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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccine-induced
adaptive responses have been well investigated. However, the effects of sex, age, and
ethnic background on the immune responses elicited by the mRNA vaccine remain
unclear. Here, we performed comprehensive analyses of adaptive immune responses
elicited by the SARS-CoV-2 mRNA vaccine. Vaccine-induced antibody and T cell
responses declined over time but persisted after 3 months, and switched memory B
cells were even increased. Spike-specific CD4+ T and CD8+ T cell responses were
decreased against the B.1.351 variant, but not against B.1.1.7. Interestingly, T cell
reactivity against B.1.617.1 and B.1.617.2 variants was decreased in individuals
carrying HLA-A24, suggesting adaptive immune responses against variants are
influenced by different HLA haplotypes. T follicular helper cell responses declined with
increasing age in both sexes, but age-related decreases in antibody levels were observed
only in males, and this was associated with the decline of T peripheral helper cell
responses. In contrast, vaccine-induced CD8+ T cell responses were enhanced in older
males. Taken together, these findings highlight that significant differences in the
reactogenicity of the adaptive immune system elicited by mRNA vaccine were related
to factors including sex, age, and ethnic background.

Keywords: SARS-CoV-2, mRNA vaccine, antigen-specific T cell response, T peripheral helper cell, SARS-CoV-2
variants of concern, HLA
INTRODUCTION

T cells and antibodies have critical roles in antiviral immunity against severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) (1, 2). To enter host cells, SARS-CoV-2 interacts with the
angiotensin-converting enzyme 2 receptor expressed on host cells via their receptor-binding
domain (RBD) in the S1 subunit of the spike protein. Thus, neutralizing antibodies that bind to
the spike RBD have a critical role in antiviral immunity by blocking the entry of SARS-CoV-2 into
the host cells. Indeed, a cocktail of neutralizing antibodies that target the RBD was shown to be
useful in the treatment of coronavirus disease 2019 (COVID-19) (3). T cells also have protective
org March 2022 | Volume 13 | Article 7865861

https://www.frontiersin.org/articles/10.3389/fimmu.2022.786586/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.786586/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.786586/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.786586/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:a-chiba@juntendo.ac.jp
mailto:s-miyake@juntendo.ac.jp
https://doi.org/10.3389/fimmu.2022.786586
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.786586
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.786586&domain=pdf&date_stamp=2022-03-28


Bai et al. COVID-19 Vaccine-Induced Adaptive Immune Responses
roles in antiviral immunity (4, 5). T follicular helper (Tfh) cells
provide cognate help to B cells to differentiate into antibody
producing cells. Tfh cell responses were observed in COVID-19,
and numbers of Tfh cells and RBD-specific memory B cells were
associated with viral-specific antibody production (6, 7). CD8+ T
cells kill infected cells, and T helper 1 (Th1) cells exert antiviral
immunity by the production of cytokines including interferon-g
(IFN-g) (1). Several reports indicated that strong T cell responses
were associated with milder COVID-19 (4, 5, 8–10), and that
poor T cell responses were associated with disease severity in
male patients (11). In patients with impaired B cell function
caused by hematologic cancer, including those receiving anti-
CD20 therapy, T cell responses were important for the improved
outcome of COVID-19 (12, 13). Thus, the induction of adequate
T and B cell responses by vaccination is desired for protection
against SARS-CoV-2 infection.

Two SARS-CoV-2 mRNA-based vaccines that encode the
spike glycoprotein and demonstrated protective efficacy have
been used globally (14–17). SARS-CoV-2 mRNA vaccines
elicited robust antibody production after booster vaccination
(18–21). The strong responses of T cells including Th1 and CD8+

T cells were also observed after booster vaccination (19, 22–27).
Several important questions need to be addressed to better
understand the effects of these new mRNA vaccines on the
adaptive immune response. These include how long the
immunological memory against SARS-CoV-2 persists, and how
age, sex, and ethical differences influence the adaptive immune
responses elicited by the vaccine. Previous studies reported that
serum levels of SARS-CoV-2 spike-binding or neutralizing
antibodies showed a relatively modest reduction at 3 months
compared with at 1 month (28–30). Spike-specific T cell
responses were also high after 1 month and were decreased
after 3 months, although spike-specific T cells were present at
higher numbers than before vaccination (19). Recently, high
frequencies of spike-binding germinal center B cells and
plasmablasts were demonstrated to be present in lymph nodes
12 weeks after booster immunization (31). Regarding the
influence of age on vaccine-induced immune responses,
antibody responses were decreased with increasing age, except
for one study showing no influence of age on antibody levels (18,
21, 32–35). mRNA vaccine-induced T cell responses were also
shown to be reduced in older adults (33). Most of these studies
focused on specific immune responses such as antibody or T cell
responses, and the characteristics of subjects were different
between studies. Thus, a more comprehensive analysis of
adaptive immune responses is desired.

During the SARS-CoV-2 pandemic, various mutants have
emerged (36). Thus, another important question is whether the
current SARS-CoV-2 mRNA vaccines elicit adaptive immune
responses against SARS-CoV-2 variants of concern (VOCs).
Several studies reported neutralizing titers of sera from
individuals receiving the SARS-CoV-2 mRNA vaccine were
reduced against variants including B.1.1.7, B1.351, and P1 (26,
37–42). However, other studies demonstrated preserved
neutralizing titers for B.1.1.7 (42, 43). A recent study showed
decreased neutralizing titers for B1.351, and P1, and preserved
Frontiers in Immunology | www.frontiersin.org 2
titers for B.1.1.7 (44). Regarding T cell responses against the
variants, reduced reactivity against B.1.351 was observed in some
studies, whereas another study demonstrated comparable T cell
responses against the B.1.1.7 and B.1.351 variants when
compared with wild-type controls (23, 26, 41). The effect of
SARS-CoV-2 mRNA vaccine on VOCs appears to vary
depending on the study, perhaps because of the different
experimental approaches and ethnic backgrounds between
the studies.

