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Microsatellite instability (MSI) is a genomic property of the cancers with defective DNA mismatch repair
and is a useful marker for cancer diagnosis and treatment in diverse cancer types. In particular, MSI has
been associated with the active immune checkpoint blockade therapy response in cancer. Most of com-
putational methods for predicting MSI are based on DNA sequencing data and a few are based on mRNA
expression data. Using the RNA-Seq pan-cancer datasets for three cancer cohorts (colon, gastric, and
endometrial cancers) from The Cancer Genome Atlas (TCGA) program, we developed an algorithm
(PreMSIm) for predicting MSI from the expression profiling of a 15-gene panel in cancer. We demon-
strated that PreMSIm had high prediction performance in predicting MSI in most cases using both
RNA-Seq and microarray gene expression datasets. Moreover, PreMSIm displayed superior or comparable
performance versus other DNA or mRNA-based methods. We conclude that PreMSIm has the potential to
provide an alternative approach for identifying MSI in cancer.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Microsatellite instability (MSI) is the molecular feature of the
cancers with deficient DNA mismatch repair [1]. MSI is prevalent
in several cancer types, including esophageal, gastric, colorectal,
and endometrial cancers, and is a useful marker for cancer diagno-
sis and treatment [2]. Notably, MSI has been recognized as a bio-
marker for the favorable immune checkpoint blockade therapy
response in cancer [3]. Thus, the detection of MSI is significant in
clinical practice. The genetic or immunohistochemical tests for
MSI are commonly used in clinics [4,5]. In addition, several compu-
tational methods have been proposed for the detection of MSI [6–
10]. Typically, most of these computational methods for predicting
MSI are based on DNA sequencing data. A few methods have been
developed for predicting MSI on the basis of mRNA expression data
[11–13]. However, few of these methods have been developed into
easy-to-use tools. In this study, we developed an algorithm Pre-

MSIm (Predicting MSI from mRNA) for predicting MSI from the
expression profiling of a gene panel in cancer. We tested the pre-
diction performance of PreMSIm using a number of RNA-Seq and
microarray gene expression profiling datasets. Moreover, we com-
pared the prediction performance of PreMSIm with that of other
computational methods.
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2. Methods

2.1. Datasets

We downloaded the TCGA (The Cancer Genome Atlas) RNA-Seq
datasets (level 3 and RSEM normalized) for six cancer cohorts (eso-
phageal, colon, rectum, gastric, uterine, and endometrial cancers)
from the genomic data commons data portal (https://portal.
gdc.cancer.gov/), and the pan-cancer from the UCSC Xena project
(https://xenabrowser.net/datapages/) (RSEM normalized). In addi-
tion, we downloaded 16 microarray gene expression profiling data-
sets (normalized) for gastric and colorectal cancers from the NCBI
gene expression omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/). A summary of these datasets is shown in Table 1.

2.2. Classifier development and evaluation

Before the development and evaluation of classifier, all RSEM-
normalized RNA-Seq gene expression values were added 1 and
then log2-transformed, and all RNA-Seq and microarray gene
expression values were scaled to the range [0,1] in both training
and test datasets. Within each training set, we utilized the t-test
to identify the most significant genes in distinguishing MSI-high
(MSI-H) cancers from MSI-low/microsatellite stability (MSS) can-
cers. The top 30 genes with the largest absolute t-scores were
selected as predictors in the classification model. After feature
selection, we used the k-Nearest Neighbors (k-NN, k = 5) classifier
for class prediction. We first used 10-fold cross validation (CV) to
evaluate classifier performance. Next, we built the MSI prediction
model PreMSIm, which included the TCGA pan-cancer (involving
colon, gastric, and endometrial cancers) dataset as the training
set, the k-NN (k = 5) classification algorithm, and 15 gene features.
The flowchart for the algorithm is illustrated in Fig. 1A. The 15 gene
features were the genes which were commonly selected across all
loops of the pan-cancer 10-fold CV model (the top 30 genes
selected by t-scores based on the training set in each loop of the
10-CV are presented in Supplementary Table S1). The 15 gene fea-
tures included DDX27, EPM2AIP1, HENMT1, LYG1, MLH1, MSH4,
Table 1
A summary of datasets.

