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Non-muscle-invasive bladder cancer (NMIBC) accounts for more than 70% of urothelial
cancer. More than half of NMIBC patients experience recurrence, progression, or
metastasis, which essentially reduces life quality and survival time. Identifying the high-
risk patients prone to progression remains the primary concern of risk management of
NMIBC. In this study, we included 1370 NMIBC transcripts data from nine public datasets,
identified nine tumor-infiltrating marker cells highly related to the survival of NMIBC,
quantified the cells’ proportion by self-defined differentially expressed signature genes,
and established a robust immuno-prognostic model dividing NMIBC patients into low-risk
versus high-risk progression groups. Our model implies that the loss of crosstalk between
tumor cells and adjacent normal epithelium, along with enriched cell proliferation signals,
may facilitate tumor progression. Thus, evaluating tumor progression should consider
various components in the tumor immunemicroenvironment instead of the single marker in
a single dimension. Moreover, we also appeal to the necessity of using appropriate meta-
analysis methods to integrate the evidence from multiple sources in the feature selection
step from large-scale heterogeneous omics data such as our study.
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INTRODUCTION

Bladder cancer contributed to 573,278 new cases and 212,536
deaths worldwide (Sung et al., 2021) in 2020. It is one of the
cancers with themost longitudinal costs and consumed resources.
Approximately 70–75% of newly diagnosed primary bladder
cancers are non-muscle-invasive bladder cancer (NMIBC)
(Lenis et al., 2020; Ottley et al., 2020). Up to 21–53% of them
eventually progress to life-threatening muscle-invasive bladder
cancer (MIBC) (Cookson et al., 1997; van den Bosch and Alfred
Witjes, 2011), depending on the stage and grade. Identifying the
NMIBC patients with a high progression potential at the early
treatment stage remains the primary object of bladder cancer
clinical practice.

Several risk classification frameworks have been suggested and
applied in NMIBC risk management. European Association of
Urology (EAU) prognostic factor risk groups updated the EAU
NMIBC Guidelines Panel in 2021 by dividing NMIBC patients
into four risk groups: low-, intermediate-, high-, and a new, very
high-risk group, with the probability of progression at 5-year of
<1%, 3.6–4.9%, 9.6–11%, and >40% (Sylvester et al., 2021).
Clinicopathological features employed in the panel included:
tumor stage, the World Health Organization (WHO) 1973 or
2004/2016 grade, concomitant carcinoma in situ (CIS or Tis),
number of tumors, tumor size, and age. American Urological
Association (AUA) and Society of Urologic Oncology (SUO) also
amended the AUA/SUO Joint Guideline in 2020 by classifying
NMIBC patients into low-, intermediate-, and high-risk groups
(Chang et al., 2016; Chang et al., 2020). Apart from the clinical
features used in the EAU Panel, AUA risk stratification also took
variant histology, preceding recurrent disease, Bacillus Calmette-
Guerin (BCG) treatment failure, and involvement of prostatic
urethral into consideration. Although such frameworks
essentially help the risk management of NMIBC patients and
are readily used in bedside patient care, a more precise solution is
always in need.

To fulfill the need, molecular subtyping and gene expression
modeling based on the omics analysis have become mainstream
in clinical decision support scenarios like diagnosis, treatment
response prediction, and prognostic stratification. The UROMOL
project, a European multicenter prospective study of NMIBC
spanning from 2008 to date, identified high-risk class 2a tumors
at the transcriptomic level and high-risk class GC3 tumors at the
genomic level (Lindskrog et al., 2021). They also revealed that
higher immune cell infiltration strongly correlated with lower
recurrence rates. However, the association between immune cell
infiltration and cancer progression remained unknown. Since
there were too few progression events for evaluating its effect on
progression-free survival (PFS), Zheng and colleagues developed
an immune prognostic signature (IPS) based on 14 overall
survival (OS) associated immune genes. Then they proved that
high-risk patients assessed by the IPS score had worse OS than
those with low-risk scores in validation datasets (Zheng et al.,
2020). Ottley et al. studied the correlations between 11 antibodies
relating to molecular subtypes or epithelial-to-mesenchymal
transition (EMT) and prognosis in high-risk non-muscle-
invasive (HGT1) bladder cancer. They found that both

stromal tumor-infiltrating lymphocyte (sTIL) levels in
noninvasive papillary urothelial carcinoma areas and increased
expression of the luminal markers FOXA1 and SCUBE2 are
significantly associated with better disease-free survival (DFS),
but no EMT markers showed any trend. They suggested that
molecular subtype markers, rather than EMT markers, might be
preferable to study biomarkers of HGT1 urothelial carcinoma
(Ottley et al., 2020). Rouanne et al. focused on stromal
lymphocyte infiltration by evaluating the percentage of stromal
area infiltrated by mononuclear inflammatory cells over the total
intratumoral stromal area (Rouanne et al., 2019). Similarly, a high
density of stromal TILs was associated with the tumor invasion
depth in pT1 NMIBC, implying tumor aggressiveness was
associated with an increased adaptive immune response, but
no association between the level of TILs and survival outcome
was observed. A clear clue has shown that the activated tumor
immune microenvironment (TIME) could prevent NMIBC
tumors from progressing. However, additional integration and
refinement of these findings are required to provide a robust
immuno-prognostic model for predicting progression in NMIBC
patients.

