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The activation of 8-methoxypsoralen (8-MOP) by long-wavelength ultraviolet A light (UVA,
320-400 nm) induces the formation of interstrand cross-links in DNA. Psoralen plus UVA
(PUVA) is widely used in the treatment of psoriasis, a hyperproliferative disease of the skin. A
new psoralen plus UVA therapy has been developed in which the 8-MOP-containing blood of
cutaneous T cell lymphoma (CTCL) patients is irradiated with UVA light extracorporeally (i.e.,
extracorporeal photopheresis). The first group of patients had the leukemic variant of CTCL. A
regimen of two treatments on successive days at monthly inter-vals produced a clinical response in
eight of 11 patients. In this review the properties of several psoralens (both naturally occurring
and synthetic derivatives) are compared, using several assays (DNA cross-linking, inhibition of
lymphocyte response to mitogen stimulation, and cell viability). The development of a panel of
monoclonal antibodies that recognize 8-MOP-modified DNA is also described. These antibodies
have been used to quantitate 8-MOP photoadduct levels in human DNA samples. In addition to
the psoralens, the light activation of two other compounds, gilvocarcin and an insulin-psoralen
conjugate, is described.

"The sun is undoubtedly the best source of light; but as it is not always
available, it is necessary to have recourse to artificial light, especially to
electric light."

from Phototherapy, Niels Finsen
(1901)

INTRODUCTION

The birth of phototherapy occurred nearly 100 years ago. Niels Finsen had been
treating lupus vulgaris (a cutaneous manifestation of tuberculosis) by heliotherapy,
i.e., controlled exposure of his patients to sunlight. Given the fickle nature of sunlight,
however, Finsen initiated a collaboration with an engineer who was a victim of lupus
vulgaris and designed an artificial light source for the convenient treatment of patients
[1]. This event marks the birth of modern phototherapy, for without easily manipu-
lated and measured light sources the variety of today's phototherapies could not be
administered. Finsen's pioneering efforts in the application of light, and artificial light
in particular, earned him the Nobel Prize in Medicine in 1903. The development of
artificial sources has continued to play an integral role in photomedicine.
The curative powers of sunlight were known in Biblical times. The solar spectrum of

sunlight at the below-sea-level Dead Sea, filtered by passage through a thickened
atmosphere, may have been responsible for the alleviation of many skin conditions [2].
The Egyptians ingested the leaves of a weed (ammi majus) that grew by the Nile to
treat depigmented patches of skin [3]. The active ingredient of the ammi majus plant,
8-methoxypsoralen (8-MOP), was isolated and characterized in 1947 [4]. In the early
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1 950s, Aaron Lerner became fascinated by 8-MOP, a naturally occurring, biologically
inert substance which could be activated by sunlight to become a potent photosensitiz-
er. A seminal publication [5] by Lerner and associates in 1953 established that purified
8-MOP could be administered safely to humans, was efficacious at low doses in the
management of vitiligo, and raised the possibility that ultraviolet energy activates
8-MOP to an intermediary form responsible for the biologic potency of the parent
molecule. That paper created great interest and initiated the modern era of therapeutic
photopharmacology.
The mutagenic properties of 8-MOP were discovered by Musajo [6], who also later

demonstrated that irradiated 8-MOP could react with DNA [7]. In 1970 it was

suggested that the inhibition of the hyperproliferation of skin in psoriatic patients by
photoactivated 8-MOP was secondary to its cross-linking of DNA [8].

All of the phototherapies that have been developed using 8-MOP thus far have
involved the irradiation of skin after topical application or oral ingestion of the drug
[9]. For the past four years we have been developing a new psoralen-based photother-
apy in which the diseased blood of cutaneous T cell lymphoma patients is irradiated
extracorporeally with ultraviolet A radiation (320-400 nm). The successful develop-
ment of this new phototherapy depended on the creation of a convenient and efficient
light source and an irradiation system for the extracorporeal treatment of human
blood. This goal was achieved after collaboration with scientists at Johnson and
Johnson, Inc.

In this review we describe the development of extracorporeal photopheresis. We also
compare the properties of several natural and synthetic psoralens. Our long-term goal
is to elucidate the details of psoralen photobiology and to apply the techniques of
modern molecular biology to the development of more potent psoralens as well as other
photopharmacologic agents.

