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The rise of the distributions: why non-normality is important
for understanding the transcriptome and beyond
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Abstract
The application of statistics has been instrumental in clarifying our understanding of the genome. While insights have been
derived for almost all levels of genome function, most importantly, statistics has had the greatest impact on improving our
knowledge of transcriptional regulation. But the drive to extract the most meaningful inferences from big data can often force us
to overlook the fundamental role that statistics plays, and specifically, the basic assumptions that we make about big data.
Normality is a statistical property that is often swept up into an assumption that we may or may not be consciously aware of
making. This review highlights the inherent value of non-normal distributions to big data analysis by discussing use cases of non-
normality that focus on gene expression data. Collectively, these examples help to motivate the premise of why at this stage, now
more than ever, non-normality is important for learning about gene regulation, transcriptomics, and more.
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Big data continues to get bigger

Statistics has helped us arrive at many major genomic discov-
eries, and the uptake of routine statistical and computational
methods has been formalized into its own field, namely bio-
informatics and computational biology (Gentleman et al.
2004; Stein 2002). Applications that stem from pre-
processing of gene expression data up to higher order analyses
have collectively contributed knowledge on the dynamic sig-
natures and regulatory rules that define cellular phenotypes
(Lockhart et al. 1996; Tamayo et al. 1999; Alon et al. 1999;
Schadt et al. 2000). Advances in technology platforms are
ushering in an unparalleled expansion of big data where both
the size and complexity of datasets are increasing at an accel-
erated rate (Lowe et al. 2017). This can be seen most
readily by the recent confluence of datasets produced by
single-cell next-generation sequencing approaches (Liu and
Trapnell 2016; Shapiro et al. 2013; Levitin et al. 2018;

Oldham and Kreitzer 2018). Limitations to high-throughput
data generation are continuing to fall across multiple axes,
whether it be through the rapid increase in the number of
tissues, genes, cells, or regulatory data types that can be pro-
filed (Koch 2018;Medioni and Besse 2018; Lacar et al. 2016).
As big data continues to grow more complex, opportunities
for statistical innovation abound. Consequently, there is a
pressing need to take stock of the statistical methods being
implemented and to determine whether more effective alter-
natives exist. If we can meet these challenges in a timely and
collaborative way, exciting new directions in computational
biology await.

Assumptions make the world go around

Like any quantitative science, mathematical assumptions are a
core tenet of statistics (Casella and Berger 2008; Tukey 1997).
Typically, assumptions focus on properties of the data where
the most common one is the type of distribution that data
follows. As any student of a statistics class will know, the
keystone assumption of applied statistics is the normal distri-
bution (Curran-Everett 2017). Normality is a standard as-
sumption that can be worthwhile to make because when it
can be applied, powerful artillery of statistical methods can
be used. This assumption is not made without a good basis,
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and in many cases for continuous data, a normal distribution is
a reasonable assumption to make. Moreover, the central limit
theorem (CLT) (Billingsley 1995), a key result from probabil-
ity theory, demonstrates that under certain conditions and with
asymptotically large amounts of data, sums or averages of data
points will approximately follow a normal distribution, even
when the data themselves are non-normal. When conditions
for the CLT hold, this theorem provides validity to use statis-
tical tools like the t test, ANOVA, and linear regressionmodel-
ing that are familiar and easy to implement. Although the CLT
provides a theoretical justification for normality to be as-
sumed, it is worthwhile remembering that in statistics, alter-
native distributions also exist (Fig. 1).

Counting reads: how discrete probability
distributions have become the standard
for modeling transcription
from next-generation sequencing methods

For profiling whole transcriptomes, next-generation sequenc-
ing methods like RNA-sequencing (RNA-seq) (Mortazavi
et al. 2008) have eclipsed the use of microarray-based tech-
nologies (Lowe et al. 2017). Because gene expression estima-
tion from RNA-seq methods involve aligning and quantifying
the numerous short reads that map back to a reference com-
plementary genome (Wang et al. 2009a), the data output of an
RNA-seq experiment is a set of discrete read counts (Conesa
et al. 2016). In contrast, microarrays rely principally on the
fluorescence of different reference probes to determine
the abundance of gene expression and instead the data takes
the form of continuous intensities produced by an image scan-
ner (Butte 2002). With the pronounced shift in technology
from microarrays to RNA-seq, a corresponding and necessary
change in how we model gene expression has also occurred
where continuous probability distributions have been replaced
by discrete counterparts.