We obtained sera and peripheral blood mononuclear cells
(PBMCs) from individuals before and after vaccination with the
BNT162b2 SARS-CoV-2 mRNA vaccine and assessed the
humoral and cellular responses. All individuals developed
antibody and T cell responses against the SARS-CoV-2 spike
protein. Among the SARS-CoV-2 variants, including B.1.1.7,
B.1.351, B.1.617.1, and B.1.617.2, SARS-CoV-2 spike-reactive
CD4+ T and CD8+ T cell responses were decreased against the
B.1.351 and B.1.617.1 variants. CD8+ T cell reactivity against the
B.1.617.1 and B.1.617.2 variant antigens was decreased in HLA-
A24 carrying individuals, but not in HLA-A24-negative
individuals. These results indicate that adaptive immune
responses against the SARS-CoV-2 variants are influenced by
different HLA haplotypes. Moreover, we revealed that the
adaptive immune responses elicited by the mRNA vaccine
were greatly influenced by age and sex. Tfh cell responses were
decreased with increasing age in the male and female groups.
However, the reduction of antibody levels with increasing age
was observed only in males, and this was associated with reduced
T peripheral helper cell (Tph) responses with increasing age.
Thus, the preserved Tph cell responses may contribute to the
maintenance of antibody levels in older females. We also
revealed that spike-reactive CD8+ T cells were increased with
increasing age only in males.
MATERIALS AND METHODS

Study Design
Participants were consecutively recruited at Juntendo University.
All participants were Asian and received two doses of the
BNT162b2 (Pfizer/BioNTech) mRNA vaccine with an interval
of 20–27 days. Those who had been diagnosed with COVID-19
and/or were treated with systemic immunosuppressive agents
were ineligible for the study. Individuals with serum positive for
the anti-SARS-CoV-2 nucleocapsid antibody in NG-Test IgG-
IgM COVID-19 (NG Biotech, Guipry, France) were excluded
from the study. A total of 89 participants including 62 health care
workers who had received the first dose of the BNT162b2 mRNA
vaccine between March 13th 2021 and July 3rd 2021, were
included in the study. Peripheral blood samples from 62
participants were collected at before, at 1 month and 3 months
after the first dose, and 75 participants provided blood samples
before and at 1 month and 14 participants provided samples at 1
month after the first dose. The characteristics of the study
participants are summarized in Table 1.
March 2022 | Volume 13 | Article 786586
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PBMC and Sera Isolation
PBMCs were isolated from whole blood by density-gradient
centrifugation using the BD Vacutainer CP Mononuclear Cell
Preparation Tube with Sodium Heparin (BD Biosciences,
Franklin Lakes, NJ, USA). PBMCs were immediately used for
activation-induced marker (AIM) assays or flow cytometry
analysis. Whole blood was collected in 4-ml tubes without
anticoagulant and centrifuged at 1800 x g for 15 min, and sera
were aliquoted and stored at −80°C.

Activation-Induced Marker Assay
The following PepTivator SARS-CoV-2 overlapping peptide pools
were obtained from Miltenyi Biotec(Bergisch Gladbach,
Germany): “S1” (the complete N-terminal S1 domain of the
spike glycoprotein including RBD; aa 1–692), “S+” (the
sequence domain aa 689–895 in the S2 domain of the spike
glycoprotein), “S” (the immunodominant sequence domains of
the spike glycoprotein), “M” (the complete sequence of the
membrane glycoprotein), “N” (the complete sequence of the
nucleocapsid phosphoprotein), mutation pools of B.1.1.7,
B.1.351, B.1.617.1, and B.1.617.2, as well as wild-type reference
pools for each mutation pool. Peptide pools of CMV pp65 protein
and human influenza A (H1N1) virus hemagglutinin were also
obtained from Miltenyi Biotec. Each lyophilized peptide pool was
reconstituted with sterile distilled water and used for AIM assays
following the manufacturer’s instructions. One million PBMCs
were cultured in 96-well flat-bottom plates in TexMACS medium
(Miltenyi Biotec, catalog number 130-097-196) containing peptide
pools (0.6 nmol/mL) at 37°C in a 5% carbon dioxide incubator.
PBMCs under the unstimulated condition were cultured in
Frontiers in Immunology | www.frontiersin.org 3
medium only. Twenty-two hours later, cells were incubated with
Zombie Yellow Fixable Viability Dye and Fc receptor blocking
solution (both from BioLegend, San Diego, CA, USA) and stained
with a mixture of monoclonal antibodies against human cell-
surface antigens in diluted form: anti-CD3-Brilliant Violet 421
(clone UCHT1), anti-CD4-APC/Fire 750 (clone RPA-T4), anti-
CD8-PE (clone SK1), anti-OX40-FITC (clone Ber-ACT35), anti-
CD137(4-1BB)-APC (clone 4B4-1), and anti-CD69-PE/Dazzle
594 (clone FN50). PBMCs were also stained with anti-HLA-
A24-PE (clone 17A10) to distinguish HLA-A24 carriers among
subjects. Data were acquired on a FACS LSR Fortessa (BD
Biosciences) and analyzed by using FlowJo software (TreeStar,
Ashland, OR, USA).