EXTRACORPOREAL PHOTOPHERESIS

In recent years the physics, chemistry, and biology of light have been used to develop
several light-mediated therapies (for a review see [10]). In 1974 an experimental
photochemotherapy program using 8-MOP and UVA was initiated by Parrish et al. for
the treatment of psoriasis, a hyperproliferative disease of the skin [1 1]. Healthy skin
renews itself in an orderly fashion over approximately a one-month period. In psoriasis
the renewal occurs in a disorderly fashion at an elevated rate, leading to the clinical
signs of scaling and plaque formation [12]. The 8-MOP is taken orally two hours prior
to irradiation of the skin with UVA light. In most cases the psoriasis can be cleared
after approximately 20 treatments. More recently this form of therapy, referred to as

PUVA, has been directed at the involved skin of patients with the epidermotropic
neoplasm, cutaneous T cell lymphoma (CTCL) [13]. This is an effective therapy for
the early stages of the disease; however, once beyond this stage PUVA is merely
palliative [14].
To direct PUVA therapy more precisely at the involved blood of leukemic CTCL

patients, Edelson et al. [15] have bypassed the skin and have developed a new

phototherapeutic modality in which 8-MOP in the blood of patients is passed through a

UVA exposue field prior to reinfusion. This form of therapy has several unique
advantages. First, the lymphocytes are exposed to a biologically inert drug which is
activated in situ by the flick of a switch. Second, due to the short lifetime of the
photoactivated 8-MOP, all activity is lost by the time the blood is returned to the
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patient, thus avoiding toxic side effects on other organs. Finally, non-nucleated blood
components (red blood cells, platelets, and plasma proteins) are not significantly
affected by this treatment.

Significant clinical responses were achieved with 12 treatments over a six-month
period. This experimental therapy has now been in use for more than three years. The
first group of patients had the leukemic variant of CTCL. These patients were selected
because their disease was resistant to management with standard systemic therapy,
their prognoses were poor, and their disease responded transiently to the removal of
leukemic cells by leukapheresis. A conservative regimen of a cycle of two treatments on
successive days at monthly intervals produced a clinical response in eight of 11
patients, as evidenced by decreased severity of skin lesions and laboratory responses-
in particular, decreased numbers of abnormal T cells.

In designing and implementing an effective radiation system for the treatment of
abnormal T cells, several experiments were performed to determine (a) which UVA
wavelengths were most effective at inhibiting lymphocyte proliferation in the presence
of 8-MOP; (b) the respective roles of monoadducts and cross-links; (c) what level of
8-MOP photoadduct formation occurred during photopheresis; and (d) what dose of
UVA light was required to induce a clinical response.

PSORALENS ARE PHOTOPHARMACOLOGIC AGENTS

8-MOP is a naturally occurring tricyclic aromatic compound (Fig. 1), whose planar
structure facilitates intercalation between nucleic acid base pairs. Activation of the
intercalated complex with UVA light leads to photoadduct formation with pyrimi-
dines, primarily thymines, in cellular DNA [16]. Three types of photoadducts can be
formed: two monoaddition products and one diadduct or cross-link (Fig. 1). The
distribution of these adducts in DNA is a function of the particular psoralen, the DNA
conformation, and, perhaps, base sequence and the wavelength of irradiating light.

ACTION SPECTRA STUDIES

In our laboratory we have been elucidating the photochemistry and photobiology of
psoralen photochemistry. We began our studies by determining which UVA wave-
lengths were most effective for the inhibition of mitogen-stimulated lymphocytes
treated with 8-MOP [17]. Figure 2 shows that the optimal wavelength range
(330-350 nm) is comparable to that found in other biological assays, as shown in Table
1. The optimal wavelength range does not include the absorption maximum for 8-MOP
(303 nm) for two reasons. First, all of the assays essentially measure the ability of
8-MOP to potentiate wavelengths of UV light in a biological assay. UVB wavelengths
(280-320 nm) alone have been shown to be potent inhibitors of biological functions;
thus irradiation with wavelengths of light at which 8-MOP shows a strong absorption
(i.e., 300-320 nnm in the UVB range) does not result in a photoenhancing effect.
Second, psoralens are known to form both mono- and di-adducts. The diadducts, or
cross-links, form when a previously formed monoadduct absorbs a second UV photon.
The 4',5'-monoadduct that is the precursor to the cross-link has an absorption spectrum
that is shifted to longer wavelengths in comparison to that for 8-MOP Fig. 3). Thus
the formation of cross-links would be favored by irradiation with longer wavelengths of
UVA light. To test this hypothesis, we developed a gel electrophoresis to measure
psoralen cross-linking as a function of UVA wavelengths [18]. A homogenously sized
sample of DNA was obtained by making a single blunt-end cut in circular DNA
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FIG. 1. Molecular structures: 8-MOP and psoralen photoadducts with thymine.