Various families of discrete distributions have been employed
formodeling read count data generated byRNA-seqmethods. At
this stage, most methods converge on the negative binomial.
Currently, the standard bioinformatics methods for analyzing
RNA-seq read counts share this common feature of using a neg-
ative binomial distribution, and examples include DESeq2 (Love
et al. 2014), CuffDiff (Trapnell et al. 2010), and edgeR

(Robinson et al. 2010; McCarthy et al. 2012). The Poisson dis-
tribution is also a natural choice for modeling count data, but a
property of this distribution is that the mean and variance are
identical. It has been shown that this distributional property is
too restrictive for RNA-seq read counts since it is not uncommon
for the variance to be larger than the mean gene expression, a
phenomenon termed as overdispersion. As a result, the negative
binomial distribution has emerged as a more flexible and appro-
priate option, since under this distribution, themean and variance
are unlinked and modeled by separate parameters. The release of
more advancedRNA-seq tools tomodel read count data continue
to feature further improvements, for example, the inclusion of
mixed models (Sun et al. 2017; Al Mahi and Begum 2016) or
approaches involving Bayesian or empirical Bayes that build
upon the use of these discrete probability distributions (Gu
et al. 2014; Papastamoulis and Rattray 2018; Leng et al. 2013).

Seeing double—how bimodal distributions
reveal hidden substructures for patient
population data

The value that stems from using statistics based on non-
normality can be readily seen from the growing number of
studies that use bimodal distributions to model RNA

(a) (b) (c)Fig. 1 Distributions come in
different shapes and sizes. a
Normal distribution. b Gamma
distribution. c Bimodal
distribution
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Fig. 2 Contrasting differential average gene expression against
differential variability in gene expression. a Differential expression
relies upon identifying significant genes with a large difference in
average expression and a small amount of variance. b Two scenarios
are shown demonstrating how changes in variability of gene expression
could occur between two phenotypic groups
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expression levels and identify new phenomenon (Liu et al.
2018; Zechner et al. 2012; Karn et al. 2012). One of the most
well-known attributes of the normal distribution is the pres-
ence of a singlemode, which in statistics is defined as the most
frequently occurring value in the distribution. However, prob-
ability densities can be modeled by a range of distributions,
and moreover, depending on the shape of the data, it may be
more appropriate to select a distribution that has more than
one mode.

Bimodality has been particularly successful for transcrip-
tional profiling datasets from large cohorts of cancer patients
because the presence of two subpopulations may indicate new
targets of clinical relevance such as markers for tumor sub-
types or survival status. For example, using microarray data
from epithelial ovarian tumors (Tothill et al. 2008), Kernagis
et al. (2012) applied the bimodality index (Wang et al. 2009b)
to identify genes with robust bimodal expression profiles and
found that these were also differentially expressed between
tumor subtypes. The combination of bimodally expressed
genes was used to derive a survival score and Kernagis et al.
showed that statistically significant differences in patient
survival could be determined based on this score. More
recently, Pique et al. (2018) developed a novel method called
oncomix to assess bimodal gene expression and using RNA-
seq data from the Cancer Genome Atlas (Cancer Genome
Atlas 2012), identified a new oncogene candidate, CBX2 for
invasive breast carcinoma.

Bimodality in gene expression is an attractive phenomenon
because it reflects the presence of a substructure in the data
that would not typically be uncovered if the data was assumed
to be normally-distributed. More broadly speaking, the pres-
ence of two modes or more in a gene expression distribution
naturally indicates subpopulations in the data. Amixture mod-
el (McLachlan and Peel 2000) is a statistical method that
models data distributions with a defined combination of
unimodal distributions, and therefore, has been a popular
modeling option for retaining normal distributions while in-
vestigating the presence of clustering in the data (Mar and
McLachlan 2003;McLachlan et al. 2002; Scrucca et al. 2016).

