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Abstract

Conventional non-viral gene transfer uses bacterial plasmid DNA containing antibiotic resistance genes, cis-acting bacterial
sequence elements, and prokaryotic methylation patterns that may adversely affect transgene expression and vector
stability in vivo. Here, we describe novel replicative forms of a eukaryotic vector DNA that consist solely of an expression
cassette flanked by adeno-associated virus (AAV) inverted terminal repeats. Extensive structural analyses revealed that this
AAV-derived vector DNA consists of linear, duplex molecules with covalently closed ends (termed closed-ended, linear
duplex, or ‘‘CELiD’’, DNA). CELiD vectors, produced in Sf9 insect cells, require AAV rep gene expression for amplification.
Amounts of CELiD DNA produced from insect cell lines stably transfected with an ITR-flanked transgene exceeded 60 mg
per 56109 Sf9 cells, and 1–15 mg from a comparable number of parental Sf9 cells in which the transgene was introduced
via recombinant baculovirus infection. In mice, systemically delivered CELiD DNA resulted in long-term, stable transgene
expression in the liver. CELiD vectors represent a novel eukaryotic alternative to bacterial plasmid DNA.
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Introduction

Non-viral gene transfer typically uses bacterial plasmids to

introduce foreign DNA into recipient cells. In addition to the

transgene of interest, such DNAs routinely contain extraneous

sequence elements needed for selection and amplification of the

plasmid DNA (pDNA) in bacteria, such as antibiotic resistance

genes and a prokaryotic origin of replication. Also, bacterial DNA

preparations often contain endotoxin that can reduce gene transfer

efficiency [1]. Ideally, DNA for non-viral gene transfer would

contain only the gene of interest, be devoid of prokaryotic

modifications that can trigger an innate immune response

[1,2,3,4], be in an exonuclease-resistant form, and lack detectable

endotoxin contamination. Transgene persistence is also highly

desirable for many gene therapy applications. We have observed

that transgenes flanked by inverted terminal repeats (ITRs) from

adeno-associated virus type 2 (AAV) can be amplified to high copy

number in Spodoptera frugiperda (Sf9) cells in the presence of a

recombinant baculovirus expressing the AAV replication proteins,

Rep78 and Rep52. DNA produced in this manner consists solely

of a transgene of interest with flanking AAV ITRs, and, since it is

produced in eukaryotic cells, is devoid of prokaryotic DNA

modifications and bacterial endotoxin contamination. Structural

characterization revealed the ITR-flanked transgenes as exonu-

clease-resistant, linear DNA molecules with covalently closed ends.

We have termed these closed-ended, linear duplex molecules

‘‘CELiD’’ DNA.

CELiD DNA is produced in Sf9 cells upon co-infection with two

separate baculovirus expression vectors (BEVs): the first BEV

bearing an ITR-flanked transgene, and a second BEV (designated

Bac-Rep) encoding AAV non-structural proteins (Rep78 and

Rep52) essential for ITR-mediated DNA replication. Alternative-

ly, CELiD DNA can be rescued and amplified upon Bac-Rep

infection of clonal Sf9 cell lines bearing a stably integrated rAAV

vector genome. The structure of replicated ITR-flanked transgene

DNA was analyzed using native and denaturing agarose gel

electrophoresis, restriction endonuclease size mapping, atomic

force microscopy (AFM), and exonuclease sensitivity assays. The

results of these orthogonal assays established that the predominant

structure of the replicated vector DNA is closed-ended, linear

duplex monomers and dimers.
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Materials and Methods

Ethics statement
The University of North Carolina at Chapel Hill Institutional

Animal Care and Use Committee (IACUC) approved the animal

study protocols.

Sf9 insect cell culture
The Spodoptera frugiperda Sf9 cell line was obtained from Life

Technologies, Corp. (Grand Island, NY, USA). Sf9 cells were

grown in suspension in serum-free media (HyQH SFX, HyClone,

Logan, UT, USA). Cultures were maintained within vented-cap,

polycarbonate Erlenmeyer flasks (Corning, Inc., Corning, NY,

USA) in an orbital platform shaker (135 rpm agitation) at 27uC
in ambient atmosphere. Cell density, size and viability were

assessed using an automated cell counter (Cellometer, Nexcelom

Bioscience, Lawrence, MA, USA) or flow cytometry (Guava

EasyCyte Mini, Millipore Corp., Billerica, MA, USA).

Plasmid pFBGR-bsd construction
The blasticidin-S deaminase (bsd) gene (along with the Orgyia

pseudotsugata immediate early-1 (Op IE-1) and EM7 promoters)

was PCR-amplified from pIB/V5-His/CAT (Life Technologies,

Corp.) using the following primer pair: 59-ATAAGCT-

TACGCTCAGTGGAACGAAAAC-39 and 59-ATAAGCTT-

GACGTGTCAGTGTCAGTCCTGCTCCT-39. The 865 bp

PCR product was digested with HindIII (sites underlined in

primer sequence) and ligated into HindIII-digested pFBGR (5).

Establishing stable Sf9/ITR-GFP cell lines for high-yield
CELiD-GFP DNA production

Sf9 cells were transfected with pFBGR-bsd using Cellfectin

Transfection Reagent (Life Technologies, Corp.). At three days

post-transfection, antibiotic-resistant cells were selected by the

addition of blasticidin-S HCl (50 mg/ml) (Life Technologies,

Corp.) to the growth medium. After two weeks in selective

medium, blasticidin-resistant (bsdr) clones were derived by single-

cell dilution or direct colony transfer techniques. The bsdr clones

were expanded in insect cell culture medium supplemented with

10% fetal bovine serum (FBS) (HyClone) and blasticidin-S HCl

(10 mg/ml) for 2 to 3 additional passages, then returned to serum-

free medium with 10 mg/ml blasticidin-S HCl. After an additional

12 passages, blasticidin-S HCl was omitted from the medium and

the cell lines were expanded for analysis.

For functional screening, clonal Sf9/ITR-GFP cell lines were

infected (MOI = 5) with a recombinant baculovirus, Bac-Rep,

expressing the AAV type 2 Rep78 and Rep52 proteins [5] and

analyzed for induced GFP expression. Clonal Sf9/ITR-GFP cells

with the highest levels of GFP fluorescence were expanded for

CELiD-GFP DNA preparation.