In this study, we reported an integrated analysis using a total of
1370 transcriptome data of NMIBC patients from nine public
datasets. Candidate tumor-infiltrating immune cells relating to
the well-established prognostic risk factors and survival were
filtered by a non-weighted voting system of six deconvolution
methods and the survival analysis. Differentially expressed genes
(DEGs) representing the candidate immune cells were identified.We
used the selected DEGs as predefined signature genes in the single-
sample gene set enrichment analysis (ssGSEA) to achieve unbiased
quantification of the tumor-infiltrating immune cells. Finally, we
developed a robust immune-prognosticmodel based on the immune
cell matrix for evaluating the progression of NMIBC patients.

MATERIALS AND METHODS

Transcriptomic Profiles Analyzed
We searched for public datasets using combined keywords of
“NMIBC”, “expression profile”, and “human” through GEO
(Barrett et al., 2013), ArrayExpress (Athar et al., 2019), and
PubMed® databases. Exclusion criteria of ineligible datasets were
as follows: 1) datasets lacking cancer grade or TNM stagemetadata;
2) datasets with only expression profiles of muscle-invasive bladder
cancer (MIBC) samples; 3) datasets providing only processed data
with negative expression values. Then we de-duplicated the same
samples collected from multiple sources. Notably, our study
allowed for the inclusion of datasets sequenced by RNA-Seq
and microarray platforms. We also allowed sampling of tumors
from both primary and recurrent lesions.

Deconvolution of Tumor-Infiltrating
Immune Cells
We employed six in silico deconvolution methods to estimate cell
composition in 1370 human transcriptome data. The xCell (Aran
et al., 2017) performed an enrichment analysis of 64 immune and
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stromal cell types, illustrating whether a particular type of cell was
present. The immunedeconv (Sturm et al., 2019), an integrated
deconvolution tool, implemented the other four cell-type
quantification algorithms, including quanTIseq (Finotello
et al., 2019), TIMER (Li et al., 2016), MCPCounter (Becht
et al., 2016), and EPIC (Racle et al., 2017). Moreover,
ESTIMATE (Yoshihara et al., 2013) was used to estimate
combined immune, stromal, and ESTIMATE scores without
giving any single cell-type proportion. In summary, we
assessed 64 tumor-infiltrating immune cell scores and six
immune infiltration biomarker scores for each processed
sample. Names of the cells and biomarkers with their
corresponding alias in the six deconvolution methods are
provided in Supplementary Table S3.

Correlations Between Clinicopathological
Features and Immune Cells
To avoid methodological bias, we adopted an unweighted voting
system to discover tumor-infiltrating immune cells significantly
related to the well-established prognostic risk factors of NMIBC
patients. In datasets providing age, sex, stage, grade, tumor size,
European Organisation for Research and Treatment of Cancer
(EORTC) risk score, and CIS in disease course status data, we
compared the distribution of 64 tumor-infiltrating cell
deconvolution scores across different levels of the risk factors.
Student’s t-test and box plots were performed by the “ggplot2”
(Wickham, 2016) package of R language (R Core Team, 2021). A
cell type in a specific dataset deconvoluted by a particular
algorithm with a false discovery rate (FDR) adjusted p-value of
student’s t-test in more than two levels less than 0.05 was counted
as one vote for the cell. All votes were categorized into 64 cell
types to reveal the tumor immune microenvironment that would
predict survival (Supplementary Table S4).

Identification of Differentially Expressed
Genes of Candidate Immune Cells
The “limma” (Ritchie et al., 2015) package of R language (R Core
Team, 2021) was used to identify differentially expressed genes
(DEGs) of each candidate immune cell type. Log2-transformed
fold changes (log2FC), p-values, and FDR adjusted p-values of
every “source dataset—deconvolution method—immune
cell—gene name” sets are provided in Supplementary Table
S5. Only genes with absolute log2FCs larger than one and
FDR p-values less than 0.05 were defined as DEGs for
corresponding cell types. Furthermore, we defined candidate “
cell-gene” combinations by the wFisher (Yoon et al., 2021)
p-value in all evaluable sets, along with the number of datasets
in which the combination was evaluable (Supplementary Table
S6). The gene with a mean absolute log2FC larger than 0.2 for NK
cells and 0.3 for other cells, a wFisher combined p-value less than
1.151e-6 (0.05/number of genes 43,440), and identified as
significant DEGs in more than three databases were defined as
representative gene of the immune cell. The “metapro” (Yoon
et al., 2021) package in R (R Core Team, 2021) was used to
calculate the combined wFisher p values.

