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Abstract

Development of antiobesity drugs is continuously challenged by high dropout rates during clinical trials. The objective was to develop a population
pharmacodynamic model that describes the temporal changes in body weight, considering disease progression, lifestyle intervention, and drug effects.
Markov modeling (MM) was applied for quantification and characterization of responder and nonresponder as key drivers of dropout rates, to
ultimately support the clinical trial simulations and the outcome in terms of trial adherence. Subjects (n = 4591) from 6 Contrave

R©
trials were

included in this analysis. An indirect-response model developed by van Wart et al was used as a starting point. Inclusion of drug effect was dose
driven using a population dose- and time-dependent pharmacodynamic (DTPD) model. Additionally, a population-pharmacokinetic parameter- and
data (PPPD)-driven model was developed using the final DTPD model structure and final parameter estimates from a previously developed population
pharmacokinetic model based on available Contrave

R©
pharmacokinetic concentrations. Last,MM was developed to predict transition rate probabilities

among responder, nonresponder, and dropout states driven by the pharmacodynamic effect resulting from the DTPD or PPPD model. Covariates
included in the models and parameters were diabetes mellitus and race. The linked DTPD-MM and PPPD-MM was able to predict transition rates
among responder, nonresponder, and dropout states well. The analysis concluded that body-weight change is an important factor influencing dropout
rates, and the MM depicted that overall a DTPD model-driven approach provides a reasonable prediction of clinical trial outcome probabilities similar
to a pharmacokinetic-driven approach.
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Obesity is widely recognized as one of the largest
and fastest growing public health concerns and is
mostly defined as subjects having a body mass index
(BMI) of over 30 kg/m2.1 More than one-third of
adults are obese in the United States, with men and
women being equally affected.1 Of particular concern
is obesity’s association with other comorbidities, pre-
mature mortality, impaired quality of life, and large
healthcare costs.2 Major comorbidities include type 2
diabetes mellitus, metabolic syndrome, hyperlipidemia,
coronary heart disease, stroke, hypertension, myocar-
dial infarction, sleep apnea, cancer, liver diseases, and
osteoarthritis,3 which contribute to over 300,000 deaths
annually in the United States.4 As a result, 21% of
annual medical spending (around $190 billion/annum)
of the United States is being funneled into obesity-
related comorbidities.5

Limited efficacy of lifestyle interventions (LSI), in-
cluding diet and exercise in weight management pro-
grams, necessitates the use of drug therapies.6 Yet only
5 drugs—orlistat (Xenical

R©
), a gastric and pancreatic

lipase inhibitor; lorcaserin (Belviq
R©
), a 5-HT2c receptor

agonist; a fixed-dose combination of phentermine and
topiramate (Qsymia

R©
), CNS acting drugs; liraglutide

(Saxenda
R©
), a glucagon-like peptide-1 receptor agonist;

and a fixed-dose combination of bupropion/naltrexone

(Contrave
R©
) have been approved by regulatory au-

thorities as antiobesity treatments over the last 15
years.6 Major reasons for the limited number of ap-
proved drugs for this indication include strict regulatory
requirements (>5% of placebo-subtracted body-weight
[BW] loss maintained over 1 year with high benefit-to-
risk ratio), limited clinical efficacy of drugs, and high
costs of clinical trials caused by high dropout rates, lack
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of follow-up, and inadequate enrollment of subjects.7

In order to circumvent these problems, better clinical
trial designs are needed to reduce the methodological
errors and to evaluate the true potential of drugs in
obesity trials.

Recently, a combination treatment (Contrave
R©
) was

approved by the US Food and Drug Administration at
doses of 32mg of naltrexone and 360mg of bupropion,
alongwith a reduced-calorie diet and increased physical
activity for obesity treatment.8 It is hypothesized that
the combination stimulates the pro-opiomelanocortin
neurons and inhibits β-endorphins in the hypothala-
mus, which leads to anorectic behavior; this is further
supplemented by effective mesolimbic reward pathway
regulations leading to BW loss.9 Clinically, the drug
combination has shown average BW loss of 5% to 8%
as compared to 1% to 5% BW loss under placebo at
56 weeks. Also, 42% to 57% of treated subjects lost
at least 5% of their BW (as compared to 17% to 43%
in the placebo arm) at 56 weeks.10,11 However, the
Contrave

R©
trials have reported 42% to 49% dropout

rates in both treatment and placebo arms, similar to
other antiobesity clinical trials. Possible reasons for
high dropout rates as a result of low clinical trial
adherence to protocol may include noncompliance,
environmental factors that lead to weight gain (eg, low
education, high costs for healthy food, less physical
activity), medical and/or genetic factors, and inade-
quate systemic drug exposures due to variation in the
pharmacokinetics (PK) of antiobesity drugs as the
distribution of a drug between fat and lean tissue may
influence its PK in obese patients. Robust population-
modeling frameworks are promising tools that can be
utilized to forecast potential dropout rates in clinical
trial simulations in order to help plan better clinical trial
designs, predict clinical trial outcomes, and potentially
save time and costs during drug development programs,
which are ultimately a result of successful adherence to
protocol during clinical trials.12–14

The aim of this analysis was to develop a modeling
and simulation framework that can be used to predict
the outcome of antiobesity clinical trials based on
clinical trial adherence to protocol by determining
clinical trial dropout rates using a linked population
pharmacodynamic (PopPD) Markov modeling (MM)
approach. Contrave

R©
trial data were leveraged in order

to develop this framework. The framework develop-
ment was 2-fold: (1) to develop a PopPD model that
can effectively describe time-course changes of BW
in obese subjects after accounting for disease progres-
sion, Life-style intervention (LSI), and drug effect and
(2) to establish a MM that can predict responder,
nonresponder, and dropout rates during clinical trial
simulations based on adherence to the interventions.
To this extent the developed PopPD model was linked

to the MM, and the transition rates among responder,
nonresponder, and dropout states were driven using
the clinical outcome predicted by the PopPD model,
in this case the change of BW over time as a result of
adherence to the trial interventions.15 Additionally, it
was of interest to compare 2 types of PopPD models
being linked to the MM, a population dose- and time-
dependent pharmacodynamic (DTPD) model in which
the drug effect is included as a dose-driven response and
a population pharmacokinetic (PK) parameter- and
data (PPPD)-driven model that predicts the drug effect
using parameter estimates derived from a previously
developed Population PK (PopPK) model based on
sparse PK sampling from only one Contrave

R©
clinical

trial. It would be beneficial to be able to utilize a
simple model framework in which PK measurements
are not needed and a dose response could be used
to assess the response and success rates, in terms of
predicting adherence to protocol, of new antiobesity
drugs during clinical drug development in the target
patient population.

