recently focused on viruses like swine acute diarrhea 
syndrome coronavirus (SADS-CoV) in Asia (Zhou et al. 
2018; Islam et al. 2021), the ecology of CoVs in European 
pig populations remains understudied. Understanding the 
diversity and prevalence of CoVs in pigs is crucial to antici-
pating and mitigating zoonotic risks.

Research indicates that CoVs originating in bats can 
spillover into pig populations, where further adaptation may 
occur, enhancing the risk of interspecies transmission (Zhou 
et al. 2018; Yang et al. 2019; Duan et al. 2023). Once estab-
lished in pigs, these viruses can spread and circulate within 
swine populations, creating opportunities for further evolu-
tion and potential spillover into humans or other animals 
(Edwards et al. 2020; He et al. 2020; Thakor et al. 2022), 
highlighting the role of pigs as intermediates between wild-
life reservoirs and human populations.

High-density farming conditions and frequent human 
contact with swine provide an ideal environment for viral 
transmission and recombination, raising the likelihood of 
novel CoV emergence.

Ongoing surveillance of CoVs in wildlife and domesti-
cated animals, particularly bats and farmed pigs, is essential 
for understanding their ecological and evolutionary dynam-
ics. Such monitoring is crucial for detecting emerging CoV 
strains and mitigating the risks of zoonotic outbreaks. Con-
tinued study of CoV distribution and transmission across 
various species and habitats is critical for global health 
preparedness.

As such, the aim of the present study was to explore the 
occurrence of CoVs in farmed pigs in Portugal, to better 
understand the potential risks of zoonotic spillover and con-
tribute to future surveillance efforts.

Materials and methods

Swine fecal samples collection

A total of 400 fecal samples from adult swine were obtained 
from a slaughterhouse in northern Portugal, which pro-
cessed swine originating from five farms located in north-
ern Portugal and Spain (Fig. 1). Of these, 200 samples were 
collected from swine raised on three fattening and breed-
ing farms in northern Portugal, near the Porto region, and 
another 200 from two similar farms in northern Spain, near 
Santiago de Compostela. Sampling took place over two 
months, specifically in December 2021 and January 2022. 
Fecal samples were taken directly from the small intestine 
in the visceral cleaning room before the intestinal cleaning 
process. No animals were sacrificed specifically for this 
study. The samples were maintained at 4ºC and transported 
to the laboratory within 12 h, after which they were stored at 
−80ºC until nucleic acid extraction was carried out.

Nucleic acid extraction

Fecal suspensions (10%) were prepared in phosphate-buff-
ered saline (pH 7.2) and centrifuged at 8,000× g for 5 min. 
Nucleic acids were extracted and purified from 200 µL of 
the clarified supernatant using the QIAamp Viral Mini Kit 
(Qiagen, Hilden, Germany) on the QIAcube® automated 
platform (Qiagen), following the protocol from the manu-
facturer. The RNA extracts eluted in RNase-free water were 
stored at − 80 °C until further analysis.

Molecular detection of coronaviruses

The extracted RNA was analyzed for CoVs using a pan-
CoV nested RT-PCR assay targeting the conserved region of 
the RNA-dependent RNA polymerase (RdRp) gene, produc-
ing a final product of 440 bp (Drzewnioková et al. 2021). 
A sample previously detected in our laboratory (accession 
number: ON721381) (Hemnani et al. 2022), was used as a 
positive control.

All end-point PCR reactions were conducted on a T100 
thermocycler (Bio-Rad, Hercules, CA, USA). The reaction 
mixtures utilized the Xpert One-Step RT-PCR kit (GRiSP®, 
Porto, Portugal) for the first round and the Xpert Fast Hot-
start Mastermix 2× with dye (GRiSP®, Porto, Portugal) for 
the second round. The thermocycling conditions for the first 
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round included cDNA synthesis at 45 °C for 15 min, initial 
denaturation at 95 °C for 3 min, followed by 40 cycles of 
denaturation at 95 °C for 10 s, annealing at 50 °C for 10 s, 
and extension at 72 °C for 15 s, with a final extension at 72 
°C for 10 min. For the second round, the initial denaturation 
was performed at 95 °C for 3 min, followed by 40 cycles 
of denaturation at 95 °C for 15 s, annealing was performed 
at 50 °C for 15 s, followed by extension at 72 °C for 2 s, 
with a final extension at 72 °C for 10 min. The amplified 
DNA fragments were analyzed by electrophoresis on a 1% 
agarose gel, stained with Xpert Green Safe DNA gel dye 
(GRiSP®, Porto, Portugal) for visualization. The gel was run 
at 120 V for 30 min, and a UV transilluminator was used to 
confirm and validate the PCR products.