Figure 1. Schematic representation of plasmid DNA used for producing stable cell lines. Plasmid pFBGR-bsd contains the GFP gene under
the dual control of the cytomegalovirus IE promoter (CMV) and baculovirus p10 promoter (p10) flanked by AAV-2 inverted terminal repeats (ITR). bla,
b-lactamase (ampicillicin-resistance gene). bsd, blasticidin-S deaminase gene. ColE1, bacterial origin of replication. (Lower) Linear illustration of
pFBGR-bsd indicates the rescued forms of the ITR-flanked transgene. The linear, single-stranded AAV virion genome is represented by a solid thin line
flanked by the inverted terminal repeats (ITRs, filled rectangles). The duplex CELiD-vector DNA is represented by the open rectangle flanked by AAV
ITRs.
doi:10.1371/journal.pone.0069879.g001
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Production and purification of CELiD-GFP DNA from a
clonal Sf9/ITR-GFP cell line

Clonal Sf9/ITR-GFP cells were seeded at 26106 cells/mL and

infected with Bac-Rep (MOI = 1 to 3). Cell viability and diameter

were monitored daily until the cell diameter increased to 18–

20 mm (uninfected cell diameter 14–15 mm), indicating that the

cells were in the late stages of the viral infection. Extrachromo-

somal DNA was extracted from the Bac-Rep-infected, Sf9/ITR-

Figure 2. AAV Rep protein-dependent expression of GFP. (A) Induction of GFP expression in blasticidin-S resistant Sf9/ITR-GFP cells in
response to Bac-Rep infection. The clonal Sf9/ITR-GFP cell line contains a stably integrated copy of pFBGR-bsd. Uninfected cells or cells infected with
wild-type baculovirus (Bac-AcNPV) lack detectable GFP expression as determined by FACS analysis. (upper row, 0% GFP positive cells). Addition of
Bac-Rep inoculum (0.5%, 1.0%, and 1.5%; v:v) resulted in a dose-dependent increase in the number of GFP-positive cells (lower row). Images were
obtained 3 days after infection. Magnification, 10x objective used for all images. (B) Quantitative analysis of GFP induction as a function of Bac-Rep
dose. Cells exposed to increasing doses of Bac-Rep were harvested on day 3 post-infection. Fluorescent emission intensities were assessed from
equivalent amounts of cell lysates (80 mg protein), using the fluorescent reader function of a real-time thermocycler (excitation 450–490 nm; emission
515–530 nm) (upper panel), *** indicates t-test significance (p,0.001). The relative fold-increase in GFP fluorescence is indicated by the values next
to each bar. Protein concentrations were determined in the lysates and approximately 120 mg of each sample was fractionated electrophoretically
using SDS-polyacrylamide gels. Proteins were electroblotted onto nitrocellulose membranes for western blot detection of GFP, Rep52, gp64, and
GAPDH (used as a protein loading and transfer standard, lower panel). Relative levels of protein are indicated by the values above the protein band.
(C) Analysis of the increase of GFP-vector DNA in response to Bac-Rep infection. Low molecular weight DNA was recovered from the cells and the
quantity of GFP vector genomes determined using real-time qPCR (upper panel). Both the uninfected cell control and the wild-type baculovirus-
infected cell control lysates produced a relatively low PCR signal (150 and 175 copies per cell, respectively). The GFP vector DNA copy number
increased to 21087 copies per cell with 0.5% (v:v) Bac-Rep. At 1% (v:v) Bac-Rep, the copy number increased to 28862 copies per cell and 1.5% (v:v)
Bac-Rep increased the copy number to 38286 per cell. The statistical significance was determined by Student’s t-test. ***, p,0.001. Lower panel – The
samples were analyzed by agarose-ethidium bromide gel electrophoresis (1% agarose). No detectable CELiD DNA was recovered from uninfected
cells. A band .10 kb appears in lysates from all baculovirus-infected cells. (D) Time-course of GFP fluorescence. Sf9/ITR-GFP cells were inoculated
with either wtBac (Bac-ACNPV) or Bac-Rep (0.5%, 1%, and 1.5% (v:v)). GFP fluorescence was measured for the indicated cellular lysate at 1, 2, and
3 days post-infection.
doi:10.1371/journal.pone.0069879.g002
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GFP cells using a commercially available plasmid isolation kit

(Qiagen, Valencia, CA, USA). CELiD production was monitored

by agarose gel electrophoresis and ethidium bromide staining of

extrachromosomal DNA. The presence of a 2.7 kb band after

Bac-Rep infection indicated that the ‘‘proviral’’ rAAV-GFP

genome was rescued from chromosomal DNA and amplified as

an episomal element.

CELiD DNA production in parental Sf9 cells
CELiD DNA was produced in parental Sf9 cells by co-

infection with two separate baculovirus expression vectors (BEV):

Bac-Rep and a second BEV bearing an ITR-flanked transgene,

such as Bac-GFP or Bac-LacZnls. Infected Sf9 cells were

harvested once the mean cell diameter increased by 4–5 mm

and the percent viability decreased to 80–90%. CELiD DNA was

isolated using a commercially available plasmid purification kit

(Qiagen).

Construction of pFB-TBG-GFP and baculovirus
production

A thyroxine-binding globulin promoter (TBG)-GFP cassette

(1797 bp) was isolated from pENN AAV TBG PI-eGFP (kindly

provided by Dr. Charles P. Venditti, NHGRI, NIH) following

digestion with NheI and PspXI. The ca. 1800 bp TBG-eGFP

fragment was transferred into the backbone of pFBGR after the

GFP transcription cassette was removed from pFBGR by

digestion with SpeI and XhoI (retaining the AAV2 ITRs and

transposase Tn7 recombination signals). The resulting pFB-TBG-

GFP (7074 bp) plasmid consists of the AAV2 ITRs flanking the

TBG promoter and GFP open reading frame. Recombinant

baculovirus stocks were generated using the Bac-to-Bac System

(Life Technologies, Corp.) with modifications to the plasmids

previously described [5]. Briefly, competent E. coli DH10Bac cells

were transformed with pFB-TBG-GFP. Following selection on

triple antibiotic agar plates (containing 50 mg/ml kanamycin,

7 mg/ml gentamicin, 10 mg/ml tetracycline, and X-gal 100 mg/

ml), several white colonies were picked and expanded in small

volume cultures. Bacmid DNA was extracted and used to

transfect Sf9 cells. Three days after transfection, baculovirus-

containing supernatant (passage 1 or ‘‘P1’’) was expanded two

more rounds by adding infected-cell supernatant to fresh Sf9 cells

(1:100; v:v). Infected cells were cryopreserved at P3, and served

as a source of infectious baculovirus as previously described [6].