Methods
Study Design
Individual subject-level data of observed BW from 6
multicenter, double-blind, placebo-controlled phase 2
and 3 Contrave

R©
trials (naltrexone/bupropion combi-

nation 8 mg/90 mg) (OT-101, NB-201, NB-301, NB-
302, NB-303, and NB-304, and referenced later as
studies 1 to 6, respectively) were available during this
analysis (Supplementary Table 1).10,11,16–18 Phase 2
studies were designed to assess the efficacy and safety
of Contrave

R©
in addition to a behavioral modification

program for subjects with uncomplicated obesity and
with a BMI ranging from 27 to 45 kg/m2. Phase 3
studies have evaluated the efficacy of the drug in obese
subjects with comorbidities (including dyslipidemia,
controlled hypertension, or both) and have reported 1-
year BW outcome data using modified intent-to-treat
analysis as well as attrition. Study 6 (NB-304) was
the only study including obese subjects with type 2
diabetes mellitus (T2DM). All subjects received LSI
with a hypocaloric diet (–500 to –1500 kcal/day) and
a recommended increased physical activity (at least
a 30-minute walk 3 times per week). Longitudinal
BW along with potential explanatory covariates and
dropout information were extracted for placebo and
treatment groups. Sparse plasma concentration vs time
data of Contrave

R©
(naltrexone and bupropion concen-

trations) were available from only 1 study, NB-303.
The final PopPK model parameter estimates from a
previously developed PopPK model using Contrave

R©

sparse plasma sample from NB-303 study were used
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Table 1. Subjects’ Baseline Characteristics for Contrave
R©
Clinical Trial for All Studies Merged and Stratified by Study

Number of Subjects [Percentage of Subjects per Study]

Demographic Variables Studies 1-6 Study 1 (OT-101) Study 2 (NB-201) Study 3 (NB-301) Study 4 (NB-302) Study 5 (NB-303) Study 6 (NB-304)

Male/female subjects 797/3794 10/81 33/224 240/1346 78/682 217/1179 219/282
Age (y) 46 [11.3] 44 [9.6] 45 [10.5] 45 [11.2] 47 [10.6] 45 [11.2] 55 [9.3]
BW (kg) 99 [15.8] 94 [12.6] 94 [13.1] 98 [15.1] 99.5 [15.3] 98 [16.4] 104 [18.3]
LBM (kg) 55.7 [11.1] 54.8 [8.9] 54.1 [10.1] 55.4 [10.4] 55.6 [9.7] 55.7 [11.2] 61.7 [13.9]
Race

White 3542 [77.2] 63 [69.2] 187 [72] 1191 [75] 532 [70.0] 1170 [83.8] 399 [79.6]
Asian 49 [1.1] 0 [0] 0 [0] 14 [0.9] 8 [1.1] 15 [1.1] 12 [2.4]
Black 848 [18.5] 27 [29.7] 69 [29.7] 306 [19.3] 180 [23.7] 186 [13.3] 80 [15.9]
Other 152 [3.3] 1 [1.1] 1 [0.4] 75 [4.7] 40 [5.3] 25 [1.8] 10 [2.0]

Obesity
Overweight 114 [2.4] 0 [0] 0 [0] 39 [2.5] 9 [1.2] 37 [2.7] 29 [5.8]
Class I 1746 [38.0] 41 [45.1] 122 [47.5] 602 [38.0] 266 [35.0] 556 [39.8] 159 [31.7]
Class II 1661 [36.2] 45 [49.9] 123 [47.9] 566 [35.7] 297 [39.1] 458 [32.8] 172 [34.3]
Class III 1070 [23.3] 5 [5.5] 12 [4.7] 379 [23.9] 188 [24.7] 345 [24.7] 141 [28.1]

Median [SD] are shown in the table. LBM indicates lean body-mass; BW, body weight; SD, standard deviation.

during model development process of the PPP&D
model (internal Takeda report dated February 9, 2010).
Subject demographics of all studies are shown in Table
1. Formodel development only 5 studies were used, and
BWdata from studyNB-301 were kept aside as external
model evaluation data set.

Data Analysis
Data were analyzed by nonlinear mixed-effect mod-
eling using Monolix 4.3.3.19 Population parameters
were estimated using the method of maximum likeli-
hood, followed by a Bayesian approach of maximum
a posteriori20,21 to estimate the individual parameters.
To maximize the likelihood, Monolix 4.3.3 uses the
stochastic approximation EM algorithm.22 R version
3.2.3 was employed for data management purposes and
graphic outputs.

Population Pharmacodynamic Model Development

Population Dose- and Time-Dependent Pharmacodynamic
Model. A PopPD model previously developed by Van
Wart et al was utilized as a starting point to predict
disease progression in terms of long-term BW loss
using the available Contrave

R©
trial data (equation (1)).23

The structural PopPD model by van Wart et al had
accounted for disease progression and LSI to describe
the time courses of BW change in overweight/obese
subjects under placebo treatment. The PopPD model
is an indirect response model with a zero-order rate
constant describing the BW gain (kin) and a first-order
rate constant for BW loss (kout). The stimulatory effect
of LSI on kout was incorporated using a Bateman-
like function and expressed as the maximum fractional
increase in kout due to LSI (DSTIM). The rationale
for using an inverse Bateman function was that the

effect of the LSI drives the initial change in BW but
dissipates over time. The effect of disease progression,
measured in BW regain, results in a linear increase in
BW over time and becomes the predominant factor
once the effect of LSI disappears. Therefore, an inverse
Bateman function was needed to capture the behavior
of the individual BW change.

