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Abstract: Background: Chagas disease, also known as American trypanosomiasis, is a potentially
life-threatening illness caused by the protozoan parasite Trypanosoma cruzi. No progress in the
treatment of this pathology has been made since Nifurtimox was introduced more than fifty years
ago, and this drug is considered very aggressive and may cause several adverse effects. This drug
currently has severe limitations, including a high frequency of undesirable side effects and limited
efficacy and availability, so research to discover new drugs for the treatment of Chagas disease
is imperative. Many drugs available on the market are natural products as found in nature or
compounds designed based on the structure and activity of these natural products. Methods: This
study evaluated the in vitro antiparasitic activity of a series of previously synthesized stilbene and
terphenyl compounds in T. cruzi epimastigotes and intracellular amastigotes. The action of the most
selective compounds was investigated by flow cytometric analysis to evaluate the mechanism of cell
death. The ability to induce apoptosis or caspase-1 inflammasomes was assayed in macrophages
infected with T. cruzi after treatment, comparing it with that of Nifurtimox. Results: The stilbene
ST18 was the most potent compound of the series. It was slightly less active than Nifurtimox in
epimastigotes but most active in intracellular amastigotes. Compared to Nifurtimox, it was markedly
less cytotoxic when tested in vitro on normal cells. ST18 was able to induce a marked increase in
parasites positive for Annexin V and monodansylcadaverine. Moreover, ST18 induced the activation,
in infected macrophages, of caspase-1, a conserved enzyme that plays a major role in controlling
parasitemia, host survival and the onset of the adaptive immune response in Trypanosoma infection.
Conclusions: The antiparasitic activity of ST18 together with its ability to activate caspase-1 in
infected macrophages and its low toxicity toward normal cells makes this compound interesting for
further clinical investigation.

Keywords: Trypanosoma cruzi; stilbene ST18; terphenyl TR4

1. Introduction

Trypanosoma cruzi (T. cruzi) is a protozoan parasite primarily transmitted by triatomine
insects. It is the agent of Chagas disease, an endemic pathology in Latin America that
affects about 6–8 million people worldwide [1] and causes approximately 50,000 deaths per
year. The T. cruzi life cycles begin with insects sucking the blood of infected vertebrates with
trypomastigote forms circulating in the bloodstream. Surviving trypomastigotes transform,
after a few days, into a spherical stage, known as epimastigote stages. Epimastigotes
migrate into the intestine where they divide intensely and are secreted by intestinal cells [2].
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This intracellular pathogen invades a number of different cells, including macrophages
and replicates within their cytoplasm. Macrophages, when inactivated, are susceptible
to infection with trypomastigote forms of T. cruzi. Control of the parasite immediately
after infection requires a robust inflammatory immune response. The acute phase ends
when T. cruzi replication is suppressed by an effective T helper 1 cell response. However,
infection persists in the absence of treatment, and failure to adequately down-regulate the
inflammatory response appears to play a central role in the pathogenesis of chronic Chagas
cardiomyopathy. The innate immune response against T. cruzi involves recruitment of
the NLRP3 (nod-like receptor family pyrin domain containing 3) inflammasome with a
caspase recruitment domain. These effects resulted in increased survival of the parasite
within these macrophages, supporting the protective role of the inflammasome in infection
control and protective role for the inflammasome in restricting parasite replication [3].