Construction of pFB-CMV-LacZnls and baculovirus
production

Plasmid pFB-CMV-LacZnls was produced by isolating the

4.1 kb LacZnls gene (encoding a nuclear-localized b-galactosidase

protein) from XbaI- and SalI-digested pAAV2.1-CM (pCMV-

LacZnls), kindly provided by Dr. Xiao Xiao (UNC-Chapel Hill,

Chapel Hill, NC), and ligating this fragment to the 5.2 kb

fragment of SpeI- and XhoI-digested pFBGR, thus replacing the

GFP reporter gene with LacZnls coding sequences. Competent

DH10Bac cells (Life Technologies, Corp.) were transformed with

pFB-CMV-LacZnls to yield Bac-LacZnls bacmid DNA. Recom-

binant Bac-LacZnls bacmid isolates were identified by PCR

screening using M13/pUC reverse sequencing primer (59-

AGCGGATAACAATTTCACACAGG-39) and a synthetic LacZ

insert primer (59-CGAGAAGTACTAGAGGATCA-39). Bacmid

DNA was transfected into Sf9 cells to yield an infectious

baculovirus, Bac-LacZnls, which was further amplified by serial

passage in Sf9 cells.

Figure 3. Rate of GFP vector DNA accumulation. (A). Cells were inoculated with 1% (v:v) Bac-Rep stock and sampled at 6, 28, 54, 77, and 168 hr
post-infection. The GFP-vector DNA content was determined by qPCR (upper panel). The doubling time of the GFP vector DNA was determined using
the following algorithm: tD = (t2–t1) log 2/log (t2/t1), where tD is the doubling time and tn is the GFP copy number at a given time point. The tD

(28 hr) = 2.8 hr, tD (54 hr) = 11.5 hr, and tD (77 hr) = 18.7 hr. (B) Time course of protein expression in Sf9/ITR-GFP cells. GFP fluorescence was
measured in cell lysates obtained from the time-course described in (A) (upper panel). Aliquots from each time point were fractionated on SDS-
polyacrylamide gels and transferred to nitrocellulose membranes for western blot analysis to detect Rep proteins, GFP proteins, gp64, and GAPDH
(used as a loading and transfer control).
doi:10.1371/journal.pone.0069879.g003
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Figure 4. Native and denaturing agarose gel electrophoresis of CELiD-GFP DNA. (A) Native agarose gel electrophoresis (0.4% agarose, 1x
TAE buffer). CELiD DNA resolved as a 2.7 kb monomer and associated multimeric concatomers. Lane 1: CELiD-GFP DNA produced from co-infecting
parental Sf9 cells with Bac-Rep and a baculovirus bearing an AAV ITR-flanked GFP cassette, Bac-GFP. Lane 2: CELiD-GFP DNA produced from an Sf9/
ITR-GFP cell line bearing a stably integrated AAV GFP vector genome. M: 1 kb DNA ladder. HR: high-range DNA ladder. The positions of various
replicative-form CELiD DNAs are indicated: monomer, dimer, trimer, and tetramer. (B) Denaturing agarose gel electrophoresis (0.7% alkaline agarose).
CELiD-GFP DNA conformers appear predominantly as a 5.4 kb band, with dimer and higher order forms detectable. (C) Restriction map. Restriction
endonuclease AgeI has one recognition site in the CELiD monomer, generating two fragments of 1801 bp and 867 bp, respectively. Schematic
representation of the AgeI recognition site(s) in the monomer (1x), dimer (2x) and multimer (3x and 4x) forms of CELiD-GFP DNA. CELiD-GFP
monomer: 2668 bp. The black rectangles indicate the positions of the AAV 59 ITRs, and the gray rectangles indicate the positions of the AAV 39 ITRs.
The two dimer figures represent tail-to-tail and head-to-head configurations. The predicted DNA length and fragments are indicated. Top right,
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Denaturing agarose gel electrophoresis
Alkaline (denaturing) agarose gels were prepared by dissolving

agarose (SeaKem LE agarose, BioWhittaker Molecular Applica-

tions, Rockland, ME, USA) in boiling water and cooling to near

gelling temperature. Alkaline gel solution concentrate (10x) was

added to a 1x final concentration just before the gels were poured.

The 1x alkaline gel running buffer and gel solution composition is:

50 mM NaOH, 1 mM EDTA. Using 10x concentrate, DNA

samples were adjusted to 1x alkaline gel solution conditions and

supplemented with 2.5% Ficoll-400 and 0.05% bromophenol

blue. Electrophoresis was performed at constant voltage (30–60 V)

for 3–6 hr.

Time-course analysis and requirements for CELiD rescue
and amplification in Sf9 cells

Clonal Sf9/ITR-GFP cells were inoculated with various

amounts of Bac-Rep stock. Periodically, cells were harvested and

extrachromosomal DNA was recovered using a commercially

available DNA isolation kit (Qiagen Plasmid Mini Kit). Extracted

DNA was examined by either agarose gel electrophoresis or by

PCR with GFP-specific primer pairs for quantitative determina-

tion of CELiD DNA amounts.

For western blotting, cell proteins were fractionated by SDS-

polyacrylamide gel electrophoresis and transferred to nitrocellu-

lose membranes. The membranes were incubated in blocking

buffer (BB) composed of 5% non-fat dry milk (w:v) in phosphate-

buffered saline plus 0.05% Tween-20 (PBST) for 1 hr at ambient

temperature with orbital agitation. After washing the membranes

in wash buffer (WB) composed of 3% non-fat dry milk in PBST,

membranes were incubated with the appropriate primary

antibody solution (diluted in BB) either at ambient temperature

(1 hr) or 4uC (overnight) with continuous orbital agitation. The

following primary antibodies and dilution ratios were used: 1. anti-

AAV Rep mouse monoclonal antibody (mAb) 303.9 (American

Research Products, Inc., Waltham, MA, USA), 1:200 dilution. 2.

anti-baculovirus envelope glycoprotein gp64 mouse mAb

(eBioscience San Diego, CA, USA), 1:1000 dilution. 3. anti-

GAPDH mAb (Ambion, Life Technologies, Corp.), 1:5000

dilution. 4. HRP-conjugated anti-GFP mAb (Fitzgerald Industries

International, Acton, MA, USA), 1:5000 dilution. After incuba-

tion, primary antibody solutions were removed and membranes

were washed in WB (365 mins). Non-conjugated mAbs were

incubated with secondary antibody solution (goat, anti-mouse

horseradish peroxidase (HRP)-conjugate (1:5000) (Sigma, St.

Louis, MO, USA) for 1 hr, and then washed with WB as above.