Identification of Immune-Cell-Specific
DEGs Related to Survival
Faced with dozens to hundreds of DEGs representing one immune
cell type, we further narrowed the list by conducting survival analyses
in the Kaplan-Meier curve and the forest plot to remove genes that
contribute less to survival risk. Divided by the median of candidate
genes’ expression, we compared the PFS of E-MTAB-4321, DFS of
GSE32894, and OS of GSE13507 in low expressed versus high
expressed groups (results provided in Supplementary Table S7).
The Kaplan-Meier curve was fitted by the “survfit” function and
visualized by the “ggsurvplot” function. The forest plot was fitted by
the “coxph” function and visualized by the “ggforest” function. DEGs
with log-rank p-values of both analyses less than 0.05 and hazard
ratios (HRs) of Cox’s proportional hazards models larger than 2.5 or
less than 0.5 were defined as the final biomarker genes of the
candidate immune cells. All survival analyses were implemented
by the “survival” package (Therneau and Grambsch, 2000; Therneau,
2021) and visualized by the “ggplot2” (Wickham, 2016, 2) package in
R (R Core Team, 2021). The “ComplexHeatmap” (Gu et al., 2016)
package in R (R Core Team, 2021) was used to generate expression
heatmaps of the final gene list.

Gene Ontology and Pathway Enrichment of
Candidate DEGs
We conducted Gene Ontology (GO) (Ashburner et al., 2000;
Gene Ontology Consortium, 2021) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa et al., 2021) pathway
enrichment analyses of the selected immune-cell-specific DEGs
by the “clusterProfiler” (Yu et al., 2012; Wu et al., 2021) package
in R (R Core Team, 2021).

Calculation of ssGSEA and Z-Score Based
Cell Enrichment Scores
Inspired by previous studies (Barbie et al., 2009; Motzer et al., 2020),
we employed two methods to evaluate the nine candidate immune
cells using gene lists generated by previous steps. The ssGSEA
analysis (Subramanian et al., 2005) was performed on the logged
expressionmatrix by the “GSVA” (Hänzelmann et al., 2013) package
in R (R Core Team, 2021), and z-score statistics were performed on
the non-logged expression matrix by in-house scripts.

Correlations Between Tumor-Infiltrating
Immune Cell Score and Survival
Patients in each dataset were divided by the median of enriched
immune cell scores into high and low immune infiltrated groups.
Survival analyses and log-rank tests of PFS, DFS, and OS in high
versus low immune cell infiltrated groups were conducted by the
“survfit” function of the “survival” (Therneau and Grambsch,
2000; Therneau, 2021) package. Kaplan-Meier curves were
visualized by the “ggsurvplot” function of the “ggplot2”
(Wickham, 2016, 2) package in R (R Core Team, 2021). p
values of both analyses and hazard ratios of high infiltrated
groups are provided in Supplementary Table S8.
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Establishment of the Immuno-Prognostic
Model
Using 454 samples from E-MTAB-4321 with evaluable PFS
records, we randomly re-sampled 5000 times to build training
and test sets in a 1:1 ratio. In each sampling scenario, we
established a ridge regression model with an estimated
enrichment score matrix of the nine tumor-infiltrating
immune cells to predict the risk of progression. In each
modeling process, tenfold cross-validation was used to select
the optimal fitted model. The prediction performance of the
models was evaluated by areas under curves (AUCs) of receiver
operating characteristic curves (ROCs) in training and test sets. In
R language (R Core Team, 2021), the “glmnet” (Friedman et al.,
2010) package was used to build the models, and the “pROC”
(Robin et al., 2011) package was used to visualize the results.

Statistical Analysis
p-Values less than 0.05 were considered significant in this study
unless otherwise specified.

RESULTS

Summary of Datasets and Basic Workflow
The study design and workflow to develop our model are
illustrated in Figure 1. After keyword searching and manual
refinement, we brought nine datasets into this study, including
1370 human transcriptome profiles spanning normal bladder
tissues, Ta, T1, and CIS urothelial cancers. Metadata of all the
datasets and clinicopathological information of all the samples
are provided in Table 1; Supplementary Tables S1,S2.

With the 1370 transcriptomic profiles, we initially screened
nine candidate immune cells associated with the well-established
NMIBC prognostic risk factors and then identified the
differentially expressed genes (DEGs) representing these cells
by significance and differentiation. Using the DEGs’
expression matrix, we estimated the proportions of tumor
infiltrated immune cells by the gene set enrichment analysis.
Using the estimated immune cell score matrix, we established the
immune-prognostic model by repeated random sampling, ridge
regression modeling, and optimal cutoff confirming.