Only two nitroheterocyclic drugs, Nifurtimox and benznidazole, are available for
the treatment of Chagas disease. These drugs have severe limitations, including a high
frequency of undesirable side effects, long protocols for treatment and limited efficacy and
availability, although they are effective for the treatment of acute infections. Experimental
toxicity studies with Nifurtimox have evidenced neurotoxicity, testicular damage, ovarian
toxicity and deleterious effects in adrenal, colonic, esophageal and mammary tissue, which
frequently necessitate the cessation of treatment. In the case of benznidazole, deleterious
effects on the adrenals, colon and esophagus have been observed. Both drugs exhibited
significant mutagenic effects and were shown to be tumorigenic or carcinogenic in some
studies [4,5]. Natural products have always been a source of a great variety of bioac-
tive molecules, mostly substances from organisms’ secondary metabolism. Many drugs
available on the market are natural products as found in nature or compounds designed
based on the structure and activity of these natural products (semi-synthetic or completely
synthetic) [6]. Recently, several natural and synthetic stilbenes and terphenyls have been
studied for their anticancer and leishmanicidal properties [7–10]; in particular, we eval-
uated the antileishmanial activity of two compounds, a trans-stilbene derivative and a
terphenyl derivative, namely, trans-1,3-dimethoxy-5-(4-methoxystyryl) benzene (ST18) and
3,4′ ′,5-trimethoxy-1,1′:2′,1′ ′-terphenyl (TR4), which presented the best activity and safety
profiles [11,12].

In the current study, we evaluated the in vitro antiparasitic activity, in T. cruzi epi-
mastigotes, of a series of cis- and trans-stilbene derivatives in which a variety of substituents
were introduced at positions 2′, 3′ and 4′ of the stilbene scaffold, while the 3,5-dimethoxy
motif was maintained. Additionally, we studied a series of terphenyl compounds incorpo-
rating a phenyl ring as a bioisosteric substitution of the stilbene alkenyl bridge that could
enable the discovery of a natural product-based drug.

We observed that the stilbene ST18 was endowed with potent antiparasitic activity in
both T. cruzi epimastigotes and intracellular T. cruzi amastigotes. Compared to Nifurtimox,
it was markedly less cytotoxic when tested in vitro on normal and differentiated cells.
Moreover, this compound induced the activation, in infected macrophages, of caspase-1,
an evolutionarily conserved enzyme that plays a major role in controlling parasitemia, host
survival and the onset of the adaptive immune response in T. cruzi infection.

2. Results
2.1. Anti-Trypanosoma cruzi Activity

Table 1 shows the in vitro antiparasitic effects evaluated as the IC50s of different
stilbenes (ST18, 1–10) and terphenyls (TR4, 11–15) in T. cruzi epimastigotes.

These compounds were previously synthesized by us, except ST18 and 6, which were
reported by Kim et al. [13]. The data were compared to those obtained with Nifurtimox, the
drug currently used for the treatment of T. cruzi infection. The most active compounds of the
series were the stilbene ST18 (IC50 = 4.6 µM) and the terphenyl TR4 (IC50 = 30 µM). Figure 1
shows the in vitro effects of Nifurtimox, ST18 and TR4 used at increasing concentrations
for 72 h in T. cruzi epimastigotes. ST18 was markedly more potent than TR4 but less active
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than Nifurtimox. Upon entering the mammalian host, T. cruzi parasites transform into
the amastigote stage, residing inside the phagolysosomal vacuoles of macrophages. We
evaluated the anti-amastigote efficacy in differentiated macrophage cells (derived from
U937 cells) infected with T. cruzi, as reported in the Materials and Methods. Infected
macrophages were treated with Nifurtimox, ST18 and TR4 at increasing concentrations for
72 h. Differently from the results obtained in epimastigotes, the antiparasitic effect of ST18
in infected macrophages was higher than that observed using Nifurtimox.

Table 1. IC50 values of stilbenes (ST18, 1–10), terphenyls (TR4, 11–15) and Nifurtimox in Trypanosoma
cruzi epimastigotes.

Compound Structure IC50
1 (µM) ± SE 2

ST18
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Table 1. Cont.

