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of MethylMix algorithm and
pathology for predicting
response to cancer
immunotherapy
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Herein, A non-invasive pathomics approach was developed to reveal the

methylation status in patients with cervical squamous cell carcinoma and

predict clinical outcomes and treatment response. Using the MethylMix

algorithm, 14 methylation-driven genes were selected for further analysis.

We confirmed that methylation-driven genes were differentially expressed in

immune, stromal, and tumor cells. In addition, we constructed a methylation-

driven model and explored the alterations in immunocyte infiltration between

the different models. The methylation-driven subtypes identified in our

investigation could effectively predict the clinical outcomes of cervical

cancer. To further evaluate the level of methylation-driven patterns, we

constructed a risk model with four genes. Significant correlations were

observed between the score and immune response markers, including PD1

and CTLA4. Multiple immune infiltration algorithms evaluated the level of

immunocyte infiltration between the high- and low-risk groups, while the

components of anti-tumor immunocytes in the low-risk group were

significantly increased. Subsequently, a total of 205 acquired whole-slide

imaging (WSI) images were processed to capture image signatures, and the

pathological algorithm was employed to construct an image prediction model

based on the risk score classification. The model achieved an area under the

curve (AUC) of 0.737 and 0.582 for the training and test datasets, respectively.

Moreover, we conducted vitro assays for validation of hub risk gene. The

proposed predictionmodel is a non-invasive method that combines pathomics

features and genomic profiles and shows satisfactory performance in
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predicting patient survival and treatment response. More interdisciplinary fields

combining medicine and electronics should be explored in the future.
KEYWORDS

MethylMix, pathomics, cervical squamous cell carcinoma, personal treatment,
immunotherapy
1 Introduction

Cervical cancer is one of the leading causes of cancer-related

deaths in women (1). This disease is most commonly caused by

persistent infection with high-risk human papillomavirus (2).

Cervical squamous cell carcinoma (CSCC) and cervical

adenocarcinoma (CAC) are the two most common histological

subtypes, and show differences in carcinogenic mutations,

immune microenvironment, treatment response, and clinical

outcomes (3–8). Despite advances in prevention and treatment

over the past decades, the overall survival rate of patients with

localized disease remains below 60%, falling to below 20% if

distant metastasis is present (9). Therefore, alternative therapies

such as immunotherapy are currently being explored.

Tumor-infiltrating immune cells (TILs) in the tumor

microenvironment (TME) play an important role in tumor

progression, invasiveness, and therapeutic responses (10, 11).

In addition, blocking immune checkpoints, such as PD-1/PD-L1

and CTLA-4, has become a trend in malignancies (12, 13). Since

the immune components in the TME inhibit anti-tumor

immune responses, most tumors often do not respond to

single-agent immunotherapy (14). Therefore, it is necessary to

develop excellent biomarkers and to investigate combined

therapies to improve immunotherapy efficacy.

DNA methyltransferase catalyzes DNA methylation, an

important epigenetic modification that uses S-adenosylmethionine

asadonormolecule toaddamethylgrouptothe5-positionofcytosine

present in the transcriptional regulatory region of genomicDNA (15,

16). Generally, hypermethylation results in gene silencing, whereas

hypomethylation results in gene activation. Hypermethylation of

promoter regions in some important genes, such as tumor

suppressor genes and DNA repair genes, causes downregulation of

their expression, which may lead to abnormal cell differentiation or

irreparable DNA damage. Therefore, cancer is believed to be closely

associated with hypermethylation (17, 18). DNA methylation is

increasingly recognized as a biomarker for assessing cancer risk,

facilitating early diagnosis, and predicting prognosis. Therefore, we

attempted to combine methylation-targeted therapy and

immunotherapy to achieve this goal of tumor treatment.

Pathological sections provide a wealth of information which

can be quantified through digital pathology and classical machine
02
learning techniques (19). However, thus far, few digital pathology

biomarkers have entered clinical practice, partly due to technical

limitations, including complex image analysis algorithms.

Previous digital pathology studies used computer-based image

analysis methods for cell detection and classification (20), nucleus

and mitosis detection (21), microvascular segmentation (22) and

other immunohistochemical scoring tasks on histopathological

images. Machine learning methods can extract predictors from

such images to construct a pathological model.