T and B Cell Subset Analysis by
Flow Cytometry
PBMCs were incubated with Fc receptor blocking solution
(BioLegend) and then stained with mixtures of the following
monoclonal antibodies against human surface antigens: anti-
CD3-Brilliant Violet 421(clone UCHT1), anti-CD4-APC/Fire
750 (clone RPA-T4), anti-CD45RA-Brilliant Violet 605 (clone
HI100), anti-CD279 (PD1)-PE(clone EH12.2H7), anti-CD185
(CXCR5)-PE/Dazzle594 (clone J252D4), anti-CD38-FITC (clone
T16), anti-HLA-DR-V500 (clone G46-6) for T cell subset
analysis; anti-CD19-PE/Dazzle594 (clone HIB19), anti-CD20-
Alexa Fluor 700 (clone 2H7), anti-CD27-APC/Fire 750 (clone
M-T271), anti-IgD-Brilliant Violet 421 (clone IA6-2), anti-
CD180-PE (clone G28-8), anti-CD38-FITC (clone T16), anti-
HLA-DR-V500 (clone G46-6), and anti-CD138-APC (clone
DL-101) for B cell subset analysis. Following surface staining,
TABLE 1 | Characteristics of the study participants.

Pre, 1 month, 3 months 1 month Aim assays (Figure 2A)

B.1.1.7 B.1.351 B.1.617.1 B.1.617.2

Total - n 62 89 88 47 27 31
HCW - n (%) 53 (85%) 62 (70%) 62 (70%) 23 (49%) 4 (15%) 5 (16%)
Sex - n (%)
Male - n (%) 34 (55%) 52 (58%) 51 (58%) 28 (60%) 15 (56%) 19 (61%)
Female - n (%) 28 (45%) 37 (42%) 37 (42%) 19 (40%) 12 (44%) 12 (39%)
Age (years)
Median 33.0 33.0 33.5 39.0 24.0 24.0
IQR (29.3–42.5) (28.0–49.0) (28.0–49.0) (23.5–52.0) (22.0–54.5) (21.5–53.0)
Range (20–79) (20–79) (20–79) (20–79) (20–79) (20–79)
20–29 - n (%) 16 (26%) 26 (29%) 25 (28%) 20 (43%) 14 (52%) 16 (52%)
30–39 - n (%) 26 (42%) 28 (31%) 28 (32%) 5 (11%) 0 (0%) 0 (0%)
40–49 - n (%) 9 (15%) 14 (16%) 14 (16%) 6 (13%) 3 (11%) 4 (13%)
50–59 - n (%) 8 (13%) 16 (18%) 16 (18%) 11 (23%) 7 (26%) 8 (26%)
≥60 - n (%) 3 (5%) 5 (6%) 5 (6%) 5 (11%) 3 (11%) 3 (10%)
Comorbidities - n (%)
Hypertension 5 (8%) 8 (9%) 8 (9%) 6 (13%) 4 (15%) 4 (13%)
Diabetes mellitus 1 (2%) 2 (2%) 2 (2%) 2 (4%) 1 (4%) 1 (3%)
Hyperuricemia 4 (6%) 4 (4%) 4 (5%) 0 (0%) 0 (0%) 0 (0%)
Allergic disease 5 (8%) 8 (9%) 8 (9%) 5 (11%) 3 (11%) 3 (10%)
Dyslipidemia 3 (5%) 6 (7%) 6 (7%) 4 (9%) 3 (11%) 3 (10%)
Bronchial asthma 1 (2%) 1 (1%) 1 (1%) 0 (0%) 0 (0%) 0 (0%)
Kidney disease 1 (2%) 1 (1%) 1 (1%) 1 (2%) 0 (0%) 0 (0%)
Neurologic disorder 2 (3%) 2 (2%) 2 (2%) 2 (4%) 1 (4%) 1 (3%)
March 20
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cells were washed and stained with 7-AAD Viability Staining
Solution. Data were acquired on a FACS LSR Fortessa (BD
Biosciences) and analyzed by using FlowJo software (TreeStar).

Measurement of SARS-CoV-2 Spike
RBD Antibody
Serum levels of anti-SARS-CoV-2 spike RBD IgG were
determined using an ELISA Kit (Acrobiosystems Newark, DE,
USA) according to the manufacturer’s instructions.

Statistical Analysis
All data were analyzed using Graph Pad Prism 9.0 (GraphPad, La
Jolla, CA, USA). Differences between groups were analyzed using
appropriate tests as indicated in the figure legends.
RESULTS

SARS-CoV-2 mRNA Vaccination Induces
T Cell Responses Against Spike Antigens
All participants received two doses of the BNT162b2 SARS-CoV-2
mRNA vaccine (Table 1). PBMCs and sera were collected before
and 1 and 3 months after the initial administration of the mRNA
vaccine. To quantify antigen-specific CD4+ T and CD8+ T cells, we
performed flow cytometry-based activation-induced marker
(AIM) assays (2, 45–48). PBMCs were stimulated with 15-mer
peptide pools containing 11-amino-acid (aa) overlaps of SARS-
CoV-2 structural proteins, comprising “S1” (the complete N-
terminal S1 domain of the spike glycoprotein including RBD; aa
1–692), “S+” (the sequence domain aa 689–895 in the S2 domain
of the spike glycoprotein), “S” (the immunodominant sequence
domains of the spike glycoprotein), “M” (the complete sequence of
the membrane glycoprotein), and “N” (the complete sequence of
the nucleocapsid phosphoprotein). T cell responses against the
peptide pools of cytomegalovirus pp65 protein (CMV) and human
influenza A virus hemagglutinin protein (influenza HA) were
assessed as controls. Antigen-specific AIM+CD4+ T and CD8+ T
cells were identified as “OX40+CD137+” and “CD69+CD137+”
cells, respectively (Supplementary Figures 1A, B). CD4+ T and
CD8+ T cell responses against SARS-CoV-2 spike peptide pools
were markedly increased at 1 month after the immunization
(Figure 1A). The percentages of SARS-CoV-2 spike reactive
AIM+CD4+ T and CD8+ T cells were reduced at 3 months post-
immunization, but higher than those before immunization
(Figure 1A). There was a positive correlation between the
percentages of AIM+CD4+ T and CD8+ T cells at 1 month post-
vaccination (Figure 1B). We also observed enhanced responses of
CD4+T and CD8+T cells against antigen pools other than SARS-
CoV-2 spike antigens. CD4+ T cells reactive to CMV, influenza
HA, and SARS-CoV-2 “M” and “N” were increased at 1 month
post-immunization. At 3 months post-immunization, “HA”-,
“M”-, and “N”-reactive CD4+ T cells were decreased, while
“CMV”-reactive CD4+ T cells were maintained. “M”-reactive
CD8+ T cells were also increased at 1 month and further
increased at 3 months post-immunization. “N”-reactive CD8+ T
cells were increased at 3 months post-immunization. “CMV”- and
Frontiers in Immunology | www.frontiersin.org 4
“HA”-reactive CD8+T cells were most increased at 3 months post-
immunization. Interestingly, T cells from individuals who had T
cells reactive to “M” or “N” had developed enhanced responses
against “CMV” and “HA” after the SARS-CoV-2 mRNA
vaccination (Supplementary Figure 2).