The Bateman function was made flexible by includ-
ing first-order rate constants for the onset (kde) and loss
(krel) of the theoretical maximal LSI effect. To account
for the disease progression, long-term surveillance data
from NHANES (the National Health and Nutrition
Examination Survey) were utilized and have shown a
linear increase of BW, ie, 0.7 kg per year (equation
(2)).24,25 Therefore, kpro was fixed to 0.7 kg per year for
subjects without T2DM but was estimated for T2DM
subjects to evaluate the effect of diabetesmellitus on the
disease progression. The baseline BW after accounting
for disease progression (BWDP) was employed to esti-
mate kin (equation (3)).

BWDP(t) = BWbaseline+kpro×t (1)

kin=kout×BWDP(t) (2)

dBWprog,1

dt
= kin − kout × BWprog,1(t) (3)

×
(
1 + DSTIM×kde

kde−krel
× (e−krel

×t − e−kde
×t

)
)

In a second step, the drug effect (E) was incorporated
into the model on BW disease progression (BWprog,1)
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using an additional DTPD function.26 Several
drug effect models were evaluated to describe the
exposure-response relationship of naltrexone and
bupropion such as slope and Emax drug effect
relationships. The pharmacodynamic (PD) models
were tested for their inhibitory, stimulatory, additive,
or multiplicative impact on key model parameters
such as BWprog,1, kin, and kout. The PD models
incorporated both drug- and time-driven components
and were tested for both drugs exhibiting their effect
either individually or in combination on BW change.
Interindividual variabilities (IIV) were tested on
all model parameters of the final DTPD model in
exponential and additive terms using forward inclusion
(α = 0.05) and backward elimination (α = 0.001).
The final PD model that was selected among all
tested ones was an inhibitory Emax model (equation
(4)) impacting BWprog,1 of the main PopPD model
(equation (1)).

BWprog,2 = BWprog,1 − EDTPD (4)

and EDTPD is calculated as:

EDTPD = Emax × t
(t + ET50)

×
(

NAL
ED50NAL + NAL

+ BUP
ED50BUP + BUP

)

where Emax is the maximal drug effect; NAL and
BUP stand for doses of naltrexone and bupropion,
respectively; and ED50, and ET50 are the required dose
and time, respectively, needed to exhibit half of the
maximal drug response.

The final PD model was determined based on the
change in objective function value (OFV) (statistical
significance tested at 5% level, or P < .05), individual
fit plots, and goodness-of-fit (GOF) plots.

Covariate Analysis
Covariates considered for final covariate model build-
ing were diabetes mellitus, age, BMI, lean body mass
(LBM), sex, and race (Table 1). Diabetes mellitus was
found to be an important covariate and was included in
the model as a fixed covariate on all parameters. Addi-
tional covariates were tested for inclusion in addition to
diabetic status. LBMwasmissing in 40% of the subjects
and was therefore imputed when missing. Different
methods to impute LBM were evaluated: linear Boer
and Hume method (equation (5)) and nonlinear James
and Duffull method (equation (6)).27

LBMpredicted = SlopeWT × Weight (5)

+ SlopeHT × Height + Intercept

LBMpredicted = SlopeWT × Weight + Sloperatio (6)

×
(
Weight
Height

)2

+ Intercept

The data set consisted of the following races: whites,
Asians, blacks, Pacific Islanders, NativeHawaiians, Na-
tive Americans or AlaskaNatives, and others. However,
the proportion of Pacific Islanders, Native Hawaiians,
Native Americans, Alaska Natives, and others in the
data set were very low to have a meaningful impact
on the PopPD models when tested individually and
thus were lumped together into one category, listed as
“others” in the data. All covariates were screened for
a potential impact on model parameters, ie, kout, krel,
DSTIM, ED50, Emax, and T50. Covariate effects were
tested at the α = 0.05 level in case of forward inclusion
and at the α = 0.001 level during backward elimina-
tion. Diagnostic plots, change in the OFV, parameter
variability, and clinical impact were used to select final
covariates that improved the model predictions.

PopPK Parameter and Data Model. A PPPD model
was established to evaluate the impact of the PK of
the drug combination in predicting BW change over
time in comparison to theDTPDmodel.28 A previously
developed PopPK model (internal Takeda report dated
February 9, 2010), describing the concentration-vs-
time profiles of naltrexone and bupropion combination
treatment for study NB-303, and the respective final
population parameter estimates of this model were
utilized during the PPPD model development. In this
approach the final PopPK parameter estimates were
used to drive the drug effect (equation (7)) of the
PopPD model instead of using the dose (equation 4)
as implemented during the DTPD model-building pro-
cess. Themodel structure of the PopPDmodel was kept
identical in both the DTPD and PPPD models. The
IIVs were tested as exponential and additive terms on
all model parameters of the final PPPDmodel using the
same statistical criteria of forward inclusion (α = 0.05)
and backward elimination (α = 0.001) as for the DTPD
approach.

BWprog,2 = BWprog,1 − EPPPD (7)

and EPPPD is calculated as:

EP P P D = Emax × t
t + ET50

×
(

NAL
EC50NAL + NAL

+ BUP
EC50BUP + BUP

)

where Emax is the maximal drug effect; NAL and
BUP stand for the concentrations of naltrexone and
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bupropion, respectively; and EC50 and ET50 are the
required concentrations and time, respectively, needed
to exhibit half of the maximal drug response.

Markov Model Development
A MM was developed in order to allow for adher-
ence predictions during antiobesity trials, predicting
the numerical dynamics of probabilities of how many
subjects are going to be nonresponders, responders, and
dropouts throughout a clinical trial period. Probability
functions were used to predict transition rates (Tr)
among the 3 states, allowing the subjects to transition
between responders and nonresponders at any time as
well as continuing to stay within the same state. Once
dropped out, subjects remain as dropouts throughout
the study.15 Figure 1 shows a schematic of theMM, and
the model equations used are shown in equation (8).
After implementation of the MM, a drug effect was
implemented into the MM by linking the predicted PD
outcome of the developed DTPD and PPPD models
to the different Tr (ie, Tr10, Tr12, Tr01, Tr02) within
the MM. Implementation of the drug effect on the
Tr from responder to nonresponder (Tr10) was found
to be statistically significant with the greatest drop in
OFV and was thus kept in the model. The PD outcome
was the percentage BW change predicted at each time
point in each subject throughout the study period. A
cutoff value of 5% BW change from baseline, as per
the FDA recommendation for a positive antiobesity
trial outcome, was used to place the subjects into the
respective states in the MM as well as allowing them
to transition between the states or drop out.6 The IIVs
were incorporated on all transition rates of the final
MM model using exponential terms.