Discovering new regulators of phenotype
through measures of gene expression
variability

There is increasing recognition that regulatory information can
be derived from studying the variance of gene expression and
not just the average effects which is the focus of differential
expression (Fig. 2). Despite earlier studies (Ho et al. 2008), the
overall uptake of the variance in the analysis of transcriptomic
data has been slow to be incorporated. This may be because
studying variance requires larger sample sizes as well as well-
curated phenotypic data. Variance is a parameter that can be

calculated from any statistical distribution and is certainly not
exclusive to normality. However, the different degrees of var-
iance observed when modeling gene expression levels suggest
that fundamentally, the shape of the distribution is important
and changeable with phenotype (Geiler-Samerotte et al.
2013).

A landmark study by Raj et al. (2010) on the nematode
Caenorhabditis elegans (C. elegans) demonstrated how vari-
able expression in a gene could determine the incomplete
penetrance of a trait affecting the intestinal gut development.
This study highlighted the regulatory impact of the inter-
individual variability of gene expression because when one
element of the gut development pathway was mutated, a
downstream gene showed an increase in the variability of its
gene expression. Consequently, this effect gave rise to a bi-
modal on/off expression of the downstream master regulator.
Raj et al. observed that this variability was part of a
thresholding effect where nematodes with a sufficiently high
expression of the gene were able to activate downstream ex-
pression of the master regulator to ensure proper development
of the intestinal gut. In another C. elegans study, Burga et al.
(2011) showed that for a pair of synthetic lethal genes, tbx-8
and tbx-9, a mutation in either of these genes resulted in the
increased inter-individual variability of gene expression in the
other. Similarly, based on a thresholding effect, the expression
of the synthetic lethal interactor was predictive of the pheno-
typic outcome.

In a study involving the human olfactory neurosphere-
derived (hONS) stem cells, Mar et al. (2011) discovered that
either direction of extreme change in the variability of gene
expression could be associated with a disease phenotype.
Specifically, Mar et al. observed a significant number of high-
variability genes involved in stem cell regulation for hONS
stem cells derived from patients with Parkinson’s disease. In
contrast, a significant number of low-variability genes were
observed for schizophrenia-derived hONS stem cells for the
same stem cell pathways. Both disease groups were compared
against a group of age and gender-matched control samples
which also suggested that some degree of variability in gene
expression is required for homeostasis. This was the first study
to demonstrate that both increases and decreases in gene ex-
pression variability were a feature of human disease processes.

Using single-cell RNA-seq data collected from early-stage
human embryos, Hasegawa et al. (2015) identified regulators
of embryonic development using analyses based on inter-
cellular variability of gene expression. Genes with the most
stable inter-cellular expression variability over four develop-
ments stages, from a four-cell stage to blastocyst, were found
to be enr iched for those involving essent ia l i ty,
haploinsufficiency, and ubiquitous expression. Hasegawa
et al. also identified potential markers of stage based on chang-
es in both variability and average expression, and found that
HDDC2, a potential blastocyst marker validated
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experimentally in human embryonic stem cells and induced
pluripotent stem cells.

Jumping up (and down) to higher moments

In probability theory, a moment captures a specific property of
the population distribution’s shape.Moments represent a pow-
erful construct in statistics because they form the building
blocks for the method of moments, a standard approach to
estimating population parameters from data. Conceptually,
the moments are sequential where the first moment equates
to the mean or central location of the distribution. The second
moment, the variance is a surrogate measure for how spread
out the distribution is. Higher moments continue to add further
layers of information about the shape of a distribution. It is
worthwhile to note that in this context, the variance is just one
of the multiple moments, and it follows that a natural exten-
sion may be to look to other moments to gain deeper insights
into transcriptomic data.