HRP activity was detected by enhanced chemiluminescence (ECL)

(SuperSignal West Dura chemiluminescent substrate, Thermo

Scientific, Rockford, IL, USA). Images were acquired using a

digital gel documentation instrument (G:Box Chemi, Syngene

USA, Frederick, MD, USA).

images of native (1% agarose, TBE buffer) and denaturing (0.7% agarose, alkaline buffer) agarose gel electrophoresis of AgeI-digested CELiD-GFP
DNA. ‘‘2’’ indicates uncut CELiD-GFP DNA, ‘‘+’’ indicates AgeI-digested DNA.
doi:10.1371/journal.pone.0069879.g004

Figure 5. CELiD-GFP DNA sensitivity to exonuclease I and exonuclease III. E. coli exonuclease III (ExoIII) removes nucleotides processively (39
–.59) from DNA initiating at a 39-OH of either blunt-ended or 59 protruding duplex DNA. E. coli exonuclease I (ExoI) degrades single-stranded DNA
processively in a 39 to 59 direction. (A) Total CELiD DNA (1 mg) was incubated with either ExoI (20 units) or ExoIII (100 units), either without prior
restriction enzyme (RE) digestion (left) or following RE digestion (right). Lane M: DNA size ladder. Lane 1: untreated CELiD DNA. Lane 2: CELiD DNA
treated with ExoI. Lane 3: CELiD DNA treated with ExoIII. Lane 4: untreated CELiD DNA. Samples in lanes 5, 6, 7 were digested with NaeI prior to
exonuclease treatment. Lane 5: no exonuclease control. Lane 6: ExoI treatment. Lane7: ExoIII treatment. (B) Additional substrates as controls for ExoI
activity. The wX174 virus genome is a 5386 nt, single-stranded, closed circular DNA molecule. ExoI treatment is indicated above each lane by a ‘‘+’’ or
‘‘–’’ sign. Lanes 1 and 2: wX174 DNA. Lanes 3 and 4: wX174 DNA digested with HaeIII. Lanes 5 and 6: CELiD DNA. Lanes 7 and 8: single-stranded
synthetic oligonucleotide (25mer). Lanes 9 and 10: Mixed CELiD DNA and 25mer.
doi:10.1371/journal.pone.0069879.g005
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Figure 6. AFM images of CELiD vector DNA chains adsorbed onto APS-treated mica. (A) Typical images of the CELiD-GFP monomer
deposited from aqueous solution (dH2O). The monomer is indistinguishable from standard double-stranded, linear DNA. All images are 4506450 nm.
(B) CELiD-GFP monomers adsorbed onto mica substrate immediately after being exposed to denaturing conditions. The height of the chain is about
half that of the native monomer chain confirming that the loops are single-stranded. These monomers are closed loops with randomly located,
condensed regions (brighter spots along the loops). The lengths of these loops are consistent with denatured monomers supporting the model of a
covalently closed, duplex conformation under native conditions. Top images are of the denatured monomers. Bottom images show the
corresponding traced loops. (C) Images of individual CELiD-GFP dimers adsorbed from H2O. The chains are double-stranded, linear DNA with lengths
twice that of the monomer and exhibit a characteristic conformation with three condensed regions, one located centrally and the other two at
opposite ends of the molecule. (D) Under high salt conditions (0.5 M NaCl), the condensed regions of the CELiD-GFP dimer relax and the chains take
on conformations typical of double-stranded, linear DNA with length twice that of the monomer CELiD vector DNA. Numbers in yellow indicate the
chain length in bp, estimated by path tracing.
doi:10.1371/journal.pone.0069879.g006

CELiD DNA for Non-Viral Gene Transfer

PLOS ONE | www.plosone.org 7 August 2013 | Volume 8 | Issue 8 | e69879



Atomic force microscopy (AFM) imaging of CELiD–GFP
DNA

The 2.7 kb monomer and 5.4 kb dimer CELiD–GFP replica-

tive-form DNAs were purified from gel slices following agarose gel

electrophoresis (using QIAEX II gel extraction kit, Qiagen) and

dissolved in molecular biology grade H2O (Quality Biological,

Inc., Gaithersburg, MD, USA).

Prior to applying the DNA samples, AFM mica substrates

were modified with aminopropylsilatrane (APS). APS solution

(,150 nM in 50 ml) was applied to freshly cleaved mica disks

(12 mm diameter) for 30 minutes at ,20uC. The disks were then

rinsed thoroughly with dH2O and dried in a nitrogen stream.

DNA solutions of appropriate concentrations (typically, on the

order of 1 mM base-pair concentration) were applied to the APS-

treated mica and incubated approximately 10 min at room

temperature. The samples were then gently rinsed with dH2O

and dried in an argon stream before imaging.

The effects of different solvents on the topological features of the

sample DNA were examined by AFM using: 1. Buffered saline

(500 mM NaCl and 20 mM HEPES, pH 7.4), 2. 50% formamide

(sample heated at 60uC for 30 minutes to denature the DNA), and

3. Water (dH2O).

Samples were imaged with an AFM instrument (MultiMode-

PicoForce AFM with Nanoscope V controller, Bruker Nano,

Santa Barbara, CA, USA). Imaging was performed in oscillating

mode (tapping) under ambient conditions using silicon cantilevers

with nominal stiffness of ,42 N/m and resonance frequencies in

the 300 kHz range (OTESPA by Olympus or TESP-SS by

Bruker Nano). Imaging data were preprocessed using Nanoscope

v7.31. DNA lengths were measured using algorithms developed

in conjunction with image processing software based on NIH

ImageJ (http://rsb.info.nih.gov/ij/), Matlab (Mathworks, Natick,

MA, USA) and Origin (OriginLab, Northampton, MA, USA).

The lengths of extended DNA chains with clearly discernible

paths were determined by contour tracing. For overlapping and

entangled chains, we developed new algorithms that made use of

the volume information contained in the AFM topographic

images. Volumes were measured by adding pixel heights using

the Particle Analysis module of NIH ImageJ.

CELiD DNA expression in vitro
Transfections were conducted using either GFP or nuclear-

localized b-galactosidase (LacZnls) reporter cassettes. HEK 293

cells were seeded in 6-well tissue culture plates one day before

transfection to achieve 90% confluence at the time of use.

Transfections were performed using a commercially available

liposome-based transfection reagent (LipofectamineH 2000, Life

Technologies, Corp., Carlsbad, CA, USA) following the manu-

facturer’s suggested protocol. For GFP expression assays, HEK

293 cells were transfected using 4 ml of lipid reagent per well and

equivalent copy numbers of reporter DNA molecules: CELiD–

GFP DNA (1.48 mg per well) or plasmid-GFP DNA, pFBGR (4 mg

per well). At day 6 post-transfection, cells were examined for GFP

expression by fluorescence microscopy.