Compound Structure IC50
1 (µM) ± SE 2
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Figure 1. Effects of the compounds Nifurtimox, ST18 and TR4 in Trypanosoma cruzi epimastigotes
and intracellular amastigotes. (a) Number of viable T. cruzi epimastigotes expressed as percentage
of untreated control after 72 h exposure to increasing concentrations of Nifurtimox, ST18 and TR4.
(b) Number of intracellular amastigotes expressed as percentage of the untreated control after 72 h
treatment with Nifurtimox, ST18 and TR4. Bars indicate the means ± SEs from four independent
experiments. Data obtained are statistically significant at p < 0.05.

2.2. Mammalian Cell Cytotoxicity and SI

Primary epithelial cells of Cercopiteco (CPE) and macrophages derived by the differ-
entiation of U937 cells were treated with increasing concentrations of ST18 and Nifurtimox.
The cytotoxicity was evaluated after 72 h through the MTT assay. ST18 showed very low
cytotoxicity in both cell lines compared to Nifurtimox. In macrophages, the IC50 of ST18
was 143 µM, while the IC50 of Nifurtimox was 28 µM, with an SI of 31 for ST18 and 8.75 for
Nifurtimox. In CPE, the IC50s of ST18 and Nifurtimox were 155 and 77 µM, respectively,
with an SI of 33.7 for ST18 and 24 for Nifurtimox. (Figure 2).
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toxic effects of compounds ST18 and Nifurtimox in primary epithelial cells of Cercopiteco (CPE).
(b) Cytotoxic effects of compounds ST18 and Nifurtimox in U937 macrophage cells. Bars indicate
the means ± SEs from four independent experiments. Data obtained are statistically significant at
p < 0.05.

2.3. Cell Cycle

The effects of Nifurtimox, ST18 and TR4 on the cell cycle distribution of T. cruzi
were analyzed using a FACScan flow cytometer. To exclude dead cells that are often
located in a sub-G0–G1 peak in the study of the cell cycle, we decided to study the effects
of each compound on the cell cycle by treating the parasites for a period of time and
with concentrations of each compound that caused a block of cell growth (evaluated by
counting the parasites in a hemocytometer) without causing a relevant number of dead
cells (evaluated by trypan blue staining). Since, after 72 h of treatment, the cell growth
inhibition was associated with an increase in cell death (data not shown), we studied the
effects of each compound on the cell cycle after only 48 h of drug exposure, treating the
parasites with 35 µM Nifurtimox, 50 µM ST18 and 90 µM TR4. This treatment caused a
complete block of cell growth, with a percentage of dead cells lower than 10%. The cell cycle
distribution was analyzed using the standard propidium iodide procedure. Nifurtimox did
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not result in important variations in the cell cycle distribution, but caused a slight reduction
in the G2M peak. By contrast, ST18 caused an evident block in G2M, while TR4 resulted in
a block in G1 (Figure 3).
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Figure 3. Effects of Nifurtimox, ST18 and TR4 on DNA content in/number of Trypanosoma cruzi
epimastigotes. The parasites were cultured without compound (control, Panel (a) or with 35 µM
Nifurtimox (Panel (b), 50 µM ST18 (Panel (c) and 90 µM TR4 (Panel (d). Cell cycle distribution was
analyzed using the standard propidium iodide procedure. G1, S and G2–M cells are indicated in
(Panel (a)).

2.4. Flow Cytometry Analysis of Physical Parameters (Cell Size and Granularity)

We studied the physical parameters of T. cruzi parasites treated with Nifurtimox, ST18
and TR4 using a FACScan flow cytometer as previously reported by Jimenez et al. [14].
Figure 4a shows density plots for forward scatter (FSC) versus side scatter (SSC) in T. cruzi
epimastigotes untreated or treated with 35 µM Nifurtimox, 50 µM ST18 and 90 µM TR4
for 72 h. The measurement of forward scatter allows for the discrimination of cells by size.
The FSC intensity is proportional to the diameter of the cell. Side scatter measurement
provides information about the internal complexity (i.e., granularity) of a cell. The analysis
of the density plot of Trypanosome epimastigotes treated with Nifurtimox shows a marked
reduction in the average cell size compared to the control. By contrast, the FACS analysis of
Trypanosome epimastigotes treated with ST18 shows a heterogeneous population charac-
terized by parasites with low dimension and parasites with increased size and granularity.
No important modifications were observed with TR4. These data are confirmed by the
FACS histograms as shown in Figure 4b.
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2.5. Annexin V and MDC Labeling