FIGURE 1 | Overview of study design.
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Tumor-Infiltrating Immune Cells Related to
Key NMIBC Prognostic Factors
Several risk factors have been proven to be significantly related
to the prognosis of NMIBC patients (Liu et al., 2015; Douglas
et al., 2021). Tumor size greater than 3 cm, multifocal lesions,
concurrent CIS, more advanced cancer stage, higher histological
grade, higher EORTC risk score, and higher frequency of prior
recurrences were known risks implying higher rates of
recurrence or progression. We first conducted a comparative
analysis between these risk factors and 64 deconvoluted tumor-
infiltrating cell types in each dataset, then employed an
unweighted voting schema to identify top cell types that
might contribute to NMIBC prognosis. As shown in
Figure 2A, the top voted and most significant tumor-
infiltrating cells included cancer-associated fibroblasts
(CAFs), B cells, CD4+ T cells, CD8+ T cells, natural killer
(NK) cells, dendritic cells (DCs), macrophages, neutrophils,
and endothelial cells. Since xCell is typically used to
determine the presence or absence of a specific cell type,
rather than to calculate the cell proportion, we only used the
sum of votes from the other five methods to filter the most
relevant cell types (Supplementary Table S4). CD4+ T cells
ranked first, being voted in five, three, and six of nine eligible
datasets by TIMER (Li et al., 2016), quanTIseq (Finotello et al.,
2019), and EPIC (Racle et al., 2017), respectively. Followed by
CD4+ T cells, B cells, and CAFs.

Biomarker Genes Representing the
Candidate Tumor-Infiltrating Immune Cells
After targeting candidate tumor-infiltrating cells, we wished to
ascertain a set of biomarker genes that were representative of the
cells and that were also strongly associated with the survival of
NMIBC patients. In identifying differentially expressed genes
(DEGs) of the nine candidate immune cells, a total of
2757 “cell-DEG” pairs were recognized as repetitive patterns
and included in the following analysis (Supplementary Table
S6). We then analyzed all 972 nonredundant genes in the
2757 “cell-DEG” pairs with forest plot and Kaplan-Meier
(KM) curve survival analyses against PFS in E-MTAB-4321,
DFS in GSE32894, and OS in GSE13507 (Figure 2B). After
this, we narrowed the list to 149 unique genes as protective or
risk factors of PFS or OS in NMIBC patients. These genes with the
cells they represented comprised 368 unique “cell-DEG” pairs
(Table 2), of which 254 pairs were associated with PFS and 114
pairs with OS (Supplementary Table S7). DCs and CAFs were
the top two cell types, with more than sixty percent (92/149, 91/
149) of the biomarker genes associated with them (Table 2).

The expression of 110 PFS-related and 41 OS-related
biomarker DEGs was visualized in Figures 3A,B. All 99
biomarker DEGs of nine candidate tumor-infiltrating immune
cells were subjected to KEGG pathway, GO-biological process

TABLE 1 | Demographic and disease characteristics of the 1,370 samples
included in this study. Data are median (total number of assessable samples;
range; IQR) or n (%). IQR: interquartile range. PFS: progression-free survival. DFS:
disease-free survival. OS: overall survival.

Characteristics Value

Age (years) 69 (862; 20–96; 61–76.5)
Age category (years) —

20–60 198 (14%)
61–80 542 (40%)
> =80 122 (9%)
Not available 508 (37%)

Sex —

Male 797 (58%)
Female 219 (16%)
Not available 354 (26%)

Tumor Stage —

T0 91 (6%)
Ta 696 (51%)
Ta-T1 24 (2%)
T1 547 (40%)
CIS/Tis 12 (1%)

WHO 1973 Grade —

G1 58 (4%)
G2 199 (15%)
G3 285 (21%)
G0/Gx/Not available 828 (60%)

WHO 2004–2016 Grade —

Low 427 (31%)
High 289 (21%)
Not available 654 (48%)

CIS in the disease course —

CIS- 472 (34%)
CIS+ 103 (8%)
Not available 795 (58%)

Tumor size —

<=3 cm 311 (23%)
>3 cm 83 (6%)
Not available 976 (71%)

EORTC risk score —

0 286 (21%)
1 174 (13%)
Not available 910 (66%)

Recurrence —

FALSE 127 (9%)
TRUE 57 (4%)
Not available 1186 (87%)

Progression beyond the T2 stage —

FALSE 711 (52%)
TRUE 66 (5%)
Not available 593 (43%)

PFS (months) 33 (460; 0–74.9; 24–42.8)
Cancer-specific survival —

FALSE 271 (20%)
TRUE 6 (~0%)
Not available 1093 (80%)

DFS (months) 37.9 (173; 0.2–104.4; 21.2–60.2)
Vital status —

FALSE 144 (11%)
TRUE 42 (3%)
Not available 1184 (86%)

OS (months) 55.3 (104; 2.1–137; 26.4–80.3)
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(BP), GO-cellular component (CC), and GO-molecular function
(MF) terms enrichment analyses (Figures 3C–F). As expected, we
found strong evidence pointing to the crosstalk between tumor
cells and adjacent normal epithelium, represented by focal
adhesion and extracellular matrix (ECM)-receptor interaction.
Aberration of these pathways would directly affect the steadiness
of tumor cells and thereby cause progression. We also found
enriched cell proliferation signals like protein digestion and
absorption and the PI3K-Akt signaling pathway. They acted
either as energy suppliers or as signal transduction factors to
trigger or facilitate the cascade of invasive tumor progression. The

chemokine signaling pathway, on the other hand, would help to
recruit leukocytes to the site of the inflammation area.