For LacZ expression assays, HEK 293 cells were seeded in 6-

well tissue culture plates and transfected with equal weight

amounts of CELiD-LacZnls (2 mg) or pFB-CMV-LacZnls (2 mg)

using 3 ml of lipid reagent per well. Three days post-transfection,

Figure 7. CELiD vector DNA expression in vitro. (A) HEK 293 cells transiently transfected with CELiD-GFP DNA or plasmid pFBGR for green
fluorescent protein (GFP) expression. Both DNAs harbor an identical gene expression cassette encoding GFP and were transfected using equivalent
copy numbers. Images were taken at day 6 post-transfection. Magnification, 10x objective (with digitally-enlarged insert). (B) HEK 293 cells transiently
transfected with equal amounts of CELiD-LacZnls DNA or plasmid pFB-CMV-LacZnls. Both DNAs harbor an identical gene expression cassette
encoding b-galactosidase with a nuclear localization signal (LacZnls). X-gal staining of cells at three days post-transfection. Magnification, 10x
objective (with digitally-enlarged insert).
doi:10.1371/journal.pone.0069879.g007
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Figure 8. In vivo gene expression and DNA copy number per diploid cell following tail vein injection of (A) CELiD-LacZnls or (B)
Plasmid-LacZnls (pCMV-LacZnls). 1 mg of CELiD DNA or 10 mg of the circular plasmid DNA was administrated by hydrodynamic tail vein injection.
Transfected livers were harvested and processed at days 1, 3, and 7, as well as 5 weeks post-injection. Histological samples were sectioned and
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b-galactosidase (b-gal) activity was detected by staining with the

chromogenic substrate, X-gal. Briefly, cells were rinsed with PBS,

and then fixed in 2% formaldehyde, 0.1% glutaraldehyde in PBS

for 2 minutes. After washing the cells three times with PBS, freshly

made X-gal staining buffer (1 mg/ml X-gal, 2 mM MgCl2, 5 mM

potassium ferrocyanide, and 5 mM potassium ferricyanide in PBS,

warmed to 50uC) was added, and the cells were incubated at 37uC
for 30 min to 24 hr in the dark. After incubation, samples were

washed three times (each for 5 min) in room temperature PBS,

and examined by light microscopy.

Hydrodynamic injection of DNA and in vivo gene
expression detection

Outbred male ICR mice at 2 months of age were used for

hydrodynamic DNA injection via the tail vein according to the

method described by Liu et al. [7]. Each mouse was injected with

1.7 ml of saline containing circular plasmid DNA or CELiD DNA.

For b-galactosidase activity, 10 mg of pCMV-LacZnls or 1 mg of

CELiD-LacZnls DNA was used. Mice were sacrificed periodically

(1, 3, and 7 days, as well as 5 weeks, post-injection) and liver tissue

collected and snap-frozen in liquid nitrogen for X-gal staining of

tissues. The liver tissues were cryo-sectioned (15 mm thickness),

fixed and X-gal stained according to a standard method [8].

Samples were counter-stained with eosin, dehydrated with

ethanol, and mounted for imaging.

For TBG-GFP gene expression in vivo, 10 mg of either CELiD-

TBG-GFP or circular plasmid pTBG-GFP in 1.7 ml saline was

injected via the tail vein. Mice were sacrificed at 1, 3, and 10 wks

post-injection, and livers samples were processed as above. GFP

expression within the liver sections was detected by fluorescence

microscopy. N = 3 to 4 animals per experimental time point.

In vivo DNA copy number determination
DNA was extracted from transfected liver tissue using the

DNeasy Blood and Tissue kit (Qiagen). Vector copy number was

determined by quantitative PCR (qPCR). TaqMan assays of the

endogenous mouse glucagon gene were used to normalize vector

copy numbers. The sequences of the mouse glucagon gene

primers and probe used were: Glucagon-real-F (mouse), 59-

AAGGGACCTTTACCAGTGATG TG-39; Glucagon-real-R

(mouse), 59-ACTTACTCTCGCCTTCCTCGG-39; TaqMan

mouse glucagon probe, 59-FAM-CAGCAAAGGAATTCA-

MGB-39. The CELiD-LacZnls-specific PCR primers and probe

were: CMV-forward, 59-GTATGTTCCCATAGTAACGCCAA-

TAG-39; CMV-reverse, 59-GGCGTACTTGGCATATGATA-

CACT-39; CMV-probe, 59-FAM-TCAATGGGTGGAG-

TATTTA-39. The following primer pair was used to detect

TBG-GFP: forward, 59-GGAAAGTCCCTATTGACGTT-39;

reverse, 59-GGAAAGTCCCTATTGACGTT-39.

Statistical analysis
Quantitative results are expressed as the mean plus or minus (6)

the standard deviation (SD). Statistical significance analysis of the

data was performed using an unpaired two-sample equal variance

and two-tail distribution Student’s t-test (t-test). A p-value of less

than 0.05 was considered statistically significant as indicated by

asterisks: * p,0.05, ** p,0.01, *** p,0.001.

Results

Characterization of replicative-form vector DNA
produced in stably-transfected Sf9 cell lines

A plasmid (pFBGR-bsd) containing a blasticidin-S deaminase

selectable marker linked to an AAV ITR-flanked green

fluorescent protein (GFP) reporter gene under the regulatory

control of the CMV IE promoter and the baculovirus p10

promoter is shown in Fig. 1. Sf9 cell lines were produced by

transfection with pFBGR-bsd and selection for stable blasticidin-

S deaminase expression. Infection of blasticidin-resistant cells

with a recombinant baculovirus expressing the AAV2 rep gene

(Bac-Rep) induced GFP expression and amplification of the AAV

ITR-flanked GFP transgene in a dose dependent manner (Fig. 2).

In contrast, infection with wild-type baculovirus (Bac-AcNPV)

had no effect on GFP expression. Characterization of the relative

amounts of the Rep and GFP proteins by western blot analysis

combined with quantification of GFP-associated fluorescent

intensity indicated a direct correlation between Rep protein

expression and the induction of GFP activity in infected cells

(Fig. 2B).

To test the hypothesis that Rep protein expression results in

rescue and amplification of the integrated GFP vector genome,

extrachromosomal DNA was extracted from stably transfected

Sf9/ITR-GFP cells and analyzed using quantitative PCR (qPCR)

(Fig. 2C, upper panel) and agarose gel electrophoresis (Fig. 2C,

lower panel). A unit-length 2.7 kb band is apparent in the Bac-

Rep-infected cells, but not in cells infected with wild-type (wt)

baculovirus (Bac-AcNPV). Using qPCR, it was determined that

the copy number of the GFP target sequence increased to greater

than 15,000 copies per cell, in proportion to the amount of Bac-

Rep added to the culture (Fig. 2C, upper panel).