Sequencing and phylogenetic analysis

Amplicons that matched the expected size were purified 
using the GRS PCR & Gel Band Purification Kit (GRiSP®, 
Porto, Portugal). Following purification, bidirectional 
sequencing was performed using the Sanger method along 
with the appropriate internal primers for the target gene. 
The resulting sequences were aligned and analyzed using 
the BioEdit Sequence Alignment Editor v7.1.9 software 
package, and compared to sequences in the NCBI GenBank 
nucleotide database, retrieved on 1 July 2024 ( h t t p  : / /  b l a s  t 
.  n c b  i . n l  m . n  i h .  g o v / B l a s t). Phylogenetic analysis was  p e r f o r 
m e d using MEGA X software (Kumar et al. 2018) and the 
Interactive Tree Of Life (iTOL) platform (Letunic and Bork 

2019), incorporating the sequences from this study along-
side additional reference sequences retrieved from Gen-
Bank. Reference sequences were selected based on their 
genetic similarity to the newly obtained sequences, inclu-
sion of recognized coronavirus species, and representation 
of diverse hosts and geographic regions. Accession numbers 
are provided in the respective trees. The maximum-likeli-
hood (ML) approach was used to infer the phylogenetic 
trees (Kumar et al. 2018), with the best-fit substitution 
models selected based on model testing in MEGA software. 
The specific models used are indicated in the corresponding 
figure legends. ML bootstrap values were estimated using 
1,000 replicates (Tamura 1992). This model was determined 
by MEGA X to be the most effective replacement model.

Statistical analysis

The detection rate of coronavirus in pigs was determined by 
calculating the proportion of positive samples relative to the 
total number of samples examined, with a 95% confidence 
interval (95% CI).

Results

From a total of 400 pig fecal samples, 18 tested positive for 
CoV (4.5%, 95% CI: 2.69–7.02). The sequences obtained 
in this study have been deposited in GenBank under the 
accession numbers PP819529–PP819537 (isolates from 

Fig. 1 Geographic origin of swine 
farms included in the study, 
located in northern Portugal and 
Spain, near Porto region and 
Santiago de Compostela. Shaded 
areas and pig icons represent 
the approximate locations of the 
regions where sampled farms are 
situated
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OQ613361) isolated from Rhinolophus ferrumequinum and 
Myotis myotis, respectively. Additionally, they showed sim-
ilarity to isolates from Bulgaria (GU190240) derived from 
Miniopterus schreibersii, the United Kingdom (OQ401253) 
from Pipistrellus pipistrellus, and a hedgehog-derived iso-
late from Portugal (OQ703961).

A phylogenetic tree was constructed using 15 sequences 
obtained in this study, confirming that all belonged to the 
Alphacoronavirus genus (Fig. 2). Further subdivision of the 

Portugal) and PP977515–PP977523 (isolates from Spain). 
The sequences isolated from Portugal shared 95.40–99.72% 
identity with bat-derived isolates, including those from 
Pipistrellus pipistrellus in Portugal (OR625571), Mini-
opterus schreibersii in Spain (ON101719), Pipistrellus 
pipistrellus in Italy (OQ134959; KY780386), and Pip-
istrellus pipistrellus in the United Kingdom (OQ401253). 
Similarly, sequences isolated from Spain exhibited 95.90–
99.76% identity with sequences from Portugal (OQ613363; 

Fig. 2 Phylogenetic tree of the RdRp sequences of CoV detected in this 
study. The tree was inferred using MEGA X software with the General 
Time Reversible substitution model and visualized using the Interac-
tive Tree of Life (iTOL). The tree includes 15 sequences obtained in 
the present study (highlighted in bold) and 46 reference CoV nucleo-

tide sequences retrieved from GenBank, displayed with their isolate 
source, location, date and accession number (without bold or shad-
ing). Only bootstrap values ≥ 50% are shown. The alignment size of 
the sequences was 405 base pairs
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Discussion

Coronaviruses pose a significant risk to swine health, with 
pigs acting as intermediate hosts for viruses originating from 
wildlife (Zhou et al. 2018; Thakor et al. 2022). Surveillance 
of swine populations is crucial for identifying CoVs with 
zoonotic potential and preventing future outbreaks.

In this study, we detected CoV sequences in 18 swine 
fecal samples, nine from Portugal and nine from Spain, with 
an overall detection rate of 4.5%. Furthermore, the identified 
sequences exhibited high nucleotide identity with bat-asso-
ciated Alphacoronaviruses from various regions, includ-
ing Portugal, Spain, Italy, and the United Kingdom. These 

Alphacoronavirus sequences for subgenus typing (Fig. 3) 
suggests that sequences isolated from Spain (PP977515–
PP977517 and PP977519–PP977523) belong to the sub-
genus Minunacovirus, while sequences from both Portugal 
and Spain (PP977518 and PP819529–PP819537) belong to 
the subgenus Pedacovirus. Additionally, a mean pairwise 
distance analysis was conducted to compare each obtained 
CoV sequence with reference CoV sequences, evaluat-
ing the number of base substitutions per site and overall 
genetic divergence (Table 1). Isolates B23_117 (PP819530), 
B23_119 (PP819535), and B23_162 (PP819531) were 
excluded from the analysis due to their short sequence 
length.