SARS-CoV-2 mRNA Vaccination Induces
T Cell Responses Against
SARS-CoV-2 VOCs
Next, we assessed whether the SARS-CoV-2 mRNA vaccine-
induced T cell responses to SARS-CoV-2 variants including
B.1.1.7 (alpha), B.1.351 (beta), B.1.617.1 (kappa), and B.1.617.2
(delta) at 1 month post-immunization. AIM assays were
performed using overlapping peptide pools covering the
mutated regions (MP) and the corresponding wild-type control
pools (WT) for each SARS-CoV-2 variant. The percentages of
AIM+CD4+ T and AIM+CD8+ T cells responding to B.1.351 MP
and B.1.617.1 MP, and AIM+CD8+ T cells reactive to B.1.617.2
MP were lower than those reactive to corresponding WT
(Figure 2A). The percentages of CD4+ T and CD8+ T cells
reactive B.1.1.7 MP, and B.1.617.2 MP reactive CD4+ T cells were
comparable to the corresponding controls (Figure 2A). The
L452R mutation in the spike RBD enhances the viral
replication of B.1.617.1 and B.1.617.2 (49). Because L452R is
present in the immunodominant epitope presented by HLA-
A24, this mutation is thought to enable the virus to escape from
HLA-A24-restricted cellular immunity (49). HLA-A24 is a
dominant HLA haplotype among Asians including the
Japanese population (50). Indeed, approximately half of
participants in our study were carrying this HLA haplotype
(data not shown). We compared the CD8+ T cell reactivity
against B.1.617.1 MP and B.1.617.2 MP in HLA-A24-positive
and -negative individuals. The percentages of CD8+ T cells
reactive to these MPs were lower than those reactive to WT in
HLA-A24-positive individuals, but such differences were not
observed in HLA-A24-negative individuals (Figure 2B). The
B.1.617.1 MP and B.1.617.2 MP reactive CD4+ T cell responses
were also decreased in the HLA-A24-positive group, but not in
the HLA-A24-negative group (Figure 2B). These results indicate
that the SARS-CoV-2 mRNA vaccination induces T cell
responses to the variants, but that T cell reactivity to some
variants is reduced, and that responsiveness to B.1.617 variants is
related to HLA haplotype.

SARS-CoV-2 mRNA Vaccination
Elicits T Responses Associated
With B Cell Differentiation
We analyzed the responses of Tfh cells, Tph cells, and B cell
subsets in individuals who received the SARS-CoV-2 mRNA
vaccine (Supplementary Figure 3). The percentages of Tfh and
Tph cells, as well as activated CD38+ cells and CD38+ HLA-DR+

cells among these cell subsets, were increased at 1 month and
reduced at 3 months post-vaccination (Figure 3A). The
percentages of total and activated Tfh and Tph cells positively
correlated with that of AIM+CD4+ T cells reactive to spike pools at
1 month post-immunization (Figure 3B and Supplementary
March 2022 | Volume 13 | Article 786586
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Figure 4). Among the B cell subsets, the percentages of naive B
cells were decreased andmemory B cells, including those that were
switched, were increased at 1 and 3months (Figure 3C). Although
the frequency of total plasmablasts was unchanged, that of
activated HLA-DR+CD138+ plasmablasts was increased at 1
month post-immunization (Figure 3C). These results revealed
the different time courses of SARS-CoV-2mRNA vaccine-induced
cellular responses. Strong responses of Tfh and Tph cells, as well as
plasmablasts critical for antibody production were observed at 1
month post-vaccination, and memory B cell responses observed at
1 month, continued for 3 months after vaccination.

The Impact of Age, Sex, and Post-Vaccine
Fever on Antibody Responses
Against SARS-CoV-2
To evaluate the antibody response induced by the SARS-CoV-2
mRNA vaccine, the serum levels of spike RBD-binding IgG were
Frontiers in Immunology | www.frontiersin.org 5
measured by ELISA at 1 and 3 months post-vaccination. Serum
spike RBD IgG levels showed a robust increase at 1 month
(median 29.3mg/mL, IQR 20.61-47.93) and were reduced at 3
months (median 6.8mg/mL, IQR 4.33-10.99) (Figure 4A). Anti-
spike RBD IgG levels at 1 month post-vaccination were higher in
individuals who developed fever after the second dose of the
mRNA vaccine, and were positively correlated with body
temperature among those that developed fever above 37.0°C
(Figure 4B). Anti-spike RBD IgG levels were decreased with
increasing age in males. Anti-spike RBD IgG levels also tended to
be decreased in older females, but the age-related reduction of
anti-spike RBD IgG levels was not statistically significant in the
female group (Figure 4C). To investigate whether B cell
responses induced by the vaccination were related to antibody
production, we assessed whether anti-spike RBD IgG production
was associated with B cell subsets. There was a positive
correlation between the percentage of HLA-DR+CD138+
A