In this context, we replaced cumbersome genome

sequencing with the analysis of pathological features extracted

from pathological digital images according to the grouping

criteria of the gene models. Using this analysis, we propose a

new modeling algorithm to construct pathological features based

on methylation-driven genes. Patients with cervical cancer who

have this feature can be differentiated in terms of clinical

outcomes, tumor infiltration status, and immunotherapy

efficacy, which may improve patient management and

promote personalized treatment strategies.
2 Materials and methods

The article landscape was shown in Figure 1.
2.1 Dataset acquisition
and preprocessing

First, the RNA-Seq data and methylation information of

CSCC patients were downloaded from the TCGA database.

Samples with no survival status or a PFI of< 30 days were

excluded from the study. Finally, 243 tumor samples and three

normal samples were included. The GSE44001 dataset was

downloaded from the GEO database and grouped according to

the same inclusion and exclusion criteria as those of the

validation cohort. In total, 300 samples were included. Using

the “combat” function in the “sva” R package to remove the

batch effect on GSE44001 and TCGA-CSCC, the corrected

cohort was called a meta-cohort. Three immunotherapy

cohorts were included to explore the predictive power of the
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model for immunotherapy: the GSE78220, Imvigor-210, and

PRJEB23709 cohorts. The mutation data (CNVs and SNVs)

were processed using the GSCA database. Based on the scRNA-

seq data of cervical cancer and normal adjacent tissues in the

GSE168652 dataset, genes expressed in at least three cells and

cells expressing at least 200 genes were retained. The harmony

algorithm was used to merge the different scRNA-seq

datasets. The downstream analysis determines the cell

clustering based on the corrected harmony embeddings and

FindNeighbors functions. Cell clusters were visualized using the

t-sne function, and cell types were annotated using the

singleR package.
2.2 Identification of methylation
driven genes

An effective and precise technique called “MethylMix” was

used to examine abnormally methylated genes and the

relationship between methylation levels and gene expression.

First, differential expression analysis was performed based on the

“limma” R package in the transcriptome data, with a threshold of

| Log2 (fold change) | > 0.2925 and P< 0.05. Differential

expression analysis of methylation data revealed a threshold of

| Log2 (fold change) | > 0.585 and P-value< 0.05. Subsequently,

the above common differential genes were retained, and using

the “MethylMix” R package, the b-hybrid model was used to

identify the methylation status of genes, which was employed to

avoid overfitting according to the Bayesian information

standard. Fourteen methylation-driven genes were identified in

this study.
Frontiers in Oncology 03
2.3 Construction of methylation-driven
gene-related subtypes

Using the “ConsensusClusterPlus” R package, multiple clusters

could be formed using unsupervised consensus clustering based on

the k-means computer learning algorithm. Our algorithm used

1000 iterations with 80% sampling of the data for each iteration of

the consensus clustering algorithm. The optimal number of clusters

was determined using the consensus matrix K value. Two clusters

(the low methylation-driven gene drive group and high

methylation-driven gene drive group) were selected to assess the

sample methylation status.
2.4 Construction and validation of
methylation-driven prognostic feature

We used the LASSO algorithm to reduce the dimension of 14

methylation-driven genes, followed by multivariate Cox

regression analysis to obtain the coefficient of each gene. We

established a methylation-driven prognostic feature involving

four methylation-driven genes for patients with CSCC. The risk-

scoring formula was constructed as follows:

Risk score = Coef i ∗Gene i

where Coef i represents the coefficient, and Gene i represents

the expression value of each methylated driver gene. Based on

the median risk score, we divided the patients into the high- or

low-risk groups. More importantly, the K-M survival curve and

survival-dependent receiver operating characteristic (ROC)

curves for 1-, 3-, and 5-year prognostic values were obtained

for the TCGA cohort and strongly validated in the GEO cohort.
FIGURE 1

A flowchart of the major steps in this study.
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2.5 Relationship between methylation-
driven prognostic feature and
immunocyte infiltration