Platform Cancer type Source Number of

RNA-seqa Colon cancer TCGA 281
Endometrial cancer 367
Esophageal cancer 89
Gastric cancer 415
Rectum cancer 94
Uterine cancer 56
Pan-cancer 1383

Microarray (GPL570)b Gastric cancer GSE13911 39
GSE62254 300

Colorectal cancer GSE13067 74
GSE13294 155
GSE18088 53
GSE26682 160
GSE35896 61
GSE39084 70
GSE39582 536
GSE75316 59
GSE92921 58

Microarray (GPL5175)c GSE24550 65
Microarray (GPL2986)d GSE25071 46
Microarray (GPL13158)b GSE27544 22
Microarray (GPL96)b GSE26682 140

GSE41258 168

Note:
a Poly-A.
b Affymetrix Oligonucleotide Array.
c Agilent Oligonucleotide Array.
d Affymetrix Exon Array.
NHLRC1, NOL4L, RNLS, RPL22L1, RTF2, SHROOM4, SMAP1, TTC30A,
and ZSWIM3. Among the 15 genes, three genes LYG1, MSH4, and
RPL22L1 were more highly expressed in the MSI-H subtype than
in the MSI-L/MSS subtype of the TCGA pan-cancer and the other
12 were more lowly expressed in the MSI-H subtype (Fig. 1B).
We tested the prediction performance of PreMSIm in numerous
RNA-Seq and microarray gene expression profiling datasets. The
classification accuracy, sensitivity, specificity, and area under the
ROC curve (AUC) were reported.

2.3. Comparison of classification performance

We compared the classification performance between PreMSIm
and other DNA- and mRNA-based MSI prediction methods using
the TCGA datasets. The grid search using R package ‘‘caret” was
applied to estimate the parameter k for k-NN. In addition, we com-
pared the classification performance between k-NN and other clas-
sification algorithms, including Random Forest (RF), Support
Vector Machine (SVM), Extreme Gradient Boosting (XGBoost). We
also compared the classification performance between PreMSIm
with SMOTE [14] for correcting imbalanced classes and PreMSIm
without such a correction.

2.4. Pathway, gene ontology (GO), and protein–protein interaction
network analysis

We identified the pathways and GO (biological process) terms
associated with the 15 gene features using the GeneCards database
(https://www.genecards.org/), and investigated their protein–pro-
tein interaction (PPI) network using STRING [15].

3. Results

3.1. Classification performance of PreMSIm

Within each of the three individual cancer types (gastric, colon,
and endometrial cancers), we obtained considerably high 10-fold
CV accuracy, sensitivity, and specificity (Table 2). All sensitivities
samples Number of MSI-H samples Number of MSI-L/MSS samples

52 229
123 244
2 87
80 335
3 91
2 54
328 1055
19 20
68 232
11 63
78 77
19 34
18 142
5 56
16 54
77 459
11 48
5 53
14 51
5 41
8 14
17 123
35 133

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/


Table 2
The classification performance within TCGA datasets (%).

Cancer type Accuracy Sensitivity Specificity AUC

Gastric cancere 97 86 99 97
Colon cancere 96 96 97 97
Endometrial cancere 90 86 92 93
Pan-cancer (all samples)e 95 85 97 95
Pan-cancer (80% of samples)e 94 88 97 97
Pan-cancer (20% of samples)f 94 86 96 95

Accuracy

Training Test

Gastric cancer Colon cancer Endometrial cancer

Gastric cancer 97 87
Colon cancer 92 80
Endometrial cancer 82 85

Sensitivity

Test

Training Gastric cancer Colon cancer Endometrial cancer

Gastric cancer 83 63
Colon cancer 80 62
Endometrial cancer 94 83

Specificity

Test

Training Gastric cancer Colon cancer Endometrial cancer

Gastric cancer 100 100
Colon cancer 95 90
Endometrial cancer 79 86

AUC

Test

Training Gastric cancer Colon cancer Endometrial cancer

Gastric cancer 94 92
Colon cancer 95 83
Endometrial cancer 95 87

Note:
e 10-fold cross validation.
f Validation in the independent test set.

Classifier
Nearest Neighbors ( = 5)

TCGA pan-cancer training set
(gene expression profiles of a 15-gene 

panel in 1,383 tumor samples)

Gene expression profiles of 
tumor samples to be 

predicted

Normalize

Predict

MSI-H or MSI-L/MSS

Fig 1. A summary of the PreMSIm algorithm and 15 gene signatures selected. A, Flowchart for the algorithm. B, Heatmap for the expression levels of 15 gene signatures in
PreMSIm in the MSI-H and MSI-L/MSS subtypes of the TCGA pan-cancer. MSI-H: MSI-high. MSI-L/MSS: MSI-low/microsatellite stability.
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Table 3
The classification performance of PreMSIm (%).