Enrichment of Tumor-Infiltrating Immune
Cell Scores
Since the datasets included in our study differed in their
transcriptome profiling technologies, we cautiously practiced
the enrichment analyses with the logarithmic matrix of
original expression data. 43,440 transcripts in 1,370 samples
with and without log2-transformation were used to proceed

FIGURE 2 | Identification of progression-risk-related tumor-infiltrating cells and differentially expressed genes representing them. (A) The non-weighted voting
results of Student’s t-tests between tumor-infiltrating cells and well-established clinical progression risk factors. Tumor-infiltrating cell scores evaluated by six immune
deconvolution methods were used. Only significant results were counted as valid votes shown in the figure. (B) The network of differentially expressed genes (DEGs) with
their representing tumor-infiltrating cells. The blue circles refer to cell types. The pink circles refer to selected DEGs. The size of blue circles indicates the number of
DEGs. The thickness of lines indicates the negative log2 of wFisher combined p-value of differential expression testing. Only nodes with more than six adjacent neighbors
are shown.
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TABLE 2 | List of biomarker genes representing the nine tumor-infiltrating candidate immune cells.

Bcells DC Endothelial Fibroblasts Macrophages Neutrophils NK cells T cells_CD4+ T cells_CD8+

CD74 ADTRP ADCY4 AKAP12 AP1S2 CD74 ANXA10 CASP1 CASP1
COL3A1 AP1S2 AP1S2 ANXA10 BTBD16 IGKV1-17 BTBD16 CD74 CD74
CXCL13 APOL3 BGN AP1S2 C12orf75 MMP7 CLCA4 CFH CXCL13
DES ATF3 CD74 BGN CAT RARRES1 CRTAC1 COL1A1 DES
GIMAP7 ATP8B4 CLEC14A BMP5 CD74 S100A8 ENTPD3 COL3A1 ENPP2
HCLS1 BMP5 CLIC4 BTBD16 CFH FABP4 GIMAP7 FCER1A
IGHV1-69 CASP1 CLIP3 CCL11 CLIC4 FGFR3 GMFG GDF15
IGKV1-17 CCL18 COL18A1 CD74 CNN3 RAB4A IGKV1-17 GIMAP7
MMP7 CCL8 COL18A1 CLIC4 COL1A1 TMPRSS4 MMP7 IGKV1-17
POSTN CD3G COL1A1 CLIP3 COL3A1 TP63 MXRA5 SELENOP
RAC2 CD4 COL3A1 COL18A1 COL5A2 POSTN SPINK1
RARRES1 CD74 COL4A1 COL18A1 CPQ RAC2 SYNM
S100A8 CFH COL4A2 COL1A1 CTSE S100A8 TCF21
SELENOP CLIC4 COL5A2 COL3A1 DEGS1 TRIM22 TRIM22
SERPINE2 CLIP3 COL8A1 COL4A1 DES VCAN
TRIM22 COL1A1 CRTAC1 COL4A2 DKK3 XAF1