B

FIGURE 1 | SARS-CoV-2 mRNA vaccination-induced T cell responses. Activation-induced marker (AIM) assays were performed with samples obtained from individuals
pre-, and 1 and 3 months post-vaccination. Peripheral blood mononuclear cells were stimulated with peptide pools of SARS-CoV-2 structural protein, cytomegalovirus
pp65 protein, and influenza A virus hemagglutinin (HA). Twenty-two hours later, T cells responding to the indicated peptide pools were measured as AIM+ (OX40+CD137+)
CD4+ T cells and AIM+(CD69+CD137+) CD8+ T cells by flow cytometry (FACS). (A) Percentages of AIM+ (OX40+CD137+) cells in CD4+ T cells and AIM+(CD69+CD137+)
cells in CD8+ T cells at pre-, and 1 and 3 months post-vaccination. (B) The correlation between AIM+ (OX40+CD137+) CD4+ T cells and AIM+(CD69+CD137+) CD8+ T cells
at 1 month post-vaccination. CMV, cytomegalovirus pp 65 protein; HA, influenza A virus hemagglutinin, S, parts of S1 and S2 domains of SARS-COV-2 spike; S1,
SARS-COV-2 spike S1 domain; S+, parts of the S2 domain of SARS-COV-2 spike, S mix, a mixture of S, S1, and S+; M, SARS-COV-2 membrane; N, SARS-COV-2
nucleocapsid. Each dot indicates the value of one individual. (A) Statistical differences between groups of pre-, 1 and 3 months were analyzed by the Friedman test.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (B) Correlations were analyzed using Spearman’s correlation analysis.
March 2022 | Volume 13 | Article 786586
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plasmablasts and the serum spike RBD-binding IgG levels at 1
and 3 months post-immunization (Figure 4D).

Sex and Age Are Related to
SARS-CoV-2 T and B Cell Responses
After mRNA Vaccination
Sex and age impact immune responses. Indeed, the antibody
response induced with BNT162b2 vaccination was reported to
be affected by age and sex (32). We also observed a decline in
serum spike RBD-binding IgG levels with increasing age in the
male group (Figure 4C). Because HLA-DR+CD138+ plasmablasts
were associated with spike RBD-binding IgG levels (Figure 4D),
we analyzed the influence of age and sex on T and B cell responses
induced by SARS-CoV-2 mRNA vaccination at 1 month post-
Frontiers in Immunology | www.frontiersin.org 6
immunization. The percentage of CD38+ Tfh cells decreased with
increasing age in the male and female groups, whereas the
percentage of CD38+ Tph cells negatively correlated with age
only in the male group (Figure 5A). We also assessed sex and age
differences in the CD4+ T and CD8+ T cell responses to SARS-
CoV-2 peptide pools. We found that CD8+ T cells from males
tended to have stronger responses to SARS-CoV-2 spike pools
than those from females, although there was no significant
difference between the groups (Figure 5B). Additionally, the
percentage of AIM+ CD8+ T cells from males was increased
with increasing age and age positively correlated with AIM+

CD8+ T cells in the male group, but not with AIM+ CD4+ T
cells in either sex or AIM+ CD8+ T cells in the female group
(Figure 5C). Even among individuals at <60 years of age, the
A

B

FIGURE 2 | SARS-CoV-2 mRNA vaccination-induced T cell responses against SARS-CoV-2 variants. Peripheral blood mononuclear cells from individuals at 1
month post-vaccination were stimulated for 22 hours with peptide pools that covered the mutated regions (MP) of SARS-CoV-2 and the corresponding wild-type
control pools (WT). (A) The percentages of AIM+ (OX40+CD137+) CD4+ T cells and AIM+(CD69+CD137+) CD8+ T cells responding to mutated spike pools (MP) of
B.1.1.7 (alpha), B.1.351 (beta), B.1.617.1 (kappa), and B.1.617.2 (delta) as well as each control pool (WT) are shown. (B) The percentages of AIM+(CD69+CD137+)
CD8+ T and AIM+ (OX40+CD137+) CD4+ T cells responding to the indicated MP and WT in HLA-A24-positive and -negative individuals are shown. *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001 (Wilcoxon matched-pairs signed-rank test).
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percentage of AIM+ CD8+ T cells tended to be positively
correlated with age (r = 0.2689, p = 0.0676) in males, but not in
females (r = 0.03139, p = 0.8558). At 3 months post-
immunization, CD38+Tfh and CD38+Tph cells were both
Frontiers in Immunology | www.frontiersin.org 7
decreased with increasing age in in the male and female groups
(Supplementary Figure 5A). Although the percentages of AIM+

CD8+ T cells at 3 months in the male group also tended to be
higher than those in female groups (Supplementary Figure 5B),
A

B

C

FIGURE 3 | SARS-CoV-2 mRNA vaccination-induced responses of T and B cell subsets. Flow cytometry analysis of peripheral blood mononuclear cells from
individuals pre-, and 1 and 3 months post-vaccination. A detailed gating strategy is shown in Figure S3. (A) The percentages of T follicular helper (Tfh), T peripheral
helper (Tph) cells, CD38+ and CD38+HLA-DR+ Tfh, and Tph cells. (B) The correlation of AIM+CD4+ T cells reactive to the S1 peptide pool with total Tfh and Tph
cells, and activated Tfh and Tph cells at 1 month post-vaccination. (C) The percentages of naïve B, memory B, switched memory B cells, plasmablasts, and HLA-
DR+CD38+ plasmablasts are shown. Each dot indicates the value of one individual. The box indicates the median and the whiskers indicate the first and third
quartiles (A, C). (A, C) *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 (Friedman test). (B) Correlations were analyzed using Spearman’s correlation analysis.
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they did not show a positive correlation with age in males
(Supplementary Figure 5C).
DISCUSSION