Based on the RNA-seq transcription pattern of CSCC,

multiple machine learning algorithms (‘XCELL, TIMER,

QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT’) were

used to analyze differences in immunocyte infiltration status

between the high- and low-risk groups. In addition, the

expression status of common immunoregulators between the

high- and low-risk groups is displayed in a box plot. Six immune

profile subgroups were identified according to the transcriptome

patterns of 33 cancers: wound healing (Immune C1), IFN-

gamma dominant (Immune C2), inflammatory (Immune C3),

lymphocyte depleted (Immune C4), immunologically quiet

(Immune C5), and TGF-beta dominant (Immune C6).
2.6 Genomics mutation of risk
scoring model

Somatic mutation data were obtained from the TCGA GDC

portal (https://portal.gdc.cancer.gov/). We then used the R

package “maftools” to draw a waterfall map to depict

mutations in high- and low-risk patients.
2.7 Screening and construction of digital
pathological features

A total of 230 whole-slide imaging (WSI) images were

downloaded from the TCGA database for diagnostics. To

overcome the problem of oversized digital images, we cut all

WSIs into small image blocks (512 × 512 pixels) for non-

overlapping sampling at 20x magnification. All patches were color

normalized using theMacenkomethod to obtain a standard normal

distribution. Pathological features were extracted using the

CellProfiler script published in previous studies. Two pathologists

used ImageScope software to annotate the tumor regions (tumor

components > 80%) as the region of interest (ROI). Simply put, the

UnmixColors, IdentifyPrimaryObjects, MeasureObjectIntensity,

Measureobjectsizesshape and MeasureTexture modules separate

the color channels of the ROI image and segment the nucleus

features to extract pathological features. Finally, high-risk and low-

risk classifiers were used to construct a pathological signature using

the RF model.

2.7.1 Cell culture
Cell lines HaCaT, Hela, SiHa, and Caski cells were obtained

from the American Type Culture Collection. HaCaT, Hela, SiHa,

and Caski cells were cultured in DMEM medium containing

10% fetal bovine serum (FBS) and 0.1% penicillin/streptomycin

(Fisher Bioreagents, Pittsburgh, Pennsylvania).
Frontiers in Oncology 04
2.7.2 Cell viability assay and qRT-PCR analysis
Antibodies to ACSL1 were obtained from Genepharma

Corporation (Shanghai, China). Knockdown of ACSL1

expression levels using independent siRNA. Cells transfected

with si-ACSL1 in 6-well plates. Twenty-four hours after

transfection, against the number of cells, 4,000 cells were

seeded into 96-well plates. Cell viability was obtained at the

indicated time points using the CCK8 kit. Total RNA was

isolated from cells using TRIzol reagent (Invitrogen, Carlsbad,

CA, USA). Relative expression was normalized to GAPDH

expression with the following primer sequences: ACSL1,

forward: 5 ′ -ATC TGC AAG CCA GGA AGA GAG TC-3 ′
and reverse: 5 ′ -CTT GCT TGA TGC TTT GGT CTG T-3 ′;
GAPDH forward: 5 ′ -CAT CAC CAT CTT CCA GGA GCG-3 ′
and reverse: 5 ′ -TGA CCT TGC CCA GCC TTG-3 ′.
2.8 Statistical analysis

Continuous data with a normal distribution were compared

using independent Student’s t-test. For comparisons between

subgroups, Kaplan–Meier analysis with the log-rank test was

used. All statistical analyses were performed using the R software

(version 4.0.3). Statistical significance was set at P< 0.05
3 Results

3.1 Identifying methylated differentially
genes in cervical cancer

Methylation differential genes (MDGs) and differentially

expressed genes (DEGs) were identified using R-package

Limma and edge, respectively. MDG and DEG were

recombined into normal methylation group, methylation

cancer group and gene expression cancer group. Through the

mixed model and Wilcoxon rank test, 20 MDGs were found. A

heatmap was generated using the R package based on the

methylation levels of 20 MDGs. In addition, the correlation

diagram and methylation distribution diagram were shown in

Supplementary Figure 1A and Table S1. There are only 14

MDGs with methylation regulation. We further explored these

14 genes.
3.2 Genome mutation landscape of
candidate genes

Figure 2A showed the location of 14 MDGs in

chromosomes, BAB25, TSTD1 on chromosome 1, MAL on

chromosome 2, ZNF502, TM4SF1, MUC20 on chromosome 3,

PF4V1, ACSL1 on chromosome 4, KCNN2 on chromosome 5,

PDX1 on chromosome 13, MYEF2 on chromosome 15,
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FAM117A on chromosome 17, CY4F11 on chromosome 19.