obtained from E. coli. Solutions of linear plasmid DNA (20,gg/ml) and 4'-
aminomethyl-4,5'.8-trimethylpsoralen (AMT) (50 ng/ml) were irradiated with sub-
bands of UV light over the range 298-382 nm. The extent of cross-linking was
determined by gel electrophoresis in 1 percent agarose gels. Prior to applying the
samples to the gel, the samples in 0.2 N NaOH were thermally denatured (370C for 15
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TABLE 1
Optimal Wavelengths for 8-MOP Biological Assays

Agent Peak Activity

Human lymphocytes 334-346
Human skin erythema 320-335
Guinea pig skin erythema 330

Note: See [ 171 and references therein.

minutes). Once in the running buffer, DNA molecules containing cross-links, which
hold the base pairs in register, rapidly renature and migrate in the gel as double
strands, while the molecules containing no adducts or monoadducts migrate as single
strands (Fig. 4, upper panel). The number of double-stranded molecules and hence the
number of cross-links is determined by densitometric scanning of the photographic
negative of the ethidium bromide-stained gel (Fig. 4, lower panel). Analysis of
cross-link formation at seven wavelengths showed that 320-350 nm light was optimal
for cross-linking. Figure 5 shows that the action spectrum derived from these data
correlates with the absorption spectrum of the 4',5'-monoadduct, indicating that this
monoadduct is the precursor to the cross-link. This action spectrum also correlates with
that for the inhibition of DNA synthesis shown in Fig. 2. These results support the
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TOP OF GEL

FIG. 4. Upper panel: 1 percent agarose gel analysis of linear pBR322 irradiated with 346 nm light.
The first three lanes contain known amounts of double helical linear DNA (20, 40, and 80 ng,

respectively). Lane 4 is an unirradiated control (100 ng). Lanes 5-9 contain samples of DNA (100 ng

each) exposed to increasing doses of light. Lower panel: Densitometric scan of the gel shown above.
Dose of 346 nm light is indicated near each tracing.
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j.50/
0.25 FIG. 5. Correlation of action spectrum for

cross-link formation (solid line) with the absorp-
tion spectrum of the 4',5'-monoadduct (dotted

260 300 340 380 line). The dashed line shows the absorption spec-
Wavelength, nm trum for 3,4-monoadduct, for comparison.

contention of many workers that psoralen cross-links are responsible for the biological
effects of PUVA therapies [19]. However, angelicins, which are angular isopsoralens
incapable of cross-link formation, are also capable of inhibiting DNA synthesis, as
described later.

Early in our studies we realized that it would be invaluable to be able to determine
the in vivo levels of 8-MOP photoadduct formation in the DNA of lymphocytes treated
with 8-MOP and UVA light. Scintillometry and HPLC were shown to be effective for
the in vitro analysis of 8-MOP adduct formation in synthetic polynucleotides [20]. For
example, HPLC methods were used to quantitate the yield of psoralen monoadducts as
a function of irradiating wavelength and polynucleotide composition for samples in
which the overall extent of modification was approximately 1 percent, a level easily
achieved in vitro but much lower than that anticipated for the DNA obtained from the
in vivo treatment of lymphocytes with 8-MOP and UVA light. Therefore we initiated a
program for the production of a panel of monoclonal antibodies that would recognize
8-MOP photoadduct in DNA isolated from human lymphocytes.

MONOCLONAL ANTIBODIES

Balb c/Cr mice were immunized with 8-MOP-modified calf thymus DNA over a
six-week period. Responsive mice were sacrificed and their spleens used to create
hybridomas. The production and characterization of these antibodies were performed
in collaboration with Dr. Santella of the Cancer Institute [21 ].