An increasing number of studies have reported T cell responses
elicited by the SARS-CoV-2 mRNA vaccine (19, 22–27, 33, 35,
51–62). Antigen-specific T cell responses are evaluated by using
several different methods. Cytokine release assays, namely
ELISPOTs or ELISAs are used to determine the responsiveness
and the type of cytokines produced by PBMCs stimulated with
specific antigens (19, 24, 26, 27, 51–53, 58, 59). AIM assays that
stain intracellular cytokines and/or activation markers are also
employed to evaluate antigen-specific T cells by using flow
cytometry (22, 23, 25, 27, 55–57, 60–62). A benefit of flow
cytometry-based AIM assays is that subpopulations of antigen-
specific T cells can be characterized. Previous studies using AIM
assays have shown that the first vaccine dose induces the spike-
specific CD4+T cell responses, but the CD8+T cell responses
become more apparent after the second dose (22). Strong spike-
reactive CD4+T cells with the capacity to produce IL-2, IFN-g,
and TNF-a are induced by the first dose of the mRNA vaccine,
and the second dose of vaccine increases these CD4+T cells and
induces CD4+T cells that produce IL-21 and CD40L (22, 61).
However, spike-reactive CD8+T cells that produce IFN-g and
TNF-a are observed after the second dose of the vaccine (22,
61).It has been recently demonstrated that 94% and 100% of
subjects developed spike-reactive CD4+T cells after the first and
Frontiers in Immunology | www.frontiersin.org 8
second doses of vaccine, respectively, and CD8+T cell responses
were observed in 71% and 88% participants after the first and
second doses, respectively (55, 61). However, a recent study
observed functional CD8+ T cells as early as 6–8 days after the
first SARS-CoV-2 vaccine dose, when responsiveness was
analyzed at the single-epitope level (25). These functional
CD8+ T cells were already present when SARS-CoV-2-reactive
CD4+ T cells and antibodies were barely detectable (25). Because
mRNA vaccine-mediated protection has been observed before
the second dose when the neutralizing antibody is not yet
detectable (17), this early CD8+ T cell response might play an
important role in protection at the early phase after vaccination.
In our study, spike-specific CD4+T and CD8+T cells developed in
all individuals at 1 month after the first dose. Spike-specific
CD8+T cells have been shown to decline more rapidly than
CD4+T cells (55). Our study showed that the reduction in
AIM+cells from 1 month to 3 months post-immunization was
comparable between CD4+T and CD8+T cells. The difference
among studies may be due to the differences in experimental
systems. Whereas most other studies have been performed using
cryopreserved PBMCs, fresh PBMCs were used in our AIM
assays. This may have influenced the results because fresh
PBMCs respond better than cryopreserved PBMCs. We
defined the AIM+ cells as OX40+CD137+ for CD4+T cells and
CD69+OX137+ for CD8+T cells following the method to identify
SRAS-CoV-2 antigen-specific T cells in COVID-19 patients and
vaccinated individuals (2, 41). Other studies have used various
combinations of surface activation markers, such as CD200,
CD40L, CD137, and CD40L, and sometimes with intracellular
A B

DC

FIGURE 4 | SARS-CoV-2 mRNA vaccination-induced Spike RBD-binding IgG. Serum levels of SARS-CoV-2-Spike RBD-binding IgG were measured by ELISA. (A)
Serum spike RBD IgG levels at 1 and 3 months after the first dose of SARS-CoV-2 mRNA vaccine. For values below the lower limit of quantification (LLOQ), LLOQ/2
values are plotted. (B) The association of serum spike RBD IgG levels at 1 month after vaccination in individuals with post-vaccine fever. Left, comparison of spike
RBD IgG levels between individuals with body temperature > or ≤ 37.0°C. Right, correlation between spike RBD IgG levels and body temperature in individuals with
body temperature > 37.0°C. (C) Correlation between age and serum spike RBD IgG levels at 1 month post-vaccination. (D) Correlation between the percentage of
HLA-DR+CD38+ plasmablasts and serum spike RBD IgG levels at 1 month (left) and 3 months (right) after vaccination. Each dot indicates the value of one individual.
The box indicates the median and the whiskers indicate the first and third quartiles (A, B). *p<0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. p-values were
determined by Wilcoxon matched-pairs signed-rank test (A), and Mann-Whitney U-test (B, left). Correlations were analyzed using Spearman’s correlation test (B–D).
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IFN-g and TNF-a (23, 25, 55–57, 61, 62). Thus, the different
activation markers used to identify activated T cells may have
also yielded different results, too.

CD4+ T cell responses play major roles in the induction of
cellular and humoral immunities. Our study showed that spike-
specific CD4+T cell responses were positively associated with the
responses of Tfh and Tph cells, and spike-specific CD8+T cells.
CD4+ T cell responses elicited by the first dose of vaccine were
important for the responses after the booster immunization.
Positive correlations have been demonstrated between pre-boost
AIM+Th1 and AIM+Tfh cells with post-boost AIM+CD8+T cell
and neutralizing antibody responses, respectively (61). Thus, it
would be important to maintain the levels of spike-specific
CD4+T cells to maintain the vaccine efficacy and to enhance
acquired immune responses after the booster vaccination. In our
study, although the numbers of spike-reactive T cells and spike
RBD IgG levels were decreased over time, these T cells and
antibodies remained present at 3 months post-vaccination. The
magnitude of adaptive immune responses after the booster
vaccination may influence how long these T cells and
antibodies remain in vaccinated individuals. Thus, additional
booster vaccinations may be considered for individuals with
Frontiers in Immunology | www.frontiersin.org 9
weak T cell and antibody responses at 1 month post-
vaccination. The percentage of switched memory B cells was
maintained at high levels at 3 months post-vaccination; however,
longitudinal studies are required to determine how long T and B
cell memory persists after vaccination.