COL3A1 CYGB COL5A2 DOCK11
COL5A2 DEGS1 COL8A1 DSE
COL8A1 DES CRTAC1 ELOVL5
CSF2RB DKK3 CTSE ENPP2
CSRP1 EDNRA CXCL13 FBLN1
CXCL11 ENPP2 CYGB FCER1A
CXCL13 FBLN1 DEGS1 FERMT2
DEGS1 FBN1 DES FILIP1L
DES FERMT2 DKK3 FSTL1
DKK3 FILIP1L DOCK11 GIMAP7
DOCK11 FN1 DSE GLT8D2
DSE FSTL1 EDNRA HCLS1
EDNRA GEM EFHD1 LITAF
ENPP2 GIMAP7 FABP6 LRIG1
FBN1 GLT8D2 FAM174B MMD
FCER1A GUCY1A1 FAM3B MMP7
FERMT2 HCLS1 FBLN1 MXRA5
FGD2 ITGA1 FBN1 NUPR1
FGR LAMA4 FCER1A PLSCR4
FILIP1L LRRC32 FERMT2 PODN
FN1 MFNG FILIP1L POSTN
FPR1 NEURL1B FN1 PRDX3
FSTL1 NID1 FSTL1 RARRES1
GEM NID2 GEM RGS5
GIMAP7 NREP GIMAP7 RPL17
GLT8D2 OLFML1 GLT8D2 S1PR3
GMFG OLFML2A GPX8 SELENOP
GPX8 PCDH17 GUCY1A1 SERPINE2
GUCY1A1 PDGFRB HCLS1 SGCE
HCLS1 PLAC9 HOXB6 SH3BGRL
HLA-DQB2 PODN IGFBP6 SLC9A9
HLA-E POSTN ITGA1 STEAP1
IGFBP6 PRRX1 LAMA4 SULF1
IGHV1-69 RBPMS2 LRIG1 SYNM
IGKV1-17 RGS5 LRRC32 TCF21
INPP5D S100A8 MMD TM4SF1
LAMA4 S1PR3 MMP7 TM4SF1
LITAF SELENOP MRVI1 TMED7
LRIG1 SERPINE2 MXRA5 TMEM45A
LRRC32 SGCE NEURL1B TNC
MAF SULF1 NID1 TRIM22
MFNG SYNM NID2 TSPAN7
MMD TCF21 NREP VCAN
MMP7 TM4SF1 NUPR1 WDR72
MXRA5 TM4SF1 OLFML1
NEK6 TNC OLFML2A
NUPR1 TSPAN7 PDGFRB
NXN VCAN PLAC9

(Continued on following page)
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with ssGSEA and z-score-based immune cell enrichment
analyses. With the biomarker DEGs listed in Table 2 as
priori-defined sets of immune cell-specific genes, we quantified
the infiltration of all nine tumor-infiltrating immune cells in the
tumor microenvironment. Enrichment of the cell scores by
ssGSEA in all 1370 NMIBC transcriptomes is shown in
Figure 4A.

To assess the nine immune cells’ ability to distinguish NMIBC
patients with poor prognosis, we explored correlations between
PFS, DFS, and OS with every tumor-infiltrating immune cell
score calculated by ssGSEA and z-score methods. The survival
analysis (Supplementary Table S8) showed that B cells, DCs,
endothelial cells, CAFs, CD4+ T cells, and CD8+ T cells enriched
by the ssGSEA method were significantly related to PFS in
E-MTAB-4321 (Figure 4B). Macrophages and CD8+ T-cells
enriched by the ssGSEA method were significantly related to
OS in GSE13507 (Plots not shown). No cell types were
significantly related to DFS in GSE32894.

Robust Immuno-Prognostic Model
To achieve a robust prognostic model independent of the
heterogeneous clinical information in eligible datasets, we used
the score matrix of all nine candidate immune cells to build our
model, although only some subsets of the cells were significantly
related to PFS or OS. Since the primary goal of this study was to
predict prognosis and risk of progression by key immune
features, a total of 454 NMIBC samples from E-MTAB-4321
with assessable progression beyond T2 staging and PFS records

were used.With the data, we repeatedly built training and test sets
by randomly sampling 5000 times with a 1:1 ratio, fitted immune-
prognostic models with the ridge regression, determined the
optimal model with the minimum lambda, and evaluated the
models with AUCs of ROC curves. Although immune cell
enrichment score matrices calculated by both ssGSEA and
z-score methods were used in building the immuno-prognostic
model, only models built by ssGSEA matrices showed generally
higher AUCs (data not shown). The formula of the final model
was as follows:

Immuno-Prognostic score = - 0.4111588 + 2.5025813 * Bcells_score
- 1.8274560 *DC_score + 6.7589250 * Endothelial_score + 2.6983895 *
Fibroblasts_score - 0.1725197 * Macrophages_score + 1.0256969 *
Neutrophils_score - 1.8221146 * NKcells_score - 6.0485265 *
Tcells_CD4+_score—9.4937697 * Tcells_CD8+_score.

We visualized the prediction effect of the optimal model in
Figure 5A, the AUCs were 0.827, 0.888, and 0.947 in the training
set (n = 228), test set with all the other samples (n = 226), and test
set with balanced progression and non-progression patients (n =
30), respectively. The sampling groups of our optimal model are
recorded in the last three columns in Supplementary Table S2.
The optimal cutoff of the Immuno-Prognostic score dividing low-
risk and high-risk patients was 0.109. In Figures 5A,B
conspicuous differentiation of PFS (p < 0.0001, log-rank test)
was observed in patients with different predicted outcomes. We
also expanded our validation of the model in predicting other
types of clinical outcomes. The same trend has been observed, but
it showed less significance in predicting DFS (p = 0.21, log-rank

TABLE 2 | (Continued) List of biomarker genes representing the nine tumor-infiltrating candidate immune cells.