P (state0) = Pinit0

P (state1) = 1 − Pinit0 − Pinit2

P (state2) = Pinit2

TransitionRate (0, 1) = Tr01
TransitionRate (0, 2) = Tr02
TransitionRate (1, 0) = Tr10*EffDTPD/PPPD

TransitionRate (1, 2) = Tr12

(8)

EffDTPD = Emax

×
(

NAL
ED50NAL − NAL

+ BUP
ED50BUP + BUP

)

EffPPPD = Emax

×
(

NAL
EC50NAL − NAL

+ BUP
EC50BUP + BUP

)

where 0, 1, and 2 are categories of nonresponders,
responders, and dropouts, respectively; P (Y_1 = i)
represents initial probability of a given category for
the observation named Y; and Transition Rate (i,j)
represents transition rate from a given category i to
a category j, grouped by law of transition for each
starting category i. EffDTPD and EffPPPD are the drug
effects of the DTPD and PPPD models, where all
parameters of DTPD and PPPD equations hold the
same meaning as stated for equations (4) and (7),
respectively.

Model Evaluation

Population Pharmacodynamic Models. Both internal
and external model evaluations were performed for the
final DTPD and PPPD models. Internal model eval-
uation was performed by graphical comparison using
GOF plots as well as visual predictive checks (VPCs).
A cohort of 500 patients using VPC were simulated
using the model structure and final parameter estimates
of both developed PopPD models, DTPD and PPPD.
The median, 5th, and 95th percentiles of the simulated
data were compared with the corresponding percentiles
of the observed data for model evaluation. The VPCs
were also performed for external model evaluations of
the developed PopPD models using clinical study 3 as
external data set, which consisted of BW observations
from 1586 subjects receiving Contrave

R©
treatment in

combination with LSI treatment. The predictions were
obtained from the parameter estimates (mean and
variance) of both PopPD models based on normalized
prediction distribution error matrix and the design
of validation data sets.28,29 Additionally, both models,
DTPD and PPPD, along with their respective param-
eter estimates were utilized to simulate longitudinal
BW change over 56 weeks. The resulting predictions of
both PopPD models were evaluated with the observed
outcome in terms of change in BW during and at the
end of trial for placebo vs drug treatment and diabetic
vs nondiabetic obese subjects.

Markov Model. For the internal MM evaluation, the
proportions of subjects present in a given state (non-
responder, responder, or dropout) were estimated over
time using the DTPD-MM and the PPPD-MM and
compared with the observed trend. To this extent, the
median and 90% CI of the proportions of nonrespon-
ders, responders, and dropouts were overlaid with the
corresponding median and 90% CI of observed data
during 0 to 28 weeks and 28 to 56 weeks intervals
using box plots. For the external MM evaluation,
the model structure and population estimates of both
DTPD- and PPPD-MM models were used to simulate
time-varying clinical states (nonresponders, responders,
and dropouts) of clinical study 3, and the resulting
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Figure 1. Markov model showing transition rates among 3 possible states: nonresponder (0), responder (1), and dropout (2). These 3 states were
calculated based on a 5% body-weight change from baseline threshold using the individual predicted body weights.

predictions were overlaid with the observed nonrespon-
der, responder, and dropout rates during the late phase
of the antiobesity trial, ie, 28 to 56 weeks.

Results
Study Design
Data from 6 Contrave

R©
trials, including 4591 subjects

with a total of 21,488 observed BW measurements for
a span of 20 to 65 weeks after baseline, were analyzed.
During model development, data from 5 Contrave

R©

trials were used, and data from 1 Contrave
R©
trial (NB-

301) were kept as external model evaluation data set.
Clinical study 4, NB-304, which was comprised of
obese subjects with T2DM, constitutes 10.9% of the
total obese population. All patient demographics are
shown in Table 1. The study population consists pre-
dominantly of women (more than 80%) in theirmid-40s
of white (�77 %) origin. The subjects were categorized
into 4 obesity categories: overweight (BMI 25.0-29.9),
class-I obesity (BMI 30-34.9), class-II obesity (BMI 35-
39.9), and class-III obesity (BMI � 40).

Population Pharmacodynamic Model Development

Population Dose- and Time-Dependent Pharmacodynamic
Model. A systematic model-building strategy was ap-
plied to build structural, statistical, and covariate mod-
els using the model developed by van Wart et al as
a starting point.23 The PD response of bupropion
and naltrexone individually as well as in combination
was tested on 3 key model parameters: Kin, Kout,
and BWprog,1 of the PopPD model. For constructing
the structural DTPD model, several possibilities were
tested including additive, multiplicative, inhibitory, and
stimulatory drug effect; slope, and Emax concentration
effect; combined Emax and individual Emax for both
drugs; median time (ET50), and time at steady state;

monophasic and biphasic ET50; and, last, combined
and individual ET50 for both drugs. Based on OFV
and diagnostic plots, the best model fit was obtained
with a simple Emax dose-effect model consisting of a
combined Emax and individual ED50 for naltrexone and
bupropion (results not shown). Additionally, a dose-
and time-dependent function containing ET50 was in-
corporated into the structural Emax model to account
for time-dependent BW changes. The PD outcome of
the resulting structural DTPD model was found to
be best described when inhibiting the overall BWprog,1

(equation 4). IIV was added exponentially on all final
model parameter estimates except on kde and kpro
because no IIV was tested statistically significant on
these parameters. Residual unexplained variability in
the model was best described using an additive error
model.