As previously reported by other groups, a strong response of
SARS-CoV-2 spike-reactive antibodies was observed in all
individuals after a second dose of the BNT162b2 mRNA
vaccine. The serum spike RBD-binding IgG levels were
positively associated with the percentage of HLA-DR+CD138+

plasmablasts and at 1 and 3 months post-immunization, but the
correlations were weak. Presumably this is because the activated
HLA-DR+CD138+ plasmablasts post-immunization may include
those specific to SARS-COV-2 spike protein that includes the
spike RBD. Thus, the analyses of plasmablasts and antibodies
both specific to the spike RBD are required to demonstrate
their association.

The cut-off values of anti-spike antibodies for protection
against COVID-19 are unknown. However, the SRAS-CoV-2
BNT162b2 mRNA vaccine has been shown to induce a strong
antibody response especially after the second immunization, to a
higher level than that observed in COVID-19 convalescent
A

B

C

FIGURE 5 | Age and sex influence T and B cell responses elicited by SARS-CoV-2 mRNA vaccination. (A) Correlation of age with CD38+ Tfh and CD38+ Tph cells.
(B) Comparison of SARS-CoV-2 peptide pool-reactive AIM+CD4+ T cells and AIM+CD8+ T cells between female and male individuals at 1 month after vaccination.
(C) Correlation of age with S1 peptide pool-reactive AIM+CD4+ T cells and AIM+CD8+ T cells in male and female groups. Each dot indicates the value of one individual.
The box indicates the median and the whiskers indicate the first and third quartiles (B). Correlations were analyzed using Spearman’s correlation test (A, C). *p < 0.05,
*p < 0.01, ***p < 0.001.
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patients. The first vaccine dose of BNT162b2 induced an anti-
spike RBD IgG response in about 88% of individuals, and the RBD
IgG levels became positive in 98.4% of individuals and showed a
20-fold increase after the second dose (18). Anti-spike IgG levels
after one and two doses of the vaccine were lower in individuals
older than 80 years of age than those younger than 80 years of age
(33, 63). Other studies have shown that age has a negative effect on
anti-spike antibody titers at 14 days after the first dose, but the age-
related decline in anti-spike titers is lost after the second
immunization or observed only in males (21, 32, 64). Some
studies have shown that the anti-spike level decreases with
increasing age among individuals younger than 80 years (64,
65). We also observed an age-related decrease in the anti-spike
RBD levels only in the male group. Antibody responses after the
immunization with the mRNA vaccine are also influenced by
other factors, which include immunosuppression, and
comorbidities such as diabetes, hypertension, heart disease, and
autoimmune diseases (18). Thus, the discrepancies among studies
may be due to the subjects in each study.

The bystander activation of CD4+ T cells was reported in
humans and a mouse model following booster vaccination with
tetanus toxoid (66–68). Enhanced responses of CD4+ T cells
against CMV and influenza HA peptide pools were observed 1
month after SARS-CoV-2 mRNA vaccination. Thus, CMV- and
HA-reactive CD4+ T cells appeared to be activated by a
bystander mechanism after vaccination. The frequencies of
CMV- and HA-reactive CD8+ T cells tended to be increased at
1 month and were statistically higher at 3 months than those at
1month after SARS-CoV-2 mRNA vaccination. Memory CD8+T
cells can be activated by cytokines such as IL-12 and IL-18. Thus,
AIM+CD8+ T cells may also include memory CD8+T cells
activated by cytokine-mediated mechanisms. However, it is not
known why the timings of the enhanced responsiveness against
non-specific antigens are different between CD4+T and CD8+T
cells. Because the peptide pools used in this study contained
epitopes restricted to MHC class I and II, CD4+T and CD8+T cell
responses against class I and class II peptide antigens of control
viruses may clarify the differences between CD4+T and
CD8+T cells.

We observed enhanced T cell responses against SARS-CoV-2
membrane and nucleocapsid peptide pools in vaccinated
participants. Because these individuals were not diagnosed with
COVID-19 and were negative for the anti-SARS-CoV-2
nucleocapsid antibody, it is unlikely that enhanced membrane-
and nucleocapsid-reactive T cells were associated with immune
responses induced by exposure to SARS-CoV-2. T cell
responsiveness against the SARS-CoV-2 membrane and
nucleocapsid peptide pools was associated with that against
CMV and influenza HA peptide pools after the SARS-CoV-
2mRNA vaccination. Enhanced T cell responses against the
nucleocapsid have been observed among SARS-CoV-2 infection
naïve individuals in other studies (53, 57, 60). The presence of T
cells crossreactive with SARS-CoV-2 spike or nucleocapsid
antigens in unexposed individuals has been reported (2, 5, 40,
69–71). Thus, bystander activation may have been induced
regarding T cells crossreactive with other SARS-CoV-2
Frontiers in Immunology | www.frontiersin.org 10
structural antigens. However, T cell reactivity against SARS-
CoV-2 antigens was observed in both symptomatic and
asymptomatic SARS-CoV-2-infected individuals who were
negative for anti-nucleocapsid antibodies (4, 9, 72–74). Thus, the
possibility that any participant was asymptomatically infected with
SARS-CoV-2 during the study and was seronegative for SARS-
CoV-2 cannot be excluded.