The loss of cell volume or cell shrinkage is a hallmark of the early phase of the
apoptotic process. In order to confirm whether the volume reduction of parasites was
related to apoptosis, the exposure of phosphatidylserine at the cell surface was analyzed
by an Annexin V labeling test after treatment with Nifurtimox, ST18 and TR4. A significant
increase in the percentage of parasites positive for Annexin V was observed after treatment
with Nifurtimox and, to a lesser extent, after treatment with ST18 (Figure 5).

Since the analysis of the physical parameters of T. cruzi treated with ST18 also showed
a cell population with increased size and granularity, parameters that are hallmarks of
the autophagic process, the parasites were treated with monodansylcadaverine (MDC), a
specific fluorescent marker for autophagic vacuoles [15]. About 30% of the parasites treated
for 72 h with 40 µM ST18 were strongly positive in the MDC test, showing numerous
fluorescent vacuoles in the cytoplasm. These vacuoles were not observed in the untreated
control and in samples treated with Nifurtimox or TR4 (data not shown) (Figure 6).
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Figure 5. Analysis of phosphatidylserine (PS) extracellular exposure. Representative dot plot of FACS analysis for
PS exposure, measured by double staining with Annexin V-FITC and propidium iodide (PI) in T. cruzi epimastigotes
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representative of three separate experiments.
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Figure 6. Autophagic induction by ST18 in Trypanosoma cruzi epimastigotes. Parasites were incubated
with 0.05 mM MDC in PBS at 37 ◦C for 10 min and observed under a fluorescent microscope, Nikon
Eclipse E 200 (100×). (a,b): Control. (c,d): T. cruzi epimastigotes treated for 72 h with 40 µM ST18.
Eclipse E 200 (100×). a and b: Control. (c,d): T. cruzi epimastigotes treated for 72 h with 40 µM ST18.

2.6. Caspase-1

Infection with T. cruzi results in the activation of caspase-1 and inflammasome forma-
tion. The inflammasome is indispensable for controlling parasitemia, host survival and the
onset of the adaptive immune response [3]. In this context, inflammasome activation is fully
dependent on caspase-1. We evaluated the levels of active caspase-1 in U937 macrophages
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infected with T. cruzi after treatment with Nifurtimox, ST18 and TR4. In macrophages
infected with trypanosomes and treated with ST18, spectrophotometric analysis showed a
substantial increase in active caspase-1 compared to the control. By contrast, no increase in
caspase-1 was observed in samples of infected macrophages treated with Nifurtimox or
TR4 or in uninfected macrophages treated with ST18 (Figure 7).
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3. Discussion

We evaluated the in vitro antiparasitic effects, in T. cruzi epimastigotes, of a series of
cis- and trans-stilbenes bearing a 3,5-dimethoxy motif at the A phenyl ring and an amino,
methoxy and hydroxyl function at the 2′, 3′- and/or 4′-positions at the B phenyl ring.
Moreover, in an attempt to increase the chemical diversity of the compounds, we studied a
small series of terphenyl derivatives that notably do not bear the ethylene double bond
that is the main reason for the chemical and metabolic instability of stilbenes [3,15]. The
data were compared to those obtained with Nifurtimox, which is the drug currently used
for the treatment of Trypanosome infections. Among the stilbene series, ST18 bearing a
4′-methoxy function was the most active compound, showing an IC50 of 4.6 ± 0.4 µM. Re-
garding the terphenyl derivatives, the best results were obtained with the trimethoxylated
compound TR4 (IC50 = 30± 4.3), which is an ortho-terphenyl analogue of ST18. Nifurtimox
was more active than ST18 in T. cruzi epimastigotes but less active in intramacrophagic
T. cruzi amastigotes.