Figure 6 shows the results of competitive ELISA assays with a series of 8-
MOP-modified polynucleotides. The 50 percent inhibition value for antibody 8G 1 was
17 femtomoles of adduct in the original immuogen and 13 femtomoles in 8-
MOP-modified poly(dA.dT) in which only monoadducts could form. The lower level
of recognition in the alternating copolymer, poly(dAdT.dAdT), could be due to the
presence of cross-links or an altered backbone conformation. These results suggest that
this antibody primarily recognizes monoadducts. This hypothesis was verified by
testing the individual adducts isolated by HPLC in a competitive assay.

These antibodies, produced by immunizing mice with modified calf thymus DNA,
are capable of recognizing 8-MOP adducts in DNA isolated from human lymphocytes
treated with 8-MOP and UVA. To calibrate these antibodies so that they could be used
to assay nonradioactive samples from humans treated with 8-MOP and UVA, a series
of lymphocyte samples were treated with tritiated 8-MOP and increasing doses of
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FIG. 6. Competitive ELISA assays for antibody 8G1. Competitors: *,-8-MOP-calf thymus

DNA; *, - 8-MOP-poly(dA .dt); v, -8-MOP-poly(dAdT -dAdT); *, -4',5-dimethylangelicin-calf
thymus DNA; and A, -AMT-calf thymus DNA. Note: poly(dA.dT) is composed of the two
homopolynucleotides: poly(dA) and poly(dT). Poly(dAdT.dAdT) is a self-complementary co-
polymer.

UVA light. The DNA was isolated, and the overall extent of 8-MOP modification as a
function of UVA dose was determined by liquid scintillometry (upper curve, Fig. 7).
The same 8-MOP DNA samples were analyzed by a competitive ELISA assay using
monoclonal antibody 8G 1. A similar dose-related yield of adducts was observed (lower
curve, Fig. 7). Since 8G1 has a high specificity for monoadducts [21], it would be
expected to detect only a fraction of the adducts formed at the higher UVA doses as
cross-links begin to accumulate [Santella RM, Gasparro FP; manuscript in prepara-
tion].
We have also used this antibody to quantitate 8-MOP adduct formation in the DNA

isolated from human lymphocytes treated ex vivo with 8-MOP and UVA light (i.e.,
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TABLE 2
8-MOP Adduct Levels in DNA from Human Lymphocytes

Free 8-MOP Bound 8-MOP
Patient ng/ml per 106 DNA Bases

TA 15 0.75
RO 25 0.55
DI 87 0.71
Fl 13 0.69

extracorporeal photopheresis). The isolated DNA samples were analyzed by competi-
tive ELISA assays. The data shown in Table 2 represent the first quantitation of in vivo
levels of 8-MOP modification of human DNA. The levels of modification range from
0.55 to 0.75 adducts per million bases. Thus a typical lymphocyte exposed to 8-MOP
(-100 ng/ml) and UVA light (_1 J/cm2) could contain several thousand 8-MOP
photoadducts. At this stage of our studies with this limited data, it is difficult to discern
a correlation between the 8-MOP concentration in the blood and the ultimate level of
adduct formation in the DNA. We have also used light microscopy in an indirect
immunofluorescence assay to show that these antibodies recognize in situ 8-MOP
photoadducts formed after UVA irradiation of skin to which 8-MOP had been applied
topically [manuscript in preparation].
The repair, or lack of repair, of these adducts is ultimately responsible for the fate of

a particular cell. Classical repair assays which can only measure overall repair and not
the repair of specific adducts have indicated that both monoadducts and cross-links can
be repaired [22]. Once a complete panel of monoclonal antibodies is available, i.e., at
least one antibody specific for each photoadduct, we plan to study the repair kinetics
for each. Furthermore, with improved sensitivity of the ELISA assays using either
fluorescence detection or the biotin-avidin technology [23], the detection of unrepaired
adducts should be feasible. DNA sequencing techniques will be used to discern the
effects of sequence on the formation of psoralen photoadducts, their subsequent repair,
and the location of unrepaired adducts in specific DNA sequences.

STRUCTURE-FUNCTION RELATIONSHIPS IN PSORALENS

The yield and distribution of psoralen photoadducts is strongly dependent on the
number and nature of the substituents on the psoralen tricyclic ring system [24]. The
sequential addition of methyl groups to the base molecule dramatically increases the
binding constant (K) for intercalation between DNA base pairs. The data in Table 3
illustrate this phenomenon for angelicin and three of its methyl derivatives [25].