Covariate Analysis
LBM values were missing in 40% of subjects and were
imputed using 2 approaches, linear (Boer and Hume
formula) and nonlinear (James and Duffull equations)
regression analysis (equations (5) and (6)),27,30–32 by
taking into account the observed individual BMI, sex,
and age information. Given that all 4 approaches
showed very similar predictions of LBM, and the
Boer formula is the one most commonly used to
predict LBM, the Boer formula was used during this
analysis for imputation of missing LBM.27 Diabetes
mellitus as a covariate was found to be statistically
significant and impacting Emax, kout, and kpro. For
instance, higher drug effect Emax, of 4.69 kg and BW
loss kout of 0.0543/week were observed for nondiabetic
subjects as compared to those of diabetic population
(Table 2). Diabetes mellitus was therefore implemented
into the model as a fixed covariate on all parameters.
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Table 2. Population Parameter Estimates for the DTPD and PPPD Models

Population Parameter Estimates [RSE%]

DTPD Model PPPD Model

Obese Nondiabetic Subjects Diabetic Subjects IIV% Obese Nondiabetic Subjects Diabetic Subjects IIV%

ED50,BUP (mg) 645 [33] 607 [6] 630a [1] 7.09 [7]
ED50, NAL (mg) 54.6 [12] 207 [6] 49.4a [1] 13.9 [7]
Emax (kg) 4.69 [3] 3.74 [6] 52.6 [13] 4.01 [1] 4.09 [1] 5.44 [9]
T50 (week−1) 9.14 [1] 12.5 [6] 10.3 [1] 8.3 [8]
kout (week−1) 0.0543 [3] 0.0381 [7] 3.8 [4] 0.117 [5] 0.0665 [9] 132 [4]
krel (week−1) 0.0344 [6] 177 [3] 0.0242 [8] 282 [3]
kde (week−1) 0.0792 [2] – 0.0793 [2] 37.6 [4]
DSTIM (%)

White and Asian 18.5 [3] 17.7 [3] 19.5 [2] 46.8 [3]
Black 10.9 [10] 14.4 [4]
Other 9.73 [32] 21.8 [11]
Baseline BW (kg) 98.4 [0] 103 [1] 15.7 [1] 98.5 [0] 103 [1] 15.8 [1]
kpro (kg/y) 0.7 [FIXED] 2.7 [11] – 0.7 [FIXED] 0.81 [2] 9.98 [12]
Additive error (kg) 1.35 [1] – 1.48 [1] –

ED50, BUP, median effective dose for buproprion; ED50, NAL,median effective dose for naltrexone; Emax, the maximal drug effect; T50, medium effective time;
Kout, first-order rate constant of bodyweight loss; krel, first-order rate constant of onset of theoretical maximal LSI effect; kde, first-order rate constant of loss
of theoretical maximal LSI effect; kpro, disease progression rate constant;DSTIM indicates maximal fractional increase in kout due to LSI;DTPD, population dose-
and time-dependent pharmacodynamic; IIV, interindividual variability; PPPD, population-pharmacokinetic parameters and data; RSE, relative standard error.
aEC50 (mg/L) values are reported here for both naltrexone and bupropion in PPPD models.

TheDTPDmodel resulted in a higher estimated disease
progression (kpro) being 2.7 kg/year for the diabetic
obese population as compared to the fixed value of
kpro 0.7 kg/year in the nondiabetic obese population.
Additional covariates were then tested for inclusion in
addition to diabetic status. Among all the other tested
covariates, race was found to have a significant impact
on DSTIM: maximal fractional increase in kout due
to LSI. During covariate model building, all 4 race
groups, that is, white, Asian, black, and others, were
tested individually as well as in different combinations
for their potential impact on various model parameters
including kin, kout, DSTIM, kde, and krel. Race had a
statistically significant impact onDSTIM,withDSTIM
varying from 18.5% for whites and Asians, 10.9% for
blacks, and 9.73% for all other races included in these
trials. This shows that the effect of LSI (hypocaloric
diet and increased physical activity) contributing to
BW loss was seen to be greatest in whites and Asians,
followed by blacks and other races. Thewhite andAsian
populations were first tested separately before being
merged into 1 group, as no difference could be estimated
for Asians compared to whites as a result of only 18
Asians being included in the trials. Further covariates
such as age and sexwere hypothesized to have an impact
on the maximal drug effect Emax and the LSI effect
krel; however, inclusion of these covariates was not
statistically significant (P > .05) and did not show any
significant improvements in model diagnostics. In the
final DTPD model, diabetes and race were thus added
as categorical covariates based on GOF diagnostics,
model stability, and precision of model parameter

estimates. Table 2 summarizes the final population
parameter estimates for the DTPD model.

Population PK Parameter and Data Model. To evaluate
the impact of a PK-driven drug effect approach on BW
change, a PPPD model was developed. The previously
developed PopPK model (internal Takeda report dated
February 9, 2010) based on PKdata from studyNB-303
(final parameter estimates are shown in Supplementary
Table 2) was linked with the PopPD structural
model developed during the DTPD model-building
step. Final PopPK model estimates were utilized to
drive the drug effect component E of the PopPD
model, as shown in equation (7). The final parameter
estimates of the PPPD and DTPD model are shown
in Table 2 to allow the direct comparison between the
concentration-driven (PPPD model) and dose-driven
(DTPD model) approaches. The estimated disease
progression (kpro) value was different in T2DM obese
patients for DTPD and PPPD models. The estimated
kpro value was fixed at 0.7 kg/week in nondiabetic obese
subjects for both DTPD and PPPD model. The DTPD
model estimated a significantly different kpro value
of 2.7 kg/week for diabetic obese subjects, whereas
the kpro estimated based on PPPD model was �0.8
kg/week for diabetic subjects, which was similar to that
used as fixed value for nondiabetic obese subjects. In
addition to kpro, differences were also observed in BW
loss parameter kout, with the PPPD model showing
a higher BW loss (kout = 0.117 week−1) compared to
the kout of 0.0543 week−1 predicted using the DTPD
model for nondiabetic obese subjects. Similar trend
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Table 3. Population Parameter Estimates for DTPD-MM and PPPD-MM Models Describing Transition Rates Among Responder, Nonresponder, and
Dropout States

Population Parameters Estimates [RSE%]

DTPD-Markov Model PPPD-Markov Model

Parameter Estimates [RSE] IIV% [RSE] Parameter Estimates [RSE] IIV% [RSE]

Tr10 (responder to nonresponder) 0.504 [50] 1210 [10] 0.000547 [3] 12 [12]
Tr01 (nonresponder to responder) 0.145 [6] 16.9 [30] 0.0775 [4] 17 [12]
Tr12 (responder to dropout) 0.506 [6] 23.4 [171] 0.647 [9] 294 [4]
Tr02 (nonresponder to dropout) 0.293 [8] 9.54 [15] 0.388 [3] 11.9 [11]
Tr00 (nonresponder to nonresponder)a –0.438 ... –0.465 ...
Tr11 (responder to responder)a –1.01 ... –0.647 ...