The most interesting data observed in this study were the difference in the selectivity
index values between ST18 and Nifurtimox. Nifurtimox is a drug with several adverse
effects including mutagenic and tumorigenic effects [5]. ST18 has been described in the liter-
ature by different names, including resveratrol trimethyl ether (RTE) [16,17], MR-3 [18,19],
M-5 [20], BTM-0521 [21], trimethoxy resveratrol [22], trimethylated resveratrol [23] and
TMS [17,24]. It is a natural stilbene isolated from Virola cuspidata and Virola elongata
bark [24,25]. Natural stilbenes have received increasing attention due to their potent
antioxidant properties and their marked effects in the prevention of various oxidative-
stress-associated diseases such as cancer [25]. A number of clinical trials using natural
stilbenes such as resveratrol and pterostilbene have shown that they are therapeutically
effective and pharmacologically safe because they show no organ-specific or systemic
toxicity [26–30]. Preclinical pharmacokinetic studies have shown that ST18 has appropriate
pharmacokinetic profiles that make it a promising drug candidate for further pharmaceuti-
cal development [16]. It exhibited anti-proliferative and/or apoptosis-inductive activities
in various cancer cells, with a potency usually higher than that of resveratrol [17,20,31–33].
Moreover, it has shown anti-inflammatory [34–37], gastroprotective [38] and hepatopro-
tective activities [23]. Here, we have demonstrated that ST18 showed very low toxicity
toward monocytic and macrophagic cells, and the SI for T. cruzi parasites was higher than
that calculated for Nifurtimox.
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Several studies have shown that Nifurtimox induces the production of reactive oxygen
species (ROS) and subsequent apoptosis in neoplastic cells [39–41]. While programmed cell
death is very controversial in unicellular eukaryotes, we observed that Nifurtimox caused a
marked reduction in the average cell size of T. cruzi epimastigotes and a significant increase
in the percentage of parasites positive for Annexin V. This compound did not cause, in
the parasites, an increase in MDC, an important marker of autophagy. By contrast, ST18
produced a heterogeneous population characterized by parasites with low dimension and
parasites with increased size and granularity. ST18 induced an increase in both Annexin V-
and MDC-positive parasites.

Several studies have reported the activation of the autophagic process in Trypanoso-
matids during starvation responses and lifecycle developments. Moreover, endoplas-
mic reticulum (ER) stress and antiparasitic drugs can induce autophagy in T. brucei and
T. cruzi [42–44]. In our experiments, ST18 caused both phosphatidylserine expression and
dansylcadaverina staining in T. cruzi, suggesting that this compound could be capable of
activating both apoptosis and autophagy.

Lim et al. [45] obtained similar results in T. brucei rhodesiense using two piperidine
alkaloids, (+)-spectaline and iso-6-spectaline. These compounds caused the formation of
autophagic vacuoles that were susceptible to monodansylcadaverine staining, indicating
the activation of the autophagic process. When trypanosomes were treated with piperidine
alkaloids for 72 h, they showed apoptotic aspects, including phosphatidylserine exposure.

Several studies have demonstrated that autophagy and apoptosis communicate with
each other to decide the fate of the cell during physiological and pathological condi-
tions [46]. It has been supposed that, after the activation of stress or drug-induced au-
tophagy, when the stress condition increases towards a point of no return, cells block
autophagy and activate programmed cell death. Interestingly, the analysis of the cell cycle
showed that both Nifurtimox and TR4 caused a decrease in parasites in the G2M phase of
the cell cycle, while ST18 resulted in an important block in G2M. A correlation between
G2M block and autophagy activation has been observed in different experimental models,
but the precise mechanism by which microtubule-targeting agents induce autophagic cell
death is not known [47–50].