During a time-course experiment, higher doses of Bac-Rep led

to a proportional increase of GFP fluorescence observed on both

day 2 and day 3 post-infection. By day four, the fluorescence

intensity reached a maximum value regardless of the initial

multiplicity of infection (Fig. 2D). The rate of accumulation of

the GFP vector DNA was analyzed using samples of Sf9/ITR-

GFP cells infected with 1% (v:v) of baculovirus-containing

supernatant (Fig. 3A). The GFP vector genome copy number

increased non-linearly over three days. At 168 hr post-infection,

the amount of GFP vector genomes decreased, presumably due

to loss of cell viability. The staining intensities of the monomer

and dimer replicative-form DNAs (2.7 and 5.4 kb, respectively)

(Fig. 3A, lower panel) indicate that the peak level of amplification

occurred at the 55 hr time point. The rate of Rep 78 and Rep

52 expression reached a maximum at 77 hr post-infection, then

declined at 168 hr (17% of 77 hr Rep expression) (Fig. 3B). The

amount of GFP detected by western blot decreased slightly from

77 to 168 hr (69% of 77 hr GFP expression) (Fig. 3B).

stained to detect b-galactosidase activity (indicated by dark blue nuclei). Samples were counterstained with eosin. (C) CELiD-LacZnls and plasmid-
LacZnls copy number per diploid cell in transfected livers. The DNA copy number was normalized based on the PCR quantification of the endogenous
mouse glucagon gene, n = 3 to 4. (D) Comparative long-term transgene expression from constructs bearing a liver specific thyroxine-binding globulin
(TBG) promoter. CELiD-TBG-GFP or plasmid pTBG-GFP gene expression in liver section 10 weeks post-hydrodynamic tail vein injection. (E) CELiD-TBG-
GFP and plasmid pTBG-GFP DNA copy number per diploid cell in transfected livers. The same amount of DNA (10 mg) was administrated by
hydrodynamic injection. Statistical analysis by TTEST. ** indicates P,0.01.
doi:10.1371/journal.pone.0069879.g008
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Characterization of CELiD DNA
Extrachromosomal DNA was extracted from Bac-Rep-infected

Sf9/ITR-GFP cells and resolved on either native or denaturing

agarose gels. Under native conditions, the extrachromosomal

DNA appeared predominantly as monomeric (2.7 kb) and dimeric

(5.4 kb) forms of the vector genome, within a ladder of vector

genome multimers (Fig. 4A). Under denaturing conditions,

however, the extrachromosomal DNA presented predominantly

as approximately 5.4 kb and 10.8 kb bands (Fig. 4B). The change

in mobility under denaturing conditions suggested that the

monomeric and dimeric vector genomes are duplex molecules

with at least one covalently closed end.

To determine whether the ends of the linear ITR-flanked GFP

transgene are covalently closed, extrachromosomal DNA recov-

ered from Sf9/ITR-GFP cells was treated with the restriction

endonuclease AgeI and resolved using either native or denaturing

agarose gel electrophoresis (Fig. 4C) (see also Fig. S1). Following

digestion with AgeI, the extrachromosomal DNA resolved as two

major bands, of 1.8 kb and 0.9 kb, and two minor bands of 3.6 kb

and 1.7 kb (Fig. 4C, right). The 1.8 kb and 0.9 kb bands are as

expected for digestion of a vector genome monomer with AgeI,

whereas the 3.6 kb and 1.7 kb bands are consistent with head-to-

head and tail-to-tail concatamers of multimeric vector genomes

(Fig. 4C, left). Under denaturing conditions, the AgeI digestion

products appeared as just two bands (of 3.6 kb and 1.7 kb). Lack

of the 1.8 kb and 0.9 kb bands suggests that the replicated vector

genomes are covalently closed at both ends of the DNA duplex.

Use of other restriction endonucleases produced results consistent

with this model (Fig. S1).

As second indication of whether the ends of the vector DNA are

covalently closed, isolated extrachromosomal DNA was subjected

to digestion with either E. coli exonuclease I (ExoI) or exonuclease

III (ExoIII). ExoI degrades single-stranded DNA in the 39 to 59

direction [9]. ExoIII progressively degrades duplex DNA in a 39 to

59 direction from 39-recessed or blunt-ended DNA molecules

(substrates with 39 protruding ends greater 4 nt are resistant)

[10,11]. Figure 5 shows that CELiD DNA and circular single-

stranded wX174 DNA were resistant to ExoI digestion, while a

single-stranded, synthetic oligonucleotide or endonuclease HaeIII-

digested wX174 DNA were susceptible. As shown in Fig. 5A,

native CELiD DNA was resistant to ExoIII digestion; however,

after treatment with restriction enzyme NaeI, the vector DNA

became susceptible to ExoIII activity. Together with the

denaturing agarose gel electrophoresis results, these observations

are consistent with a replicative-form DNA bearing a closed-ended

DNA duplex structure.

Atomic Force Microscopy of CELiD – vector DNA
Atomic force microscopy (AFM) was used to visualize purified

CELiD DNA (Fig. 6). The 2.7 kb CELiD-GFP vector genome

appeared as an extended, linear duplex molecule with an

estimated mean contour length of 2701 (6607) base pairs

(Fig. 6A). Results of alkaline agarose gel electrophoresis analysis

predict that, upon denaturation, the 2.7 kb CELiD-GFP mono-

mer should occur as an approximately 5400 base-long, single-

stranded, circular molecule. Although maintaining CELiD DNA

in a single-stranded state proved difficult, several predominantly

single-stranded DNA molecules with closed contours were

observed under denaturing conditions (Fig. 6B). The lengths of

extended DNA chains with clearly discernible paths were

determined by contour tracing and were consistent with a

covalently closed, single-stranded monomer.

AFM analysis of the 5.4 kb CELiD-GFP DNA dimer revealed

an interesting conformation. The termini of the dimer appear as

compacted, tortuous structures with a similar, but less extensive,

structure centrally located (Fig. 6C). The contours of these

molecules could not be traced; however, the lengths were

estimated using total molecular volumes. The calculated DNA

lengths averaged 5480 bp (6310 bp; n = 23) in agreement with

the predicted size of 5336 bp. The positions of the convoluted

regions of the dimer DNA correspond to the locations of the AAV

ITRs. The AAV2 Rep78 protein, required for CELiD-vector

DNA production, has sequence specific DNA binding activity.