Cancer type g Accuracy Sensitivity Specificity AUC

Esophageal cancer 96 100 95 99
Rectum cancer 91 67 92 79
Uterine cancer 95 100 94 99
Gastric cancer (GSE13911) 90 89 90 89
Gastric cancer (GSE62254) 88 78 91 87
Colorectal cancer (GSE13067) 98 100 95 99
Colorectal cancer (GSE13294) 92 86 99 96
Colorectal cancer (GSE18088) 96 95 97 97
Colorectal cancer (GSE26682-GPL570) 98 83 99 93
Colorectal cancer (GSE26682-GPL96) 70 82 68 81
Colorectal cancer (GSE35896) 92 100 91 98
Colorectal cancer (GSE39084) 93 100 91 99
Colorectal cancer (GSE39582) 90 90 90 94
Colorectal cancer (GSE41258) 77 60 82 82
Colorectal cancer (GSE75316) 95 100 94 99
Colorectal cancer (GSE92921) 95 80 96 89
Colorectal cancer (GSE27544) 91 75 100 94
Colorectal cancer (GSE24550) 88 100 84 94
Colorectal cancer (GSE25071) 87 100 85 98

Note:
* These prediction results were obtained by the PreMSIm R package.

g The Esophageal, Rectum, and Uterine cancer datasets were from TCGA and the others were from GEO.
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were higher than 85% and specificities were higher than 90% in the
three cancer types. Notably, in colon cancer, we attained 96% accu-
racy, 96% sensitivity, and 97% specificity. In the pan-cancer analy-
sis, 95% accuracy, 85% sensitivity, and 97% specificity (10-fold CV)
were achieved (Table 2). Moreover, we randomly separated all
pan-cancer samples into training (80% of samples) and test sets
(20% of samples). In the training set, 94% accuracy, 88% sensitivity,
and 97% specificity (10-fold CV) were achieved, and in the test set,
the accuracy, sensitivity, and specificity were 94%, 86%, and 96%,
respectively (Table 2). Furthermore, we took all samples in an indi-
vidual cancer type as the training set and all samples in another
individual cancer type as the test set. In general, we achieved good
classification performance in these experiments (Table 2). For
example, when training using the endometrial cancers, the classi-
fication accuracy, sensitivity, and specificity were 82% (or 85%),
94% (or 83%), and 79% (or 86%) in testing the gastric (or colon) can-
cers, respectively. All together, these results demonstrate that the
gene expression profiling-based prediction of MSI is fairly accurate.

Furthermore, we used PreMSIm to predict MSI in several other
TCGA datasets, including esophageal, rectum, and uterine cancers.
In these cohorts, we achieved considerably high accuracy, sensitiv-
ity, and specificity in general (Table 3). In addition, we tested Pre-
MSIm in 16 external microarray gene expression profiling datasets.
As shown in Table 3, the classification accuracy, sensitivity, and
specificity were high or acceptable in most of these datasets. It sug-
gests that PreMSIm is robust in predicting MSI.

3.2. Comparison of PreMSIm with other methods

We compared PreMSIm with three DNA-based MSI predictors,
including MOSAIC [16], MANTIS [17], and MSIsensor [8]. Hause
et al. used MOSAIC to detect MSI across 18 TCGA cancer types
[16]. We predicted MSI from the same cancer types using PreMSIm
and found that our prediction results highly overlapped with theirs
in pan-cancer (Fisher’s exact test, P = 2.57 � 10�241) and multiple
individual cancer types, including gastric, endometrial, colon, rec-
tum, and lung (glandular) cancers (Fisher’s exact test, P < 0.05)
(Fig. 2A). In another recent study [17], Bonneville et al. predicted
MSI across 33 TCGA cancer types using MANTIS. Their prediction
results also highly overlapped with the results yielded by PreMSIm
in pan-cancer (Fisher’s exact test, P < 2 � 10�16) and diverse indi-
vidual cancer types, including gastric, endometrial, colon, cervical,
esophageal, breast, uterine, rectum, head and neck, lung (glandu-
lar), and bladder cancers (Fisher’s exact test, P < 0.05) (Fig. 2B).
Niu et al. used MSIsensor for predicting MSI across 33 TCGA cancer
types [8]. We found that the results predicted by PreMSIm and
MSIsensor were highly overlapped in pan-cancer (Fisher’s exact
test, P < 2 � 10�16), as well as in multiple individual cancer types,
including gastric, endometrial, colon, cervical, esophageal, lung
(glandular), breast, rectum, head and neck cancers (Fisher’s exact
test, P < 0.05) (Fig. 2C). Furthermore, we compared the classifica-
tion performance between PreMSIm and the three DNA-based
methods in six TCGA cancer cohorts with a relatively prevalent
MSI subtype, including COAD, STAD, UCEC, READ, ESCA, and UCS.
In general, the accuracy and specificity were close between Pre-
MSIm and these DNA-based methods in the six cancer cohorts
(Supplementary Fig. S1). The sensitivity of PreMSIm was slightly
lower than that of the DNA-based methods in COAD and UCEC
while it was close in the other cancer cohorts.