DTPD indicates population dose- and time-dependent pharmacodynamic; IIV, interindividual variability; PPPD, population-pharmacokinetic parameters and data;
RSE, relative standard error; Tr, transition rate.
aTr11 and Tr00 were calculated in accordance with law of transition, ie, Tr11+Tr10+Tr12 = 0, and Tr00+Tr01+Tr02 = 0, respectively.

and magnitude of difference in kout were observed
in diabetic subjects. When the IIVs of both PopPD
models were compared, differences in population
estimates were mainly observed in the IIVs of ED50

and EC50 for naltrexone and bupropion. The DTPD
model estimated higher IIVs, with 607% for bupropion
and 207% for naltrexone; whereas IIVs on EC50 in the
PPPD model were significantly lower, with 7.1% and
13.9% for bupropion and naltrexone, respectively.

Markov Model Development
All subjects were categorized into nonresponders, re-
sponders, and dropouts at each time point based on
the 5% BW change from baseline threshold using the
individual predicted BW of both DTPD and PPPD
models. The final counts of nonresponders, responders,
and dropouts predicted using the DTPD and PPPD
models at week 56 were compared with the observed
data (Figure S1). The DTPD model had slightly over-
predicted nonresponders and underpredicted respon-
ders by �11% difference from the observed data. The
PPPD model had predicted the nonresponders and
responders with only�3% difference from the observed
data (Figure S1).

After linking the predicted PDoutcome, BWchange,
derived from the developed DTPD and PPPD mod-
els to the TR10 in the MM, the model was used to
predict the proportions of nonresponders, responders,
and dropouts over time. The parameter estimates of
the DTPD-MM and PPPD-MM models are shown in
Table 3. All model parameters were well estimated with
acceptable precision. There was higher probability of
being a nonresponder predicted by the DTPD-MM
(high Tr10 and low Tr02) as compared to the predictions
of the PPPD-MM . In the PPPD-MM more subjects
were switching from nonresponder to responder rather
than nonresponder (Tr01 of 0.069 > Tr10 of 0.000547)
as compared to DTPD-MM (Tr01 of 0.145 < Tr10

of 0.504). High IIV were observed for Tr10 (1210) in
the DTPD-MM and Tr12 (294) in the PPP&D-MM.
Overall, the PPP&D-MMpredictions were closer to the
observed nonresponders, responders, and dropouts as
compared to DTPD-MM, which showed the impor-
tance of collecting drug concentrations even in a limited
number of clinical trials to inform the model building
and improve model prediction.

Model Evaluation

Population PD Models. Both developed PopPD mod-
els, DTPD and PPPD, were evaluated using internal
and external model evaluation tools. Internal model
evaluation was performed using GOF plots, individual
fit plots, and VPCs. The GOF and individual fit plots
showed an overall good fit for both PopPDmodels (Fig-
ure S2-4). Observed data were slightly better predicted
using the PPPD model over the DTPD model seen
in a closer and more symmetrical distribution of the
observed vs predicted BWs around the line of identity.
Underprediction of kout resulted in BW overprediction
for the DTPD model, which in turn translates into
prediction bias, as observed in its GOF plots. Superi-
ority of the PPPD model seen in the GOF plots was
attributed to the PK component used in this model,
hence leading to a better prediction of the true drug
effect as well as the overall IIV predictions. The VPCs
demonstrated that both models captured the observed
data well, based on the comparison of the median
and 90% CI of the observed data with the simulations
(Figure 2 A). Only the 95th percentile of the PPPD
model was slightly underpredicted by the model, which
was found to be an artifact from the diabetic obese
population (study 6) seen when stratifying the VPCs
based on diabetic vs nondiabetic obese (Figure S5).

For external model evaluation, simulations of BW
data for study 3 were performed using the final popu-
lation estimates and model structures of both PopPD
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Figure 2. A.a: Internal model evaluation of DTPD model. A.b: Internal
model evaluation of PPPD model. B.a: External model evaluation of
DTPD model. B.b: External model evaluation of PPPD model. Visual
predictive check (VPC) plots show the median, 5th, and 95th percentiles
of the observed BW (middle, lower, and upper green lines, respectively)
and the median, 5th, and 95th percentiles of the simulated BW (middle,
lower, and upper black lines, respectively) with 95%CI (red-shaded area
of simulated median and the lower and upper blue-shaded areas of
simulated 5th and 95th percentiles, respectively). BW indicates body
weight; DTPD, dose- and time-dependent pharmacodynamic; PPPD,
population-pharmacokinetic parameter and data.

models and the information of the study design of study
3. Simulations of BW change over time were overlaid
with the observed data of study 3 (Figure 2 B); where
the median and 90% CI of the observed data were
within the 90% CI of the corresponding predictions.
Both PopPD models allowed a good prediction of
the longitudinal BW change of subjects in the clinical
study 3.

Additionally, both PopPDmodels were evaluated on
their ability to predict longitudinal BW change over a
study period of 56 weeks. The final model structures
and their respective population parameter estimates
were utilized and predicted a greater BW loss for
the treatment (naltrexone/bupropion) arm compared to
that of the placebo arm (Figure 3). Overall, the diabetic
obese population was simulated to have a smaller BW
reduction in either the treatment or the placebo arm
by 2% to 3% as compared to nondiabetic obese, which
reflected the trend seen in the observed data from
the Contrave

R©
trials. Comparison between the DTPD

and PPPD models revealed that the DTPD model
underpredicted the BW change; however, both models
have shown amaximumBWreduction aroundweeks 30
to 35, which was in agreement with the observed data.