Fig. 3 Phylogenetic tree of the RdRp sequences of CoV detected in 
this study for further subgenus characterization of Alphacoronavirus 
sequences detected. The tree was inferred using MEGA X software 
with the General Time Reversible substitution model and visual-
ized using the Interactive Tree of Life (iTOL). The tree includes 15 

sequences obtained in the present study (highlighted in bold) and 42 
reference CoV nucleotide sequences retrieved from GenBank, dis-
played with their isolate source, location, date and accession number 
(without bold or shading). Only bootstrap values ≥ 50% are shown. 
The alignment size of the sequences was 366 base pairs
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such as the spike gene, cannot be inferred. Despite this limi-
tation, the presence of CoV sequences in swine highlights 
the potential risk of interspecies spillover, especially in areas 
where bats and livestock coexist or in occupational settings 
involving close contact with animals. Although recombina-
tion events were not directly investigated in this study, they 
remain a well-documented mechanism in the emergence of 
novel coronaviruses and warrant further genomic surveil-
lance (Yang et al. 2021; Amoutzias et al. 2022; Nikolaidis 
et al. 2022).

Our findings emphasize the need for enhanced surveil-
lance of CoVs in swine populations, particularly in regions 
with high bat densities, such as southern Europe (Van der 
Meij et al. 2015). The susceptibility of pigs to diverse CoVs, 
including those of bat origin, underscores the importance 
of targeted monitoring to track viral circulation and poten-
tial recombination events. Strengthening these efforts will 
be crucial for understanding cross-species transmission 
dynamics and mitigating future zoonotic risks.

Conclusion

The present study provides valuable insights into the genetic 
relationships between swine CoVs and bat-associated 
Alphacoronaviruses in Europe. The high genetic similarity 
observed between swine CoVs and bat CoVs highlights the 
need for further research on the role of bats in the trans-
mission cycle and the zoonotic potential of Alphacorona-
viruses. Expanding phylogenetic analyses and investigating 
recombination events could shed light on the evolutionary 
pathways of these viruses. Comparative studies between 
European swine populations may help identify shared pat-
terns of emergence and transmission.

Overall, our findings highlight the need for continuous 
surveillance and interdisciplinary research to better under-
stand the dynamics of CoVs in wildlife and livestock. Such 
efforts are crucial to improving global health preparedness 
and mitigating the risks of future zoonotic outbreaks.
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findings confirm the presence of Alphacoronaviruses within 
swine populations in Portugal and Spain, highlighting their 
potential role as intermediate hosts in the transmission chain. 
Our phylogenetic analyses revealed that all detected CoVs 
belong to the Alphacoronavirus genus and suggest that 
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isolated in pigs from Spain belong to the subgenus Minuna-
covirus, while sequences PP977518 isolated from a Span-
ish pig and PP819529–PP819537 isolated from Portuguese 
pigs belong to the subgenus Pedacovirus.

Evidence regarding the presence and impact of CoVs in 
European swine populations remains limited, with variations 
in reported detection rates potentially reflecting differences 
in sampling methods, geographic regions, sanitary condi-
tions, and host densities. In our study, we detected a 4.5% 
occurrence rate of Alphacoronaviruses in swine, providing 
direct molecular evidence of their presence in Portugal. The 
high nucleotide identity between the detected sequences 
and bat-associated Alphacoronaviruses, particularly those 
previously identified in Portugal and Spain, supports the 
hypothesis that bats act as primary reservoirs and pigs as 
intermediate hosts, suggesting a potential spillover event 
in the Iberian Peninsula. In comparison, a recent serologi-
cal study in southern Italy reported seroprevalence rates of 
17.9% for PRCV and 1.3% for TGEV (Ferrara et al. 2023), 
indicating prior exposure. These methodological differ-
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highlight the challenges in directly comparing coronavi-
rus circulation data across studies. Nonetheless, the find-
ings collectively support the ongoing circulation of diverse 
Alphacoronaviruses within European swine populations.

Moreover, previous studies have reported high sequence 
similarities between bat- and swine-associated CoVs, under-
scoring the zoonotic potential of these viruses (Edwards et 
al. 2020; Duan et al. 2023). Highlighting the need to explore 
how ecological and agricultural practices facilitate viral 
transmission between wildlife and livestock.

However, it is important to note that a limitation of our 
study is that the detection of viral RNA fragments in fecal 
samples does not confirm active infection in the pigs. These 
findings may indicate exposure or environmental contamina-
tion but do not necessarily demonstrate viral replication or 
systemic infection in the pigs sampled. Further studies involv-
ing serological testing and viral isolation would be needed to 
confirm infection status and assess transmission potential.

The detection of bat-like CoVs in swine populations 
underscores the importance of implementing integrated One 
Health approaches to mitigate zoonotic risks. The detected 
CoV sequences showed high nucleotide identity to bat-asso-
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