In addition, we compared the prediction performance of Pre-
MSIm with that of two other mRNA-based methods [11,12]. In
[11], Danaher et al. used TCGA RNA-seq datasets for colon, stom-
ach, and endometrial cancers as the training set and selected as
features the mismatch repair genes MLH1, PMS2, MSH2, and
MSH6 and 10 other genes strongly associated with tumor hyper-
mutation in pan-cancer to predict MSI. The authors reported 90%
(or 79%), 90% (or 75%), and 93% (or 70%) sensitivity (or specificity)
in COAD, STAD, and UCEC, respectively, compared to 85% (or 99%),
95% (or 99%), and 87% (or 96%) sensitivity (or specificity) achieved
by PreMSIm (Fig. 2D). In [12], Pacinkova et al. developed an algo-
rithm for predicting MSI on the basis of a 25-gene expression sig-
nature. In all the six datasets tested in that study, PreMSIm
outperformed the 25-gene expression signature algorithm with
higher AUC (Fig. 2E).

Collectively, these results demonstrate that the classification
performance of PreMSIm is superior to or comparable with that
of the established algorithms.

3.3. Comparison of k-NN with other classifiers

k-NN is a lazy machine learning algorithm in that it invests
more in the prediction than in the learning procedure. The k is
often an odd number in the binary classification. To investigate
whether the k-NN (k = 5) is an optimal choice for PreMSIm, we



Fig 2. Comparisons of the MSI prediction results by PreMSIm with those by other algorithms. A, B, and C, The overlapping rates of the MSI prediction results between
PreMSIm and MOSAIC [16] (A), MANTIS [17] (B), and MSIsensor [8] (C) in the TCGA pan-cancer and multiple individual cancer types. The Fisher’s exact test P-values are
shown. *P < 0.05, **P < 0.01, ***P < 0.001. D and E, Comparisons of the prediction performance of PreMSIm with that of two other mRNA-based methods by Danaher et al. [11]
(D) and by Pacinkova et al. [12] (E), respectively. BLCA: bladder urothelial carcinoma. BRCA: breast invasive carcinoma. CESC: cervical squamous cell carcinoma and
endocervical adenocarcinoma. COAD: colon adenocarcinoma. ESCA: esophageal carcinoma. HNSC: head and neck squamous cell carcinoma. LUAD: lung adenocarcinoma.
READ: rectum adenocarcinoma. STAD: stomach adenocarcinoma. UCEC: uterine corpus endometrial carcinoma. UCS: uterine carcinosarcoma.
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compared the classification performance between different k-NNs
and between k-NN and other commonly used classification algo-
rithms, including RF, SVM, and XGBoost. We first used grid search
with 10-fold CV in the TCGA pan-cancer to search for the optimal k
(s) for k-NN, and found that the classification performance was the
best when k = 5, 7, 9, and 11 (Fig. 3A). Furthermore, we compared
the performance between the four different k-NNs (k = 5, 7, 9, and
11) in predicting MSI using two of the TCGA COAD, STAD, and UCEC
datasets as the training set and the other one as the test set. In gen-
eral, the prediction performance was close between the different k-
NNs (Fig. 3B). These results indicate that k-NN (k = 5) is a reason-
able choice for PreMSIm. In comparison of k-NN (k = 5) with RF,
SVM, and XGBoost, k-NN showed comparable prediction perfor-
mance with these classifiers (Fig. 3C). Because the number of MSI
samples is far less than that of non-MSI samples, we used the
SMOTE method [14] for correcting imbalanced classes by amplify-
ing the number of MSI samples by 2-fold. We observed a slightly
elevated sensitivity while decreased accuracy and specificity after
using SMOTE (Supplementary Fig. S2). These results indicate that
the class correction methods may not necessarily improve the per-
formance of PreMSIm.