Based on single cell sequencing data, we identified 7 cell subsets.

The heatmap showed the expression patterns of 14 MDGs in 7

cell subsets (Figure 2B). The tSNE algorithm displayed the

distribution of seven cell subsets (Figure 2C). We found that

TSTD1 and RAB25 were highly expressed in stromal cells and

immune cells, and lowly expressed in immune cells. TM4SF1

was highly expressed in both immune cells and stromal cells, and

the average expression value was higher in immune cells

(Figure 2D). In addition, based on the GSCA database, we

observed the mutations of 14 MDGs (CNV and SNV). We

found that MUC20 had the highest CNV frequency, mainly

GAIN, and the highest LOSS was mainly PDX1 (Figure 2E).

Based on the data of 289 samples, the overall mutation rate of 14

MDGs was 6.23%, and the general frequency of KCNN2 was the

highest, followed by MYEF2 and CYP4F11(Figure 2F). In

addition, the correlation between MDGs was performed in R

tool. MYEF2 was associated with four genes, RAB25, ZNF502,

FAM117A, CYP4F11, respectively. Among them, it was

positively correlated with RAB25, and the remaining

correlation was shown in Figure 2G.
3.3 Prognostic performance of
candidate genes

Firstly, we constructed a network diagram to observe the

correlation and genetic properties of 14 MDGs. Only TSTD1,

MAL, CYP4F11 and ZNF502 were favorable factors, and the rest

were risk factors. The blue line connection part represented a

negative correlation between the two genes, while the red line

represented a positive correlation (Figure 3A). Figure 3B

displayed the K-M survival curve of each MDGs. Among the

14MDGs, 9 genes had the ability to predict the clinical prognosis

of cervical cancer. In addition, Except for the MAL gene, which

was served as a tumor suppressor gene, all the others were

oncogenic genes. The lower the level of MAL gene, the worse the

prognosis of cervical cancer patients (Figure 3B). Then we

divided the patients into 2 subgroups according to the

expression patterns of 14 MDGs genes (Figure 3C). The PCA

algorithm presented the distribution of each sample. We can

clearly find that the patients in cluster A and cluster B subgroups

were in different positions, suggesting that the unsupervised

clustering effect was significant (Figure 3D). The K-M survival

analysis showed that patients with cluster A had better survival

status (Figure 3E). The heatmap showed the expression levels of

14 genes in different subgroups and clinicopathological features

(Figure 4A). The ' CIBERSORT ' algorithm was used to assess the

levels of infiltration of 22 immune cells between different

subgroups, with higher levels of immune effector cells in

patients in cluster A (Supplementary Figure 1C). We

performed differential expression analysis on samples of

cluster A and cluster B, and Figure 4B displayed the
Frontiers in Oncology 05
differentially expressed genes. The GO pathway analysis was

performed to identify biological pathway of differentially

expressed genes, and the estrogen signaling pathway was

highly correlated with these genes (Figure 4C). Subsequently,

the LASSO regression algorithm was conducted to obtained

independent predictors from 14 MDGs (Figure 4D), then

multivariate regression analysis screened prognostic genes

from these genes. The tree diagram showed four independent

prognostic factors, ACSL1, MAL, RA25, MYEF2. Among them,

MAL was a protective factor, and the rest were cancer-

promoting factors (Figure 4E). We constructed a risk model

for these four prognostic genes. Figure 4F showed that the risk

score of patients with cluster A was lower.
3.4 Validation of risk scoring model

In order to verify the methylation-related subtypes and the

difference of immune landscape, K-M survival curve and ROC

curve were conducted to observe the performance of prognostic

models, and multiple machine learning algorithms ‘ XCELL,

TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT ‘

were performed to evaluate the difference of immune landscape.

The survival prognosis of the high-risk group was significantly

worse than that of the low-risk group. The 1-, 3-, and 5-year

predictive performance of the prediction model was 0.695, 0.739,

and 0.730 in TCGA cohort, respectively (Figures 5A, B). The

above trends were consistent in the GEO cohort (Figures 5C, D).