Markov Model. For internal MM evaluation,
500 data sets were simulated (Table 3) and compared to
the observed data. The proportions of nonresponders,
responders, and dropouts were evaluated for the
time periods of 0 to 28 weeks and 28 to 56 weeks
(Figure 4). The DTPD-MM model overpredicted the
nonresponders and underpredicted the responder rates
during the time frame of 28 to 56 weeks seen when the
predictions are overlaid with themedian proportions of
the respective states of the observed data (Figure 4a).
This observation was attributed to the higher predicted
Tr10 and Tr00 values as compared to the respective
transition rate of the PPPD-MM (Table 3). The
PPPD-MM predictions were closer to the observed
proportion of nonresponders and responders over 0 to
56 weeks (Figure 4b). Also, PPPD-MM predictions for
dropouts over 0 to 28 weeks were closer to the observed
data as compared to the DTPD-MM predictions.

For external MM evaluation, the population esti-
mates of both model estimates were utilized to estimate
the transition of responders/nonresponders/dropouts
over time using clinical study 3 as an external dataset
(Figure 5). Both, DTPD-MM and PPPD-MM predic-
tions of nonresponder, responder, and dropout counts
were close to the observed data during the period of 28
to 56 weeks.

Discussion
Obesity remains a critical and important unmetmedical
need with ever increasing healthcare costs.1–5 Thus,
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Figure 3. a: Typical predictions of percentage BW change over time using the DTPD model. b: Typical predictions of percentage BW change over
time using the PPPD model. Solid lines indicate Contrave R© treated arm; dashed lines represent placebo arm, blue color indicates nondiabetic obese
population,and red color diabetic obese population.BW indicates body weight;DTPD,dose- and time-dependent pharmacodynamic;PPPD,population-
pharmacokinetic parameter and data.

there is a need to improve antiobesity clinical trial
efficiency in terms of adherence to a clinical trial.Math-
ematical modeling has become a viable tool to predict a
treatment response during drug development and thus
the efficacy rate of a new drug product during clinical
trials.33 During this analysis, a quantitative modeling
frameworkwas developed that can be utilized to predict
the outcome in terms of efficacy and adherence to a
new antiobesity drug product during a clinical trial
using a MM approach. A previously developed PopPD
model by Van Wart et al was used as a starting point
that accounted for LSI and disease progression to
describe the time course of longitudinal BW change in
antiobesity trials.23 By use of the data from 6Contrave

R©

clinical trials, the drug effect was implemented into
the Van Wart model for the combination therapy
of naltrexone/bupropion to allow for predictions of
longitudinal BW change under drug treatment besides
placebo and LSI treatment during antiobesity clinical
trials.23

To this extent, 2 different PopPDmodels were devel-
oped in which the drug effect was either a dose-driven
DTPD model or a concentration-driven PPPD model.
The DTPD model comparatively underestimated the
LSI effect, as a result of lower DSTIM values and
a higher krel value (Table 2). The underprediction of
weight loss (kout) as a result of the DTPD model leads
to slight overpredictions of the nonresponder rate and
underpredictions of the responder rate by the DTPD-
MM compared to the PPPD-MM. Another important
observation was the difference in parameter estimation
of kpro between diabetic and nondiabetic obese subjects.
It must be mentioned that kpro was fixed to 0.7 kg/week
for nondiabetic subjects in both PopPD models, and

estimation was only done for diabetic obese subjects in
both PopPDmodels. The reason for fixing kpro was that
the value of this parameter was adequately described in
the literature for nondiabetic obese subjects, and trying
to estimate this parameter led to identifiability issues of
themodel. In addition, fixing the parameter kpro made it
possible to stabilize the model, adequately fit the obser-
vations, and it ensured parameter identifiability of all
model parameters. The DTPD model was further able
to distinguish between diabetic and nondiabetic obese
subjects, as suggested by significantly different values
predicted for kpro. However, population estimates of
kpro predicted by the PPPDmodel were similar for both
diabetic and nondiabetic obese subjects. Because the
final PopPK parameter estimates used in the PPPD
approach were mainly derived from study 5, which in-
cluded only nondiabetic obese subjects, we hypothesize
that the final PPPD model may not be able to capture
the difference in disease progression between diabetic
and nondiabetic obese subjects. This observation may
suggest that diabetes mellitus does play a role in the PK
of the drugs; however, the exact reason is uncertain.34

The DTPD model used the drug response of diabetic
and nondiabetic obese subjects to predict the disease
progression and drug effect. Thus, this may account
for the ability to predict a difference between diabetic
and nondiabetic obese subjects. For instance, higher
predicted kpro values (ie, 2.7 kg/week) for diabetic
subjects using the DTPD model were observed as
compared to the nondiabetic population (0.7 kg/week),
which indicated higher BW gain in diabetic subjects.
One limitation of the analysis was the narrow range
of doses used based on the included clinical Contrave

R©

trials, which resulted in higher ED50 and EC50 final



250 The Journal of Clinical Pharmacology / Vol 58 No 2 2018

Figure 4. a: Internal model evaluation of DTPD-MM. b: Internal model evaluation of PPPD-MM. Each plot shows the median proportions of simulated
subjects (middle black line of box plot) and observed (dotted blue line) in each state along with the 5th and 95th simulated percentiles (top and lower
edge of box plot).Nonresponders, responders, and dropout states are represented in the left,middle, and right side plots, respectively.DTPD indicates
dose- and time-dependent pharmacodynamic; MM,Markov model; PPPD, population-pharmacokinetic parameter and data.

parameter estimates as expected for the DTPD and
PPPD model, respectively. Further, high IIVs in ED50

were observed for both naltrexone and bupropion when
the DTPD approach was used, whereas for the PPPD
model, the PK-driven response might have contributed
to the lower IIVs in EC50 for both drugs. The high
IIVs are also assumed to be a result of the narrow
dose range tested as well as that drug-specific pa-
rameters are driven with a dose response using the
DTPDmodel rather thanwith a PK response. Sufficient
sensitivity analysis using log-likelihood profiling was
performed, and the high IIV did not seem to influence
the population mean parameter estimates. This can be
attributed to the limitation of the data at hand render-
ing full characterization of dose or exposure response
difficult.