3.4. Biological characteristics of the 15 gene features

In our prediction model, a total of 15 gene features were used.
Pathway analysis showed that these genes were mainly involved
in DNA damage repair (MLH1 and MSH4), cell cycle regulation
(MLH1, MSH4, and HENMT1), pathways in cancer (MLH1), metabo-
lism (NHLRC1 and RPL22L1), and gene expression (MLH1, HENMT1,
and RPL22L1) (Table 4). Gene ontology (GO) analysis showed that



Fig 3. Comparison of k-NN with other classifiers. A, The grid search with 10-fold CV in the TCGA pan-cancer to search for the optimal k(s) for k-NN. B, Comparison of the
performance between four different k-NNs (k = 5, 7, 9, and 11) in predicting MSI. C, Comparison of the performance between k-NN (k = 5) and the RF, SVM, and XGBoost
classifiers. RF: random forest. SVM: support vector machine. XGBoost: extreme gradient boosting.
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these genes were involved in the biological processes of DNA repair
(MLH1, MSH4, and RTF2), cell cycle (MLH1, MSH4, RPL22L1, and
RTF2), metabolic process (NHLRC1, HENMT1, LYG1, and SMAP1),
gene expression regulation (NHLRC1 and HENMT1), biogenesis
(NHLRC1, RNLS, DDX27, and EPM2AIP1), and cell and organism
development (SHROOM4, SMAP1, and TTC30A) (Table 4). Further-
more, network analysis showed that few of these genes interacted
with each other, except between MLH1 and MSH4 (strong evi-
dence), between MLH1 and EPM2AIP1 (weak evidence), and
between NHLRC1 and EPM2AIP1 (weak evidence) (Supplementary
Fig. S3).
4. Discussion

We developed an algorithm (PreMSIm) for predicting MSI from
gene expression profiles in cancer. We demonstrated the accuracy
and robustness of PreMSIm by testing it in various datasets with
varying cancer types and platforms. In the 31 classification results,
23 (74%) had AUC above 0.9 and 30 (97%) had AUC above 0.8
(Tables 2 & 3, Fig. 4). In PreMSIm, we used the k-NN (k = 5) algo-
rithm which first calculated the Euclidean distance of the expres-
sion values of 15 genes between the predicted sample and each
sample in the training set and then selected the five samples in
the training set with the nearest distance from the predicted sam-
ple. The class of the predicted sample was assigned with the class
in the majority of the five samples. The 15 genes were mainly
involved in DNA damage, cell cycle, and metabolic process path-
ways or biological processes. Of them, MLH1 encodes a protein
which is a member of seven DNA mismatch repair proteins
(MLH1, MLH3, MSH2, MSH3, MSH6, PMS1, and PMS2) [18]. MLH1
promoter hypermethylation has been associated with MSI in mul-
tiple cancer types, such as endometrial [19], colorectal [20], and
gastric cancers [21]. Our model shows that this gene is downregu-
lated in MSI cancers, consistent with these previous studies.
Another gene MSH4 interacts withMLH1 during mammalian meio-
sis [22]. Network analysis shows that few of these genes are inter-
correlated, indicating that the 15 gene features are not likely to be
redundant in the classifier. Notably, unlike the other two mRNA-
based MSI prediction algorithms in which multiple mismatch
repair genes were selected as features [11,12], PreMSIm has only
one feature (MLH1) being the mismatch repair gene. However, Pre-
MSIm displays superior or comparable performance versus both
mRNA-based methods (Fig. 2D&E). This indicates that not all the
DNA mismatch repair genes are excellent features for detecting
MSI based on their transcriptional expression levels.

A major advantage of mRNA-based over DNA-based MSI predic-
tion algorithms is that the mRNA data is closer to protein and phe-
notype data than the DNA data. As a result, the mRNA data may
indicate the phenotypic change of MSI which would be otherwise



Fig 4. Prediction performance of PreMSIm in predicting MSI. A, ROC curve analysis of TCGA colon cancer. B, ROC curve analysis of pan-cancer. All pan-cancer samples were
separated into training (80% of samples) and test sets (20% of samples). In the training set, the 10-fold CV AUC was shown. C, ROC curve analysis of TCGA gastric and colon
cancers using the TCGA endometrial cancers as the training set. D and E, ROC curve analysis of two gastric (D) and two colorectal (E) cancer cohorts in which the PreMSIm R
package was used to predict MSI. MSI: microsatellite instability. CV: cross validation. AUC: area under the ROC curve. COAD: colon adenocarcinoma. STAD: stomach
adenocarcinoma.