TABLE 3
Effect of Methyl Substituentsa

Solubility K
ug/ml 1/mole

Angelican (ANG) 20 560
MeANG 7 1,270
Me2ANG 5 3,760
Me3ANG 5,700

aAverages for several synthetic angelicans; data from [25]
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TABLE 4
Properties of Synthetic Psoralens

Intercalated
Solubility K/II3 Psoralens per

Compound Mg/ml 1/mole 106 Bases % Inhibition'

8-MOP 38 0.77 390 30
AMT I04 152 50,000 96
5-MOP 5 2.8 1,400
4',5-Dimethyl-

angelicin (DMA) -8b 1.5 700 45

aInhibition of lymphocyte proliferation assayed by tritiated thymidine incorporation after treatment with
10 ng/ml of the indicated psoralen and 3 J/cm2 UVA light
bData from [25]
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FIG. 8. Comparison of synthetic psoralens to 8-MOP in the inhibition of lymphocyte

proliferation. Lymphocytes (106/ml) were irradiated (3 J/cm2 UVA) in the presence of
each psoralen at the indicated concentrations (for molecular structures of these
compounds see [Berger CL, Cantor CR, Welsh J, Dervan P, Begley T, Grant S,
Gasparro FP, Edeleon RL: Ann NY Acad Sciences 440:80-90, 1985). Relative
stimulation indices were computed by comparing the stimulation index in the presence of
a test compound to that for a non-irradiated sample containing no test compound.
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However, each additional methyl group makes the compound somewhat less water-
soluble and thus less easily delivered as a therapeutic drug. To combat these problems,
Isaacs et al. [26] synthesized a water-soluble form of 4,5',8-trimethylpsoralen (TMP)
by substituting an amino methyl group at the 4' position of TMP, yielding 4'-
aminomethyl-4,5',8-trimethylpsoralen, or AMT. Under physiological conditions the
amino group carries a positive charge, thereby increasing its water solubility more than
a thousandfold. Furthermore, the synergistic effects of the additional methyl groups
and the positively charged amino group which can form a salt bridge with the
phosphate moiety in the DNA backbone lead to a comparable increase in the
intercalation binding constant. Thus, in comparison to 8-MOP under identical
conditions, more than I100 times as much AMT can be intercalated between DNA base
pairs (Table 4). This increased level of intercalation has an important effect. A higher
extent of intercalation means that proportionately lower doses of light are required to
form adducts. Furthermore, side reactions such as singlet oxygen formation or the
formation of psoralen-psoralen photoadducts are minimized.
Two other psoralens, 5-MOP and TMP, have been used clinically [27]. We have

been fortunate to obtain some synthetic psoralens as well as a series of psoralen analogs
known as angelicins, which differ by virtue of their angular arrangement of the
three-ring system. In an assay for the inhibition of lymphocyte proliferation, only one
of the synthetic psoralens, AMT, showed a significantly greater activity than 8-MOP
(Fig. 8). The potency ofAMT is further demonstrated in Fig. 9 which shows that, with
the same dose of UVA light, it can be activated at 20-50 times lower concentrations
than 8-MOP. The particular effectiveness of AMT can be traced to the combined
effects of the three methyl groups and the positively charged amino group which
enhance the AMT-DNA binding constant. We have performed similar assays on
several angelicins, which, owing to their geometry, cannot form cross-links. When their
activity was compared to that for 8-MOP (Fig. 10) several were found to be
comparable in potency, calling into question the long-held dogma that cross-links alone
are responsible for the activity of psoralens. Rodighiero et al., from whom we received
the angelicins, had shown previously that these compounds were clinically effective in
the treatment of psoriasis [28]. In a series of papers, these authors have systematically
demonstrated how the number of methyl substituents and their location can affect the
photobiological activity of angelicins.
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In addition to the composition of DNA, the reactivity of psoralens also depends on

the nature of the psoralen substituents. Hearst et al. have shown that the number and
location of methyl substituents on 8-MOP alters the yield and distribution of
monoadducts in poly(dAdT) (Table 5). However, to date these studies have been
performed on DNA in vitro. At present these are the only type of data that is available
on psoralen reactivity toward nucleic acids. Under in vitro conditons in aqueous

solutions, DNA exists in an extended double helical structure. Under in vivo
conditions, however, as a result of DNA protein contacts, DNA is tremendously
compacted as it is wound around proteins. The accompanying conformational changes
can drastically alter the nature and availability of psoralen binding sites.
One of our goals is to use monoclonal antibodies as highly specific probes in

combination with DNA sequencing methods to ascertain the location and identity of
psoralen photoadducts in human DNA and to follow the repair or lack of repair of
these adducts after extracorporeal photopheresis. The extension of these studies to
other psoralens can lead to the rational development of more potent psoralen
derivatives.