For further understanding of the model and its
estimates, longitudinal BW change over time was simu-
lated using the final model structures and the respective
final population-parameter estimates of both DTPD
and PPPD models (Figure 3). As discussed before,

the DTPD model underpredicted the BW loss as a
result of lower predicted DSTIM values and a higher
predicted value of krel (Table 2). Both models indicated
a maximum BW reduction in diabetic and nondiabetic
obese subjects around 30 to 35 weeks after treatment
start, along with the superiority of the treatment arm
over the placebo arm. Comparison of the predictions
between the DTPD and the PPPDmodels revealed that
for the diabetic obese population, the DTPD model
forecast the observed trend better and was able to
distinguish between nondiabetic population due to the
difference in Emax and kpro values (Table 2). However,
lower values for kpro for the diabetic obese population
for the PPPDmodel stabilizes the effect of kout after 35
weeks and thus results in overprediction of BW loss at
56 weeks as compared to observed data.

The aim of this analysis was to understand the
pattern of dropouts and factors leading to high dropout
rates in antiobesity clinical trials. Multiple statistical
strategies have been reported in literature for mod-
eling dropout data including Markov chain models,
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Figure 5. a: External model evaluation of DTPD-MM during weeks 28-
56. b: External model evaluation of PPPD-MM during weeks 28-56. Each
plot shows the median proportions of subject simulated (middle black
line of box plot) and observed (dotted blue line) in each state along
with the 5th and 95th simulated percentiles (top and lower edge of box
plot). Nonresponders, responders, and dropout states are respectively
represented in the left, middle, and right side plots, respectively. DTPD
indicates dose- and time-dependent pharmacodynamic; MM, Markov
model; PPPD, population-pharmacokinetic parameter and data.

Kaplan-Meier estimation, and Cox proportional haz-
ard models.35 In the present study MM was used
because of its superiority in terms of multiple as
well as recurrent outcomes, accommodating censored
data, competing risks (informative censoring), frailty,
and nonconstant survival probabilities.36 The present
analysis has employed BW change, being the predicted
clinical outcome of both PopPD models, to drive
the transitions among nonresponder, responder, and
dropout states of the MM based on the subject’s
adherence to the trial interventions of the clinical
trial protocol.15 Because the observed “categorical” re-
sponse was derived from a threshold of 5% BW change,
and BW change is itself a slow process, transitions be-
tween different states (ie, nonresponder, responder, and
dropout) over a small time scale were not sufficiently
described. Therefore, proportions of nonresponders,
responders, and dropouts were evaluated over periods
of 0 to 28 weeks and 28 to 56 weeks (Figure 4) rather

than on a daily or weekly basis. In addition, measuring
BW at times such as baseline, midstudy, and end of
study is common in a phase 3 trial because the primary
outcome is usually the BW change from baseline at 6
months (28 weeks) and 1 year (56 weeks).

Comparing the results of both PopPD-MM mod-
els indicated that the DTPD-MM predicted a higher
probability of staying a nonresponder as compared to
the PPPD-MM (Table 3). The trend supporting supe-
riority of drug treatment over placebo was reflected
in the responder-to-nonresponder transition, where
more subjects were switching to become responders
rather than nonresponders as predicted by the PPPD-
MM compared to DTPD-MM. Therefore, PPPD-MM
showed higher responder numbers as compared to
nonresponders (Figure S1). Higher IIVs were observed
for Tr10 in DTPD-MM as compared to PPPD-MM
because the dose-driven approach was used in DTPD-
MM as compared to PK-driven approach of PPPD-
MM (Table 3).

The internal model evaluations of both PopPD-
MM models showed that both models were able to
adequately capture the transition rates among nonre-
sponders, responders, and dropouts from 0 to 28 weeks
and from 28 to 56 weeks (Figure 4). High dropout
rates observed during start of the trial (0-28 weeks) are
mainly the result of subject noncompliance resulting
in nonadherence to clinical trials and dropping out
from the study. The drug effect and related trial out-
comes are analyzed during late phases of antiobesity
trials. Therefore, the external model evaluation evalu-
ated the performance of both PopPD-MM during 28
to 56 weeks, which revealed that both models were
able to capture the transitions among nonresponders,
responders, and dropouts during the late phase of
the clinical antiobesity trials (weeks 28-56) adequately
well. Additionally, the present study confirms that the
DTPD model, which has a simpler model framework,
can be used to assess the response and success of
new antiobesity drugs during early drug development,
although increasing the model complexity by adding
PK information, as shown for the PPPD model, does
not add much more value.

This analysis based on Contrave
R©
clinical trial data

is limited by the fact that the study population con-
sists of mainly middle-aged white women (around
80% overall). This is a common limitation in an-
tiobesity phase 3 studies, as women are more likely
to seek antiobesity treatment than men.24 Another
limitation of the MM was its inability to capture
variability of observed data over a small timeframe.
The reason for that trend is that the MM was
predicting the transition over the entire 56 weeks
assuming 5% BW change (a slow phenomenon) as the
responder/nonresponder criterion. Decreasing the 5%
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BW threshold to 1% to 2% might be able to “correct”
the transition probabilities in order to capture the
variability of observed data over small unit of time and
improve the predictability of the Markov models. The
hypothesis is yet to be tested in future studies.

Conclusion
Both DTPD and PPPD models described the longitu-
dinal BW loss and transitions among nonresponder,
responder, and dropout states during the studied an-
tiobesity trials adequately well. Incorporation of PK
information to drive the drug’s PD effect improved the
precision of the model parameter estimates for the drug
effect. Even though slight improvement has been seen
with the PPPD approach, a DTPD approach might still
be considered as an alternative approach during drug
development where PK data are not available from all
clinical trials. Therefore, the present analysis proposed a
DTPD-MMas an alternative modeling framework that
might be used for informing clinical drug development
to predict the clinical outcomes and dropout rates of
future antiobesity trials. Hence, it can be used as an
armamentarium of modeling techniques to implement
model-informed drug development providing quantita-
tive insight into clinical trial protocol adherence and
its impact on clinical response. The developed PopPD-
MM modeling framework can further be utilized and
applied to predict the outcome and responder rates
of clinical trials in a variety of drug development
programs in addition to antiobesity trials.
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