Finally, we observed that ST18, but not TR4 and Nifurtimox, induced a marked in-
crease in active caspase-1 in T. cruzi-infected macrophages. The capability of ST18 to
activate caspase-1 in T. cruzi-infected macrophages may, in part, explain the greater an-
tiparasitic effect of ST18 than Nifurtimox in intramacrophagic trypanosomes. In fact,
Yu et al. [51] demonstrated that canonical inflammasome activation triggers ROS produc-
tion in macrophages in a caspase-1-dependent manner. Reactive oxygen species (ROS)
protect the host against a large number of pathogenic microorganisms including try-
panosomes [52,53].

4. Materials and Methods
4.1. Parasite Cultures

A strain of T. cruzi taken from a stock archive of the OIE Reference Laboratory Na-
tional Reference Center for Leishmaniasis (C.Re.Na.L. Palermo, Italy) was cultured in
25 cm2 flasks (Falcon) at 25 ◦C and pH 7.18 in RPMI-PY medium, which consisted of
RPMI 1640 (Sigma R0883) supplemented with an equal volume of Pepton-yeast medium,
10% fetal bovine serum (FBS), 1% glutamine, 250 µg/mL gentamicin and 500 µg/mL
5-fluorocytosine [54].

4.2. Compound and Sample Preparation

The compounds ST18 and 6 were synthesized as reported by Kim et al. [13]; com-
pounds 1–5 and 8–10 were prepared as previously described by us [8]; compounds 7, TR4
and 13–14 were prepared as previously described by us [9]; 15 was synthesized as reported
by Pizzirani et al. [7]. The purity of the compounds was determined by elemental analyses
and was ≥97%. Each compound was dissolved in dimethyl sulfoxide (DMSO) to make a
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stock solution at a concentration of 20 mM, stored at −20 ◦C and protected from light. In
each experiment, the DMSO never exceeded 0.2%, a percentage that did not interfere with
cell growth. Nifurtimox was obtained from Merck Sigma-Aldrich (Milano, Italy).

4.3. Epimastigote Viability Assay

To evaluate the effects of compounds in cultures of T. cruzi, a viability assay protocol
similar to that described by Castelli et al. [11] was used with some modifications. Expo-
nentially growing T. cruzi were dispensed at a concentration of 4 × 106/mL in 25 m2 flasks
(Falcon) and treated with increasing concentrations (from 1 to 200 µM) of each compound.
After 72 h of treatment, the parasites were centrifugated and resuspended in 1 mL of RPMI-
PY medium. The suspension of T. cruzi from each treatment was mixed with 0.4% trypan
blue solution at a ratio of 3:1 (v/v). The percentage vitality of T. cruzi was observed by
counting in a Bürker hemocytometer for the enumeration of stained and unstained cells,
taken respectively as the dead and living cells, in comparison with those for the control
culture (100% viability). The IC50 (half maximal inhibitory concentration) was evaluated
after 72 h and was calculated by regression analysis (GraphPad software).

4.4. Effects of Compounds in Intracellular Amastigotes

U937 monocytic cells (1 × 105 cells/mL) in the logarithmic phase of growth were
plated onto chamber Lab Tek culture slides in 2.5 mL of RPMI 1640 (Sigma) 10% FBS
medium containing 25 ng/mL of phorbol 12-myristate 13-acetate (Sigma) for 18 h to induce
macrophage differentiation.