TABLE 5
Effect of Position of Methyl Substitution on Adduct Yield (%)

Compound 3,4-monoadduct 4',5'-monoadduct

8-MOP 19 75
4-methyl-8-MOP 2 94
5'-methyl-8-MOP 17 73
4,5'-dimethyl-8-MOP 2 94

Note: Data from [29]
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FIG. 11. Gilvocarcin: structure and
absorption spectrum. Replacement of

350 400 450 5010 the exocyclic vinyl group with a methyl
group destroys the activity of this class

WAVELENGTH, n m of antitumor antibiotics (see [31])

OTHER PHOTOACTIVATABLE DRUGS

We have also examined the potential therapeutic suitability of gilvocarcin, whose
structure and absorption spectrum are shown in Fig. 11. Gilvocarcin is an antitumor
antibiotic first isolated from streptomycetes [30]. The particular potency of this
compound after photoactivation was first observed in a bacteriophage lysogenic assay
[31]. While microgram quantities of this drug are capable of nicking DNA in the dark,
we found that picogram quantities of gilvocarcin can be photoactivated with UVA or
visible light (1-3 J/cm2) to induce the same level of single-strand breaks in superheli-
cal DNA [32]. Figure 12 shows that gilvocarcin at concentrations 100 times lower than
8-MOP is a potent inhibitor of DNA synthesis in mitogen-stimulated lymphocytes
after irradiation with long-wavelength UV light or visible light.

TARGETED DELIVERY OF PHOTOPHARMACOLOGIC AGENTS

The concept of using monoclonal antibodies to target toxic substances specifically to
a specific cell population has been demonstrated in vitro [33]. However, the in vivo
application of this technology is fraught with several difficulties. Chief among these is
that humans treated with such antibodies may develop an immunologic response to the
murine monoclonal antibodies to which the drug has been attached [34]. To circum-
vent this obstacle, we have been interested in the development of insulin, a species with
relatively low immunogenicity, as a carrier molecule for photoactivatable substances.
Murphy et al. [35] demonstrated that insulin is selectively bound and internalized by
activated lymphocytes. We wished to take advantage of this specificity by covalently
attaching a psoralen derivative to insulin and thus have created AMT-insulin [Yemul
S, Knobler RM, Gasparro FP; unpublished data]. Gel electrophoresis analysis on 1
percent agarose gels, as described above, showed that this chimeric molecule retained
its ability to cross-link DNA. Furthermore, when lymphocytes were treated with
AMT-insulin, cell viability, as gauged by trypan blue exclusion, was selectively
affected in those cells exposed to UVA light but not those kept in the dark (Fig. 13).
Only stimulated cells take up insulin. The data in the left panel of Fig. 13 show that the
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viability of lymphocytes stimulated with PHA was reduced over a five-day period,
while unstimulated cells (right panel) were not affected.

Using another targeting strategy Yemul et al. have synthesized liposomes contain-
ing twofold specificity. Photoactivatable pyrene has been incorporated in the lipid
bilayers. To direct the pyrene-containing liposomes to malignant T cells, T cell-specific
monoclonal antibodies have been covalently attached to the liposome surface [36].
Thus the antibody-directed liposomes were selectively bound to a targeted subset of
lymphocytes in the total human peripheral blood lymphocytes. After UVA irradiation,
the T cells were selectively killed.

SUMMARY

The specific delivery of compounds to selected tissue and their activation by light in
situ (thus sparing other uninvolved tissue) can dramatically increase the therapeutic
index of a pharmacologic agent. Application of the techniques of molecular biology
will permit the design of drugs with specific and selective activity. For example, in the
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case of psoralens, the effects of substituents on photoadduct yields and the identifica-
tion of those adducts responsible for mutagenic and possibly carcinogenic effects can
lead to the rational design of more potent and safer psoralen derivatives.
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