Figures 5E, F showed the distribution of risk scores and survival

status of patients in the high and low risk groups. There were

s ign ificant d i ff e rences in the express ion leve l o f

immunomodulators and immune cell infiltration between the

low-risk group and the high-risk group. Patients in the low-risk

group had remarkably higher expression of immunomodulators,

such as CTLA4, CD80, PDCD1, etc. (Figure 5G). In addition,

immune cells were mainly enriched in the low-risk group, and

the level of immune cell infiltration was negatively correlated

with risk score (Figures 5H, I).
3.5 Immunotherapy prediction
feasibility certification

According to the six immune subtypes in the previous study, we

compared the proportion of different immune subtypes in the high

and low risk groups. We found that there was a total of three

immune subtypes in cervical cancer patients. Immune C2

accounted for 85% and Immune C1 accounted for 14% in low-

risk patients, while Immune C2 accounted for 72% and Immune C1

accounted for 27% in high-risk patients (Figure 6A). In addition, the

Immune C1 subtype had the highest risk score and the Immune C4

subtype had the lowest risk score (Figure 6B). Subsequently, the

ESTIMATE algorithm showed that the risk score was positively
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correlated with the TumorScore and negatively correlated with the

ImmuneScore, whichmeant that patients with high-risk scores were

more malignant and had lower anti-tumor immune effects

(Figures 6C, D). The overall mutation rate of patients with low-

risk score was higher than that of patients with high-risk score,

86.09% and 83.78% respectively (Figures 6E–G). We combined the

risk score and TMB index to predict the clinical prognosis of

patients with cervical cancer. The prognosis of patients with L-TMB

+ high risk was the worst, and the survival time of patients with H-
Frontiers in Oncology 06
TMB + low risk was the longest (Figure 6H). In addition, the

survival time of patients with H-TMB was longer than that of

patients with L-TMB (Figure 6I). We obtained three

immunotherapy cohorts, GSE78220, Imvior-210, PRJB23709

cohorts. We found that the high-risk group had a significant

effect on immunotherapy, and the survival status of patients in

the low-risk group was better than that in the high-risk group

(Figures 7A–C). In terms of chemotherapy, patients in the low-risk

group were more sensitive to Cisplatin and Paclitaxel, while patients
A B

D

E F

G

C

FIGURE 2

Genomic landscape of methylation driven genes. (A) Localization of methylation driven genes in chromosomes. (B) Expression levels of
methylation driven genes in seven cell subsets. (C) Spatial distribution in seven cell subsets. (D) Average expression of methylation driven genes
in three cell subsets. (E) CNV frequency of methylation driven genes. (F) tumor Mutation burden of methylation driven genes in samples. (G)
Interaction between methylation driven genes.
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in the high-risk group were more sensitive to Doxorubicin

(Figures 7D–F).
3.6 Screening and construction of digital
pathological features

The constructed genome risk score model has great predictive

performance, but due to too many parameters and expensive

sequencing cost, we attempt to replace the genome model with
Frontiers in Oncology 07
pathological WSI. A total of 232WSIs containing tumor tissues were

obtained from the TCGA database, of which 27 low-quality WSIs

were excluded, and 205 samples were finally included. Pathological

features were extracted based on the CellProfiler script published in

previous studies. Two pathologists used ImageScope software to

annotate tumor regions (tumor components > 80%) as ROI. In

simple terms, the UnmixColors, IdentifyPrimaryObjects,

MeasureObjectIntensity, Measureobjectsizesshape and Measure

Texture modules were conducted to separate the color channels of

the ROI image and segment the nuclear features. Finally, each WSI
A

B

D

E

C

FIGURE 3

Methylation-driven associated subtypes. (A) Network diagram showing the prognostic significance and relevance of methylation-driven genes.
(B) Prognostic value of methylation driven genes. (C) Consensus Matrix for unsupervised cluster analysis. (D) PCA analysis showed the
distribution of different subtypes. (E) K-M curves showed the clinical outcomes among different subtypes.
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generates 642 pathological features. RF model was employed to

construct pathological feature signature with high/low risk as

classifier. The prediction performance of training set is 0.737, and

that of testing set is 0.582 (Figure 8).
3.7 In vitro assays

By reviewing previous references, it was found that ACSL1 was

an unexplored gene in cervical cancer. Hence, we selected ACSL1 as

the candidate molecule to perform cell function assays. Real-time

qPCR analysis indicated that ACSL1 was significantly upregulated
Frontiers in Oncology 08
in three CC cell lines (Figure S2A). The transfection