Comprehensive investigations into studying higher mo-
ments from gene expression data are relatively few but are
becoming increasingly relevant, especially with the discovery
of new classes of non-coding RNAs which are generally
expressed in only a minority of cells. For instance, skewness
is the third moment which measures how disproportionate or
unbalanced the data is distributed. A normal distribution has
zero skewness, whereas highly skewed distributions are more
prominently asymmetric. Casellas and Varona (2012) investi-
gated the presence of skewness in four gene expression
datasets using a flexible mixed model to account for asymme-
try in the data. For cancer transcriptomes from the Cancer
Genome Atlas, Marko and Weil (2012) studied the first four
moments to determine the suitability of the normality assump-
tion of four microarray datasets. Their results revealed that
significant skewness and kurtosis were detected in the cancer
gene expression datasets that they studied and as such, dem-
onstrated that the data were not normally distributed (Fig. 3).

Normally, genes interact with other genes

Although tests of differential gene expression assume inde-
pendence between genes, we know that genes do, in fact,
interact with other genes (Alon 2007). Identifying pairs of
genes with significant co-expression patterns has become in-
sightful for elucidating units of pathways and modules that
may be co-regulated (Yeung et al. 2004). Metrics based on
correlation have become a widely adopted strategy for infer-
ring gene regulatory networks (Langfelder and Horvath 2008)
or identifying differentially coordinated genes from gene ex-
pression data (Ghazanfar et al. 2018). As the focus shifts from
a single gene to building relationships between multiple genes
and their associated hierarchies, challenges arise on how to
model these interactions appropriately. Issues such as non-
linearity in gene expression and the need to account for a
range of distributions call into question whether simple sum-
mary statistics or regression models that assume only a single
distribution are adequate solutions.

Single-cell sequencing is becoming the new
(non)-normal for understanding cell biology

Advancements in next-generation sequencing methods have
made the capture of individual transcriptional profiles from
single cells feasible. Consequently, knowledge in every do-
main of biology is currently undergoing an explosive period
of revision. Single-cell sequencing experiments are
uncovering insights that their bulk sample counterparts had
previously missed, and innovative discoveries are adding
new depth to how we understand the genome. Given the un-
precedented degree of heterogeneity in single-cell sequencing
data, it is, therefore, not surprising that big data analysis rep-
resents the main gateway to these discoveries at this time.
Unlike ensemble-level transcriptomes (Levsky and Singer
2003), observations that gene expression profiles from single
cells are non-normal have been made as early as 2005
(Bengtsson et al. 2005) with independent validation provided

gene expression
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from more accurate and modern technologies (Leng et al.
2013; Moignard et al. 2015). Multimodal distributions are a
key feature of single-cell gene expression data (Shalek et al.
2013), both due to the increased prevalence of zeros from
technical drop-out, and the representation of new subpopula-
tions or subtypes in the cell population. For a broad range of
applications, spanning pre-processing to regulatory network
inference, statistical methods that are based onmixture models
or hierarchical models have been employed to account for the
multi-modality in this data (Chen and Mar 2018).

Future directions

The growth of transcriptomic data continues to march forward
with an expansion into multiple directions covering technolo-
gy, volume, complexity, and type. How will our set of statis-
tical methods adapt and evolve to meet the next generation of
big data analysis challenges? While the examples in this re-
view have focused on gene expression data, issues of non-
normality are pertinent to other kinds of Bomic^ data too.
Cell-free-based assays are now routinely used in clinical set-
tings where genomic and epigenomic datasets are collected for
applications such as tumor profiling (Adalsteinsson et al.
2017) and prenatal testing (Yin et al. 2018). These datasets
involve a heterogeneous mix of cells that stem from multiple
sources, either tumor versus normal, or mother versus embryo,
and hence, decomposing the data using non-normal distribu-
tions are necessary for accurate biological inferences to be
made. Similarly, increasing evidence points to genetic mosa-
icism as a more widespread phenomenon than previously
thought, with studies suggesting that this may be a normative
process affecting all human beings (Campbell et al. 2015).
Consequently, modeling genes with mixtures of distributions
to account for the mosaicism could be one approach to be
adopted. These two examples could seamlessly be substituted
for many others, but the recurring theme of non-normality
endures. As transcriptomics becomes more specialized and
personalized, it remains impossible to know for sure how the
analysis of big data will change in the future. Nevertheless, the
next wave of big data research is set to be anything but normal.
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