Multimers of Rep78 have been shown to non-covalently interact

with a motif repeated in the AAV ITR [12,13]. Western blots of

nuclease-treated CELiD-vector DNA preparations detected the

presence of both Rep78 and Rep52 (Fig. S2). To investigate

whether Rep proteins, or other proteins, binding to the DNA

contributed to the convoluted structures, the ionicity was increased

to potentially disrupt non-covalent protein-DNA interactions. In

the presence of 0.5 molar NaCl, the 5.4 kb CELiD-GFP DNA

transitioned to an extended conformation (Fig. 6D). The lengths of

several such relaxed DNA molecules were measured by contour

tracing (53376118 bp; n = 18), and were consistent with the

lengths estimated for the convoluted forms using the volume per

unit length estimates. The measured lengths agree with the

predicted size of the duplex dimer (5336 bp).

CELiD – vector DNA expression in vitro and in vivo
The ability of CELiD DNA produced in Sf9 cells to direct

transgene expression in vitro was determined using an ITR-flanked

green fluorescent protein reporter cassette (CELiD-GFP, Fig. 7A)

or an ITR-flanked LacZnls (nuclear-localized b-galactosidase)

reporter cassette (CELiD-LacZnls, Fig. 7B). Equivalent copy

numbers of parental GFP plasmid and CELiD-GFP DNA

molecules were used in the in vitro experiments. FACS analysis

of cells transfected with CELiD-GFP or pFBGR (a GFP-

expressing plasmid) showed that the population of positive cells

and expression levels were similar: 39.6% and 31.1% GFP positive

cells and 3656 and 2442 relative fluorescent units for CELiD and

pFBGR-transfected cells, respectively (Fig. 7A). Using equal

weight amounts of DNA, LacZ expression was higher for plasmid

DNA than CELiD DNA in transiently transfected HEK 293 cells

(Fig. 7B).

In vivo gene expression was assessed in outbred ICR male mice

using purified CELiD–LacZnls DNA administered by hydrody-

namic tail vein injection (Fig. 8). Livers from mice injected with

CELiD–LacZnls DNA (1 mg) had detectable levels of b-galacto-

sidase activity at 1 day after injection, and the level of expression

remained relatively constant through day 7. LacZnls activity

could still be detected at 5 weeks post-injection in CELiD–

LacZnls liver section (Fig. 8A). Plasmid pCMV-LacZnls DNA

(10 mg) demonstrated robust expression at day 1, but quickly

diminished over the course of the experiment. Although more

plasmid DNA was injected than CELiD–LacZnls DNA, b-

galactosidase activity in the pCMV-LacZnls-treated liver was not

detectable at 5 weeks (Fig. 8B); however, the CELiD–LacZnls-

treated liver still had detectable LacZnls expression at a similar

time point. Quantitative PCR analysis of vector DNA copy

number in transfected liver tissue showed that more CELiD-

LacZnls DNA was retained in the liver at 5 weeks post-injection

compared to plasmid DNA, and also showed a slower rate of

decline in copy number over time (Fig. 8C). We postulate that

the decline of LacZ expression over time is due primarily to shut-

off of the CMV promoter in the liver. To address this hypothesis,

a GFP reporter gene under the control of the thyroxine-binding

globulin (TBG) promoter, which demonstrates prolonged activity

in hepatocytes [14,15,16], was used to assess long-term gene
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expression in the mouse liver. CELiD-TBG-GFP and the

equivalent plasmid pTBG-GFP DNA (10 mg each) were admin-

istrated to outbred ICR mice by hydrodynamic tail vein

injection. At 10 weeks post-injection, no GFP expression was

evident in the plasmid-treated mice, while GFP expression in

livers of CELiD-TBG-GFP-treated mice was apparent (Fig. 8D).

The CELiD-TBG-GFP expression pattern was predominantly

centrilobular, resembling expression patterns observed in recom-

binant AAV-treated mouse livers [17]. Quantitative analysis of

DNA copy numbers of CELiD-TBG-GFP and plasmid pTBG-

GFP DNA showed very similar levels at 1 wk post-injection

(Fig. 8E). CELID-TBG-GFP DNA copy number remained at

91% at 3 wks and 65% at 10 wks post-injection relative to the

amount of vector DNA present at the 1wk time point, while

plasmid pTBG-GFP DNA copy numbers decreased to 39% at

3 wks and only 1.8% at 10 wks post-injection relative to the 1 wk

pDNA amount. Therefore, the amount of vector DNA in the

liver of CELiD-TBG-GFP-recipient mice was 36-fold higher than

those receiving equivalent plasmid DNA. The differences

between CELiD-TBG-GFP and plasmid pTBG-GFP DNA copy

numbers in transfected livers at 3 wks and 10 wks post-injection

demonstrated statistical significance (P,0.01). The CELiD-TBG-

GFP in vivo data revealed that the levels of CELiD DNA in

mouse liver remained nearly unchanged during a 10 wk period.

Discussion

Non-viral gene delivery circumvents certain disadvantages

associated with viral transduction, particularly those due to the

humoral and cellular immune responses to the viral structural

proteins that form the vector particle [18,19]and any de novo virus

gene expression [2,20]. Plasmids produced in E. coli contain

elements needed for propagation in prokaryotes that are

unnecessary, and even deleterious, for transgene expression in

mammalian cells [21]. In addition to the required cis-elements,

including a prokaryotic origin of DNA replication (e.g., colE1 ori)

and a selectable marker, typically an antibiotic resistance gene

(e.g., b-lactamase), bacterial plasmids bear uniquely prokaryotic

modifications to DNA, such as N6-methyladenine and N5-

methylcytosine [22]. These may elicit undesirable outcomes in an

in vivo application [23]. Relative to mammalian genomic DNA,

the occurrence of CpG dinucleotides in prokaryote-derived

pDNA is overrepresented [24] and reportedly binds a member

of the Toll-like family of receptors, eliciting a T cell-mediated

immune response [25,26,27]. In addition, reducing the amounts

of detrimental impurities, including bacterial genomic DNA and

endotoxins, is critical for production of plasmids used in vivo.

‘‘Mini-circle’’ DNA, a recent improvement to the production of

pDNA free of prokaryotic cis-acting elements, uses an inducible

recombinase to specifically delete the prokaryotic moiety from the

bacterial mini-circle shuttle plasmid [28,29]. Mini-circle DNAs

have been used in vivo for long-term gene expression in mice, and

for generating induced pluripotent stem cells (iPSC) in vitro [30].

Another alternative to pDNA is mini-linear, covalently closed

(mini-lcc) DNA that possesses all the benefits of ‘‘mini-circle’’

DNA vectors and effectively eliminates the potential for undesir-

able vector integration events [31]. However, both mini-circle and

mini-lcc DNA are produced in prokaryotes. We have described an

alternative method for the high-yield production of eukaryote-

derived, prokaryotic-sequence-free DNA for gene transfer. CE-

LiD-vector DNA consists solely of a therapeutic or reporter gene

transcription unit and the AAV2 ITRs. The cis-acting elements

and trans-acting requirements needed for propagating the parental

plasmid in E. coli are eliminated from the CELiD ‘‘rescue’’ and

replication process. The genetic organization of CELiD-vector

DNA, resembles rAAV vector DNA, but differs in conformation.