Table 4
Pathways and GO associated with the 15 gene features in PreMSIm.

Gene
Symbol

Pathway GO (BP)

DDX27 NA ribosome biogenesis; rRNA processing
EPM2AIP1 NA positive regulation of glycogen biosynthetic process
HENMT1 Gene Expression; Mitotic Prophase; PIWI-interacting RNA (piRNA)

biogenesis
RNA methylation; methylation; gene silencing by RNA; piRNA metabolic
process; production of siRNA involved in RNA interference

LYG1 NA metabolic process
MLH1 Mismatch repair; Gene Expression; Meiosis; DNA Damage; Fanconi anemia

pathway; Pathways in cancer; Cell Cycle, Mitotic; DNA Double-Strand Break
Repair; Regulation of TP53 Activity; DNA damage_Role of Brca1 and Brca2 in
DNA repair; Direct p53 effectors

mismatch repair; DNA repair; cellular response to DNA damage stimulus;
cell cycle; double-strand break repair via nonhomologous end joining;
reciprocal meiotic recombination; somatic hypermutation of
immunoglobulin genes; somatic recombination of immunoglobulin gene
segments; meiotic chromosome segregation; homologous chromosome
segregation; negative regulation of mitotic recombination; meiotic cell
cycle

MSH4 Meiosis; Cell Cycle, Mitotic meiotic cell cycle; reciprocal meiotic recombination
NHLRC1 Glucose metabolism; Ubiquitin mediated proteolysis; Metabolism protein ubiquitination; autophagy; glycogen biosynthetic process;

regulation of protein phosphorylation; glycogen metabolic process;
regulation of gene expression; regulation of protein ubiquitination;
response to endoplasmic reticulum stress; cellular macromolecule
metabolic process; regulation of protein kinase activity; regulation of
protein localization to plasma membrane

NOL4L NA NA
RNLS NA oxidation–reduction process
RPL22L1 Gene Expression; Metabolism; Metabolism of proteins cytoplasmic translation
RTF2 NA mitotic DNA replication termination; regulation of DNA stability; site-

specific DNA replication termination at RTS1 barrier
SHROOM4 NA multicellular organism development; actin filament organization; actin

cytoskeleton organization
SMAP1 Endocytosis positive regulation of GTPase activity; regulation of clathrin-dependent

endocytosis
TTC30A Organelle biogenesis and maintenance cell projection organization
ZSWIM3 NA NA
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difficult to be evaluated based on the DNA data. Thus, the mRNA-
based methods are supplementary to the DNA-based methods for
detecting MSI in cancer.

Our method has several limitations in detecting MSI. First,
because the training data in PreMSIm are RNA-Seq data, the pre-
diction ability of PreMSIm may compromise for microarray data.
Although we normalize and scale all gene expression levels into
the range [0,1], microarray data have certain properties distinct
from RNA-Seq data. Indeed, PreMSIm did not achieve satisfactory
results in predicting MSI for some microarray datasets (Table 3).
We have tried to use microarray data to build another training
set for specially predicting microarray datasets. However, because
the performance did not outperform that using the RNA-seq data
as the training set, we did not build such an additional training
set. Second, because the training data in PreMSIm involve only
three cancer cohorts (COAD, STAD, and UCEC) which have a rela-
tively prevalent MSI subtype, the prediction power of PreMSIm
for other cancer types could be weaker than that for the three can-
cer cohorts. Indeed, when we used PreMSIm to predict MSI in each
of the 33 TCGA cancer cohorts, we observed unconfident results in
some cancer cohorts (Supplementary Table S2). Hence, the
improvement of the MSI prediction ability in microarray datasets
and the cancer cohorts without prevalent MSI would enhance the
utility of PreMSIm. This is the priority for our future study.

In conclusion, PreMSIm is superior to or comparable with the
established algorithms, and is a supplementary or alternative tool
for predicting MSI in cancer.
5. Availability and implementation

PreMSIm R package is publicly available in the GitHub reposi-
tory (https://github.com/WangX-Lab/PreMSIm).

https://github.com/WangX-Lab/PreMSIm
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