Bcells DC Endothelial Fibroblasts Macrophages Neutrophils NK cells T cells_CD4+ T cells_CD8+

OLFML1 PLN
PDGFRB PLSCR4
PLSCR4 PODN
PLXDC2 POSTN
PODN PRRX1
POSTN RAC2
PRRX1 RBPMS2
RAC2 RGS5
S100A8 S100A8
SELENOP S1PR3
SERPINA3 SELENOP
SERPINB9 SERPINA3
SERPINE2 SERPINE2
SGCE SGCE
SP110 SMTN
SULF1 SULF1
SYNM SYNM
TCF21 TCF21
TM4SF1 TEAD2
TM4SF1 TM4SF1
TMEM45A TM4SF1
TNC TMEM45A
TRIM22 TNC
TSPAN7 TPST1
VCAN TSPAN7
XAF1 VCAN
ZFP36 VSIG2
ZG16B
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test) and OS (p = 0.027, log-rank test). Furthermore, to test the
correlation between our model and the well-established survival
risk factors of NMIBC, we compared distributions of the

predicted immuno-prognostic scores against different levels of
CIS in the disease course, EORTC risk score, WHO 1973 or 2004/
2016 grade, recurrence, sex, tumor stage, and tumor size. All

FIGURE3 | Expression heatmaps and functional enrichment analyses of PFS- andOS-related immune cell-specific DEGs. Expression heatmaps of (A) PFS-related
and (B) OS-related DEGs. KEGG (C), GO-biological process (D), GO-cellular component (E), and GO-molecular function (F) enrichment of all the selected DEGs.
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FIGURE 4 | Proportion assessment and prognostic value of the nine candidate tumor-infiltrating cells. (A) Heatmap of candidate cells and clinical features of all the
eligible 1,370 samples included in this study. Grade73 and Grade98 refer to the WHO 1973 and WHO 2004/2016 Classification Systems for Urothelial Carcinoma,
respectively. (B) Kaplan-Meier curves of univariate Cox regression in low- versus high-infiltrated groups divided by the nine candidate immune or stromal cells.
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FIGURE 5 | Predictive performance of the immuno-prognostic model. (A) The ROC curve to predict PFS in the training set, test set with all the other samples, and
test set with balanced progressed and non-progressed samples. (B) The Kaplan-Meier curve to predict PFS, DFS, and OS*. (C) Box plots comparing risk scores
assessed by the immuno-prognostic model in different groups of clinical prognostic risk factors. * In the nine eligible datasets, PFS status was assessed in E-MTAB-
4321, GSE13507, and GSE32894, while only E-MTAB-4321 provided survival time. DFS status was assessed in GSE32894, GSE13507, and GSE48075, while
only GSE32894 provided survival time. OS status was assessed in GSE13507 and E-MTAB-1940, while only GSE13507 provided survival time. As we plotted here, the
survival analyses were only applicable to datasets E-MTAB-4321, GSE32894, and GSE13507.
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comparisons showed higher immuno-prognostic scores in higher
risk levels, but the trends were insignificant in recurrence status
and tumor size. In summary, our model could predict the risk to
the progression of NMIBC patients by evaluating the tumor-
infiltrating microenvironment. The immuno-prognostic score
well reflected the degree of progression risk.

DISCUSSION

With the assumption that cancer progression was associated with
immune cell infiltrating, we performed an integrated analysis for
developing a robust immuno-prognostic model to evaluate
progression risk in NMIBC patients. We identified nine critical
tumor-infiltrating cell types: innate immune cells including
macrophages, neutrophils, DCs, and NK cells; adaptive immune
cells including B cells, CD4+ T cells, and CD8+ T cells; and sentinel
cells including CAFs and endothelial cells. The quantification of
these immune cells was conducted by ssGSEA using the DEGs
recognized from all eligible datasets. Univariate Cox regression
supported that some cells could independently distinguish
patients with high progression risk. Based on this, we achieved a
more robust model using the enrichment matrix of all the nine
tumor-infiltrating immune cells and then validated its performance
in predicting different types of survival. The predicted risk scores and
survival status showed a high correlation with the actual clinical
outcomes; however, considering the precision and significance, we
suggested using our model in predicting the PFS of NMIBC patients
instead of DFS or OS.

We included nine immune cells in our model, even though some
showed no independent prognostic value, since we thought their
combination would better reflect the coordinated interaction
between innate and adaptive immune systems in preventing the
normal tissue from aggressive progression. For one thing, many
genes were identified as theDEGs formore than one type of immune
cells (Figure 2; Table 2); for another, the functional enrichment
analysis of the full set of signature DEGs showed strong evidence of
underlying drivers of tumor progression. The collagen family genes,
for instance, were independently related to the survival of NMIBC
and were simultaneously recognized as the DEG of tumor-
infiltrating B cells, CD4+ T cells, CD8+ T cells, DCs, CAFs,
macrophages, and endothelial cells. Xu and colleagues reviewed
themechanisms underlying this result (Xu et al., 2019). The complex
reticular structure composed of collagen-rich extracellular matrices
(ECM) andmultiple stromal cells formed dense stromal fibrosis and
thereby induced focal hypoxia, leading to increased tumor
proliferation and compromised immunotherapy effectiveness
(Daniel et al., 2019). The enriched KEGG pathways, including
focal adhesion and ECM-receptor interaction (Figure 3C), were
consistent with the previous description. The extensive interaction
between stromal/immune cells and cancer cancers depicted the
complexity of the tumor microenvironment, which was why we
used cells instead of genes to build our model.