The encapsidated recombinant AAV vector genome is predom-

inantly a unique sequence of linear single-stranded DNA, although

self-complementary forms are packaged either by designing a

vector genome with a defective ITR [32,33,34], or through

natural processes whereby half wild-type-length genomes are

packaged as self-complementary DNA [35]. Unlike encapsidated

AAV vector genomes, CELiD-vector DNA has no packaging

constraints imposed by the limiting space within the viral capsid.

In theory, the only size limitation resides in the DNA replication

efficiency of the host cell. Infection of a stable cell line bearing an

integrated copy of a 2.7 kb GFP vector DNA with a Rep-

expressing baculovirus can yield up to 60 mg of CELiD-vector

DNA from 4.76109cells. This quantity of CELiD DNA represents:

1) $4 million copies per cell, 2) approximately 15– times the mass

of the cellular genomic DNA, and 3) approximately 0.36% of the

cell mass. Thus, CELiD-vector DNA represents a viable eukary-

otic alternative to prokaryote-produced pDNA.

CELiD as a biological replicative intermediate
Autonomous, linear DNA replicons with covalently closed ends

(i.e., terminal hairpins) have been identified in a wide variety of

prokaryotic and eukaryotic organisms. Examples include certain

large DNA viruses of eukaryotes (such as poxviruses and African

swine fever virus), as well as various temperate phage of gram-

negative bacteria (such as N15 and wKO2 of Escherichia coli and

Klebsiella oxytoca, respectively). Additionally, linear plasmids and

chromosomes bearing covalently closed ends have been described

in Agrobacterium tumefaciens and various spirochete species of the

genus Borrelia. Linear replicon-encoded trans-acting factors respon-

sible for terminal hairpin formation have been identified and

biochemically characterized. In particular, the ResT protein of

Borrelia and the TelN protein of phage N15 have been extensively

examined (reviewed in [36,37]). We have demonstrated that a

transgene sequence flanked by adeno-associated virus inverted

terminal repeats (i.e., CELiD DNA) is maintained within S.

fugiperda insect cells as a covalently closed, linear DNA molecule

that serves as an AAV Rep protein-dependent replicon. Interest-

ingly, the large AAV Rep proteins share biochemical activities

with the ResT and TelN proteins, including DNA binding activity,

tyrosine-mediated phosphodiesterase activity and the ability to join

cleaved DNA strands [38,39,40,41,42]. We postulate that Rep-

mediated DNA cleavage-joining activity is responsible for gener-

ation of the covalently closed DNA structure observed for CELiD

DNA.

Perhaps the best-known examples of covalently closed linear

replicons in eukaryotes are those of the Poxviridae. Poxvirus DNA

replication bears similarities to that of the Parvoviridae (including the

dependoviruses such as AAV). DNA replication in both virus

families initiates by enzymatic nicking of one of the terminal

hairpins flanking each end of the linear genome [43,44]. The

nicking event provides a 39-hydroxyl group to prime strand-

displacement replication. In addition to providing a self-priming

DNA element to initiate DNA synthesis, covalently closed terminal

hairpin structures may protect the linear DNA elements from

attack by cellular exonucleases, as well as inhibit illegitimate

recombination events. The role, if any, that closed-ended

replicative forms play in wild-type AAV replication remains to

be determined.
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Supporting Information

Figure S1 Restriction endonuclease digestion products
resolved using native and alkaline agarose gel electro-
phoresis. (A) Native (1% agarose, TBE) and (B) denaturing

(0.7% agarose, alkaline) gel electrophoresis. For both gels, CELiD-

GFP DNA samples in lanes 1–6 were digested with the following

restriction endonucleases. Lane 1: AgeI (monomer endonuclease

recognition site is at position 1801, fragment sizes 1801/867 bp).

Lane 2: SpeI (recognition site is at position 2456, fragment sizes

2456/212 bp). Lane 3: XhoI (recognize site is at position 493,

fragment sizes 493/2175 bp). Lane 4: KpnI (recognize site is at

position 410, fragment sizes 414/2254 bp). Lane 5: NotI

(recognize sites at positions 195 and 2471, fragment sizes 195/

2471/196 bp). Lane 6: XbaI (recognize sites for monomer at

positions 188 and 2479, fragment sizes 188/2479/189 bp). Lane

7: undigested CELiD-GFP DNA. Monomer CELiD-GFP full-

length size = 2668 bp. (C) Table of predicted restriction

endonuclease digestion products. AgeI, SpeI, XhoI and KpnI

have single recognition sites, whereas NotI and XbaI have two

recognition sites in the CELiD-GFP monomer sequence. Diges-

tion products resolved using native agarose gel electrophoresis

produced DNA fragments predicted by the rAAV-GFP (and

corresponding CELiD) map, listed in the table by fragment length

(x, y, or z) in basepairs. The denaturing, alkaline agarose gel

products were 2x and 2y nucleotides in length for the single-cut

enzymes, whereas the double-cut enzymes produced 2x and 2z

length products, and an internal product y that appears the same

size on both native and denaturing gels. Schematic representation

of (D) single-cut and (E) double-cut restriction enzyme sites in

monomer and dimer forms of CELiD vector DNA. The open

boxes indicate the positions of the AAV ITRs. The horizontal

arrow, collinear with CELiD vector DNA, indicates the direction

of the upper, sense-strand in panels D and E. The two dimer

figures represent tail-to-tail and head-to-head configurations. A

tandem head-to-tail configuration would produce x+y fragments,

which were not detected.

(TIF)

Figure S2 Anti-Rep protein western blot of CELiD-GFP
DNA samples treated with Serratia marcescens endonu-
clease. CELiD-GFP DNA samples were treated with 6.7 units of

S. marcescens endonuclease (Turbonuclease, Accelegen, Inc., San

Diego, CA, USA) (except for the material in lane 5, which was

treated with 26.8 units) at 37uC for 30 min prior to SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) and western

blotting. The quantities of CELiD-GFP DNA treated with

endonuclease were as follows: Lane 1: 8 mg; lane 2: 16 mg; lane

3: 32 mg; lane 4: 64 mg; lane 5: 64 mg. After SDS-PAGE, proteins

were electrophoretically transferred to a nitrocellulose membrane

and probed with an anti-Rep monoclonal antibody as described in

Materials and Methods, except that a 1:2000 dilution of the

secondary detection antibody was used.

(TIF)
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