epitranscriptomics of three shRNAs were detected, which revealed

that sh-ACSL-2 presented the highest transfection efficiency in

Caski cell lines (Figure S2B). Similarly, the CCK-8 assay also

showed that the viability of Caski was most significant suppressed

after transfection of sh-ACSL-2 (Figure S2C).
4 Discussion

Currently, the staging methods of the International

Federation of Gynecology and Obstetrics (FIGO) are the most
A B

D

E F

C

FIGURE 4

Methylation driven associated predictive model. (A) Heatmap of methylation driver genes among different clinical subtypes and methylation
driven related subtypes. (B) The volcano map showed the differentially expressed genes between the two subtypes. (C) GO analysis of
differentially expressed genes. (D) LASSO algorithm was used to reduce the correlation between methylation driven genes. (E) The Forest map
displayed the hazard ratios of the 4 target genes. (F) Risk score between the two subtypes.
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commonly used for cervical cancer (23). Imaging or pathological

examination are the major components of the FIGO staging

system. In some nonsurgical patients, staging was based on

imaging and doctors’ subjective judgments. This is inherently

inaccurate if there is inflammatory disease of the pelvis,

endometriosis, or obesity. There is a significant difference in

the prognosis of patients with FIGO staging due to the
Frontiers in Oncology 09
significant difference between the clinically determined staging

and surgical pathological results (24). With the rapid

development of cancer biology knowledge and the discovery of

biological profiles to predict cancer outcomes and treatment

responses, oncologists are increasingly using a variety of related,

non-anatomic (including molecular) factors to predict the

prognosis of individual patients. As such, there is an urgent
A

B D

E F

G

I

H
C

FIGURE 5

Immune cell infiltration landscape. (A) The K-M survival model was constructed to explore the predictive performance in TCGA cohort. (B) The ROC
curve was conducted to verify the predictive performance of predictive model in TCGA cohort. (C) The K-M survival model was constructed to
explore the predictive performance in GEO cohort. (D) The ROC curve was conducted to verify the predictive performance of predictive model in
GEO cohort. (E, F) Distribution of risk score and survival status of patients with cervical cancer. (G) Expression of immunomodulators between high
and low risk groups. (H) Heatmaps constructed by six immune infiltration analysis algorithms were employed to assess the level of cell infiltration
among each subpopulation. (I) Correlation between immune cell infiltration level and riskscore. *P < 0.05, **P < 0.01, ***P < 0.001.
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need for in-depth research to identify effective biomarkers for

the early detection and treatment of cervical cancer.

Numerous recent studies have demonstrated that

hypomethylation results in gene overexpression, whereas

hypermethylation causes low gene expression, which plays an

important role in the occurrence and progression of various

tumors (25, 26). It is possible that abnormally methylated genes

can cause gene expression disorders, transcriptional disorders,

and abnormal differentiation of cells (27). Jiao et al. previously
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provided evidence that SEPT9 methylation may be a biomarker

for the diagnosis of cervical cancer, which functions by

promoting tumorigenesis and radiation resistance of cervical

cancer by targeting the HMGB1-Rb axis, and induces

macrophage polarization by mediating Mir-375. With this

knowledge, Jiao suspected that SEPT9 may be a potential

screening and therapeutic biomarker for cervical cancer (28).

Kremer et al . reviewed the role of host cel l gene

hypermethylation in tumorigenesis and the progression of
A

B

D

E F

G

I

H

C

FIGURE 6

(A) Proportion of immune subsets among different risk subgroups. (B) Riskscore of immune subsets. (C, D) Correlation between risk score and
StromalScore, ImmuneScore which obtained by “ESTIMATE” algorithm. (E, F) Global mutation landscape of high and low risk subgroups. (G)
Tumor mutation burden score for high - and low-risk subsets. (H) The K-M algorithm was used to evaluate the predictive performance of the
risk model +TMB model. (I) K-M algorithm was used to evaluate the prediction performance of TMB model.
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cervical cancer, and discussed the potential clinical application

of methylation analysis in the management of high-risk HPV

(hrHPV)-positive women. They suggested that methylation

testing may be useful for: 1) Classification of women with high

risk HPV types to detect cervical cancer and advanced cervical

intraepithelial neoplasia; 2) as a secondary classification of

women with minor cytological abnormalities to identify

women at risk of CIN 3 or more; 3) as an exit test for women

dropping out of a screening program to identify cervical cancer

and advanced CIN; and 4) support for CIN management (29).