Another detail of our study was that we emphasized the selection
of appropriatemeta-analysismethods in the feature selection step and
the careful use of renormalization methods. Toro-Domínguez and
colleagues reviewed the three main types of meta-analysis strategies

based on effect sizes, p-values combination, and rank combination
(Toro-Domínguez et al., 2021).We chose wFisher (Yoon et al., 2021),
a modified p-value combination method, to filter the DEGs
representing candidate immune cells. The wFisher method was
suitable for studies from different platforms or conditions. In our
case, combining the analysis of nine transcriptomic datasets
sequenced by both RNA-Seq and microarray platforms fit the
method’s usage characteristics. The method also allowed
combining results from heterogeneous analyses without rigorous
renormalization. This feature elicited the second focus of our
discussion: the renormalization of integrated transcriptomic data.
Normalization of bulk RNA data included quantifying transcripts
and standardizing data from different sources. The former was
thoroughly discussed in the review of RNA sequencing technology
(Stark et al., 2019). Here we mainly discussed the latter scenario, as
the complexity of cancer biology required integrative studies with
combined data from different researches. Shen and Wulff published
their evaluations of various normalization methods for integrating
large-scale metabolomics data, yielding the same conclusion that
choosing the proper normalization method according to the data
scale and downstream analysis would vastly improve the confidence
of research results (Shen et al., 2016; Wulff and Mitchell, 2018). For
transcriptome data, most studies still focused on the transcripts
quantification question in the single-source dataset (Dillies et al.,
2013; Li et al., 2015), while some of them also evaluated sophisticated
frameworks and proposed a protocol to deal with raw RNA-
Sequencing (RNA-Seq) data (Sahraeian et al., 2017). We found
that few discussion has been made on the systematic
renormalization of transcript data from multiple sources by
multiple sequencing technologies, but some attempts were
separately made and recommended in previous studies (Mooney
et al., 2013; Risso et al., 2014; Ayers et al., 2017; Danaher, 2018; Liu
et al., 2019). After modeling with both renormalized and non-
normalized data (results shown in our Github or Gitee
repositories listed in the Data Availability Statement section), we
believed the renormalization method combining RNA-Seq and
microarray data was still not well-established. We built our model
for predicting PFS in NMIBC patients based on RNA-Seq data alone.
We suggested that any further applications of our model should
consider using RNA-Seq data rather than microarrays.

In conclusion, we identified nine critical tumor-infiltrating
immune cells, quantified the cells’ proportion in the tumor
immune microenvironment with self-defined signature genes,
and established a robust immune-prognostic model for
predicting the progression of NMIBC patients. Our study
showed system-wide coordination of the immune and stromal
cells in defending aberrant cell proliferation and aggressive
tumor growth and invasion. Thus, modeling strategies regarding
the tumor microenvironment as a whole system may be optimal in
clinical decision support applications, which we believe is why
multi-omics and integrative studies were replacing single biomarker
and single dimension studies. In previous studies, single dimension
data, such as the density of stromal TILs evaluated by H&E-stained
slides, failed to predict survival outcomes independently (Rouanne
et al., 2019; Ottley et al., 2020). Rouanne and colleagues only proved
that the stromal TILs were associated with the tumor invasion depth
in pT1 NMIBCs. Ottley and colleagues combined the sTILs levels
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with IHC and ISH biomarkers to improve the prognostic potential.
In this shift to complex modeling with multiple dimension data, we
raised the importance of appropriate data preprocessing
procedures, including but not limited to the selection of
appropriate meta-analysis methods. Moreover, some limitations
of our research had to bementioned here.With the inspiration from
the UROMOL2021 study (Lindskrog et al., 2021), we initiated our
investigation with the hypothesis that dynamic interactions in
tumor immune microenvironment would reflect not only the
progression risk but also the response to local treatment like
intravesical instillation of chemotherapeutic or
immunotherapeutic agents. Several efficient predictive
biomarkers have been developed and widely evaluated in pan-
cancer scenarios, such as the 18-gene gene expression profile (GEP)
score (Ayers et al., 2017) has a high discriminatory value in
predicting the response to pembrolizumab in Keynote-001,
Keynote-012, and Keynote-028. Unfortunately, we did our
research and failed to get enough high-quality response data to
therapies in NMIBC patients. In the current study, we validated
only the prognostic value of our model. Nevertheless, we wish to
expand its usage in prognostic and predictive conditions in the
future.
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