As described above, the effect of the SARS-CoV-2 mRNA
vaccine on the variants appears to vary between studies. This may
be because of the different methods used to evaluate antigen-
responsive T cells and/or the ethnic groups involved in the studies.
In this study, we observed a reduction in the vaccine-induced
responses of CD4+ T and CD8+ T cells against spike peptide pools
of the B.1.351 and B.1.617.1 variants, and CD8+ T cells reactive
against the B.1.617.2 variant. Motozono et al. showed that the
L452R mutation of the spike RBD identified in SARS-CoV-2
variants such as B.1.617.1 and B.1.617.2, contributes to viral
infectivity by increasing the binding affinity to ACE2, viral
replication and fusogenicity. They also found that the L452R
mutation is present in an immunodominant epitope presented
by HLA-A24 (49), which may evade CD8+T cell immunity in
individuals who carry HLA-A24. However, it was unknown
whether T cell reactivity against B.1.617 mutants elicited by the
SRAS-CoV-2 mRNA vaccine was affected by HLA-A24. We
demonstrated that the CD8+ T cell responses to peptide pools of
the B.1.617 variants were decreased in an HLA-A24 dependent
manner, but that CD8+ T cell responses against the B.1.351 variant
were reduced in the HLA-A24-positive and -negative groups. We
also observed the decreased reactivity of CD4+ T cells to the
B.1.617 variants in HLA-A24-positive individuals. This may be
related to the indirect effects of reduced spike-reactive CD8+ T
cells on CD4+ T cells, and these reduced CD4+ T cell responses
may subsequently influence antibody production against the
B.1.617 variants. These findings indicate that the HLA haplotype
affects the reactivity against certain VOCs and may contribute to
the disease course of COVID-19.

The age-related reduction of antibody and T cell responses
against SARS-CoV-2 following vaccination with BNT162b2 have
been reported (33). In elderly individuals, a lower neutralizing
potency of antibodies was accompanied by a reduction in the
somatic hypermutation of B cells. In our study, age-related spike
RBD IgG reduction was observed in males, and spike RBD IgG
levels tended to also be decreased in older females. The frequency
of activated Tfh cells in both sexes was decreased with increasing
age. Reduced antibody responses were associated with impaired
Tfh cell functions in aged mice (75, 76). Thus, the decrease of Tfh
cell responses may be at least in part responsible for reduced
antibody production associated with aging. Because CD4+ T cell
responses against spike pools were not influenced by age, the
differentiation of Tfh cells may be affected by age. However, the
frequency of CD38+ Tph cells at 1 month post-vaccination was
decreased with increasing age in the male group only. Therefore,
Tph cells may contribute to the persistence of antibody responses
in older females. Tph cells that promote the differentiation of B
cells into antibody producing cells were shown to contribute to
antibody production in autoimmune and inflammatory diseases
March 2022 | Volume 13 | Article 786586
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(77–80). However, little is known about the contribution of Tph
cells to vaccine-induced antibody responses. Further studies are
required to determine whether vaccine-induced Tph cell
activation promotes B cell differentiation into antibody
producing cells. At 3 months post-vaccination, the frequency
of CD38+ Tph cells was decreased with increasing age in both
sexes. These findings indicate that the induction of Tph cells was
not affected by age in females, but age influenced the
maintenance of Tph cells in females.

mRNA-based vaccines provoke strong CD8+ T cell responses
through classical MHC class I antigen presentation (81). Indeed,
SARS-CoV-2 mRNA vaccines induce stronger CD8+ T cell
responses against some spike epitopes compared with natural
infection (25). In our study, although spike-reactive CD4+ T cell
responses were comparable between female and male groups,
spike-reactive CD8+ T cell responses at 1 month post-
vaccination were enhanced and increased with increasing age
in males. This tendency was also observed among males younger
than 60 years of age. Humoral responses are low in males and
elderly individuals, but the effects of age and sex on cellular
responses to vaccination are poorly understood. T cell responses
induced by influenza virus vaccines are low in elderly individuals
(82). Whereas strong CD4+ T cell responses to herpes simplex
virus peptide vaccines have been observed in females,
lymphoproliferative responses to rubella-attenuated vaccines
are high in males (82). The reason why spike-reactive CD8+ T
cell responses were increased with increasing age in males is
unclear. In general, females and young adults have stronger
innate and adaptive immune responses than males (82–86).
Considering higher susceptibility to some viral infections in
males, it is possible that there were more SARS-CoV-2-
crossreactive CD8+ T cells in males who had been infected
with the common cold coronavirus. Alternatively, SARS-CoV-
2-crossreactive T cells may be maintained more in males. Indeed,
at 3 months post-vaccination, more SARS-CoV-2-reactive T cells
tended to be present in males of all age groups. In female
COVID-19 patients, greater activation and differentiation of
CD4+ and CD8+ T cells has been reported compared with
males, although reduced CD8+ T cell responses were associated
with disease severity in males only (11, 87). Because SARS-CoV-
2 spike RBD-binding IgG levels were decreased with increasing
age in males, proper CD8+ T cell responses may be important for
antiviral immunity, especially in older male individuals. As
described above, mRNA vaccine-induced CD8+ T cells appear
to have crucial effects against COVID-19, especially before
generating CD4+ T cell and antibody responses. However, it is
unknown whether these CD8+ T cells that increase in males with
increasing age are functionally equal to those in younger
individuals. Additionally, it is unclear how long these cells
have antiviral functions after vaccination. Further studies are
needed to assess whether mRNA vaccine-induced CD8+ T cells
play crucial roles against SARS-CoV-2 infection in larger studies
among both sexes and across all age groups.

In summary, we performed a comprehensive analysis of
adaptive immune responses elicited by the SARS-CoV-2
mRNA vaccine. We demonstrated that the adaptive immune
responses are largely influenced by several factors including, age,
Frontiers in Immunology | www.frontiersin.org 11
sex, and HLA haplotype. These factors may also contribute to the
disease course of COVID-19. It is not yet known whether these
factors affect the antiviral immunity induced by the mRNA
vaccine, but the data presented here may provide important
information regarding future vaccine strategies.
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