Methylation plays a vital role in cervical cancer progression.

In our investigation, the MethylMix algorithm was used to

identify MDGs in cervical cancer and construct a mixed model.
Frontiers in Oncology 11
For this step, standardized methylation and gene expression data

were employed as input matrices. Based on the gene expression

and related methylation levels, 20 DMGs were identified. Next,

we analyzed the relationship between the 20 DMGs and the

prognoses. A combination of clinical information, gene

expression, and methylation data were acquired from the

TCGA dataset. A set of signatures based on LASSO-COX

regression analysis was constructed. It is worth noting that

although dysregulation of some of these genes in tumors has

been studied, their methylation levels have rarely been

mentioned. Therefore, our genomic model combines

methylation information with genomic data to predict clinical

outcomes and treatment strategies in patients with cervical
A

B

D

E

F
C

FIGURE 7

Drug susceptibility prediction. (A–C) Treatment effect prediction in three immunotherapy cohorts (GSE78220, IMVigor-210, PREB23709). (D–F)
Chemotherapeutic drug sensitivity prediction.
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cancer. In addition, the prediction model is externally validated,

which provides a new method for the prognostic assessment of

cervical cancer.

In addition, we identified six immune profile subgroups

based on transcriptome patterns in 33 cancers: wound healing

(immune C1), IFN-g dominant (immune C2), inflammation

(immune C3), lymphocyte depletion (immune C4), immune

quietness (immune C5), and TGF-b dominant (immune C6).

Histological and immunophenotypic classification of cervical

cancer by expression of the p53 homolog p63 has been

performed in a pathological study, which is similar to our

study (30). It has been shown that IFN-g gene polymorphisms

may contribute to cervical cancer susceptibility, and this result

helps to support IFN-gamma dominant (Immune C2) in our

immunophenotyping (31). Inflammation following viral

infection is a driving force that accelerates cancer

development. Infiltrating immune cells and their secreted

cytokines will greatly contribute to the malignant features of

cervical cancer. A better understanding of the mechanisms

involved in inflammation and cancer progression will lead to

innovative approaches for treating cervical cancer (32).

In addition, it has also been shown that there is an

association between common low-penetrance alleles in the

TGFB signaling cascade and altered cervical cancer risk in

women, a result that will underpin our immunophenotyping

C6, and “immunotherapy” representing cervical squamous cell

carcinoma is prognostic (33, 34).

For the link between DNA methylation and pathology, this

can be understood in terms of the distinction between DNA
Frontiers in Oncology 12
methylation in cellular physiological and pathological

conditions. DNA methylation is one of the epigenetic

mechanisms regulating gene expression (35). In normal cells, a

significant degree of methylation is characteristic of extragenic

DNA (cytosines within CG dinucleotides) (36). Changes in

methylation patterns, which may emerge with the age of the

organism and cancer development, have been observed in three

regions of exon 5 of the p53 gene in non-small cell lung cancer

(36, 37). With the application of real-time PCR technology

(using primers for methylated and unmethylated sequences),

we have been able to find new markers for early detection

of cancer.

Our study still has some limitations. Although methylation

profiles are advantageous because genomic models require high

sequencing costs and stringent sample storage conditions, we try

to replace this with clinical WSI data. However, the images of

pathomics may lead to differences in HampE staining results due

to different staining methods and raw materials in different

places. In addition, since data from our genomic model came

from TCGA, we could identify each patient ‘s pathohistological

features based on their unique ID in the TCGA platform. So, we

can link genomic models to pathomics models. However, we still

fail to clarify the specific molecular mechanisms underlying the

relationship between genomics and pathology, which require

further exploration. In addition, clinical risk factors such as

pathological subtype, gender, age, and stage could be considered

in the model in the future. Finally, further experiments and

studies are needed to understand developmental mechanisms

and investigate effective treatments for cervical cancer.
FIGURE 8

Schematic representation of pathogenomic construction.
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