After incubation, the medium was removed by washing twice with RPMI 1640 medium.
Non-adherent cells were removed and the macrophages were further incubated overnight
in RPMI 1640 medium supplemented with 10% FBS. Then, the adherent macrophages
were infected with T. cruzi epimastigotes at a parasite/macrophage ratio of 50:1 for 24 h
at 37 ◦C in 5% CO2. Free epimastigotes were removed by three extensive washes with
RPMI 1640 medium, and the infected macrophages were either incubated for 48 h in
medium alone (control) or incubated with Nifurtimox, ST18 or TR4. To stain intracellular
amastigotes, cells were fixed with iced methanol to permeabilize the cell membranes
to ethidium bromide and stained with 100 µg/mL ethidium bromide. The number of
amastigotes was determined by examining three coverslips for each treatment. At least
200 macrophages were counted by visual examination under 400× magnification using
a fluorescence microscope, Nikon Eclipse E200 (Nikon Instruments Europe, Amsterdam,
The Netherlands), equipped with a green filter, to determine the number of intracellular
amastigotes. The number of intracellular amastigotes in the samples treated with each
compound was expressed as a percentage of the untreated control.

4.5. Mammalian Cell Cytotoxicity

The potential cytotoxic action of each compound was checked using the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylterazolium bromide (MTT) assay on macrophages
derived from U937 cells and in primary epithelial cells of Cercopiteco (CPE). Macrophages
and CPE cells were cultured in RPMI 1640 (Sigma) supplemented with 10% fetal bovine
serum (FBS, Gibco), penicillin (100 IU/mL) and streptomycin (100 mg/mL). The cells
were grown at 37 ◦C in 5% CO2 and passaged twice a week. In each experiment, the
cells (105/well) were incubated in 96-well plates overnight in a humidified 5% CO2 atmo-
sphere at 37 ◦C to ensure cell adherence. After 24 h, the cells were treated with increasing
concentrations of each compound. Non-treated cells were included as a negative control.
After 72 h of incubation with each compound, the MTT (5 mg/mL) was added to each
well and incubated at 37 ◦C for 4 h. Then, the medium and MTT were removed, the
cells were washed using PBS and 200 µL of DMSO was added to dissolve the formazan
crystals. The absorbance was measured using a microplate reader Spectrostar Nano (BMG
LabTech) at 570 nm. The reduction of MTT to insoluble formazan was performed by the
mitochondrial enzymes of the viable cells and so was an indicator of cell viability. Therefore,
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decreases in absorbance indicate toxicity to the cells. The viability was calculated using the
following formula: [(L2/L1) × 100], where L1 is the absorbance of the control cells and
L2 is the absorbance of the treated cells. The IC50 was calculated by regression analysis
(GraphPad software).

The selectivity index (SI) was determined by dividing the IC50 calculated for the
mammalian cells by the IC50 calculated for the T. cruzi parasites.

4.6. Cell Cycle Analysis by Flow Cytometry

Epimastigotes (4 × 106) were incubated for 48 h with each compound at 26 ◦C.
Afterward, the parasites were washed 3 times with PBS containing 0.02 M EDTA to avoid
clumps and were then fixed with cold methanol for 24 h. The parasites were resuspended in
0.5 mL of PBS containing RNase I (50 µg/mL) and PI (25 µg/mL) and were then incubated
at 25 ◦C for 20 min. The material was kept on ice until analysis. The stained parasites were
analyzed using single-parameter frequency histograms by using a FACScan flow cytometer
(Becton Dickinson, San Jose, CA, USA).

4.7. Cell Volume Determination

Epimastigotes were collected by centrifugation at 1000× g, washed twice in PBS,
resuspended in PBS to 500 × 103 parasites/mL and analyzed using a FACScan flow
cytometer (Becton Dickinson, San Jose, CA, USA). Density plots of the forward (FSC)
versus side (SSC) scatter represent the acquisition of 10 × 103 events.

4.8. Determination of Apoptosis by Annexin V

The externalization of phosphatidylserine on the outer membranes of the parasites
with and without treatment was determined by using an Annexin V labeling kit following
the manufacturer’s protocol (Annexin-V-FITC Apoptosis Detection Kit Alexis, Switzer-
land). Briefly, epimastigotes (2 × 106) were washed with PBS and centrifuged at 500× g for
5 min. The pellet was suspended in 100 µL of staining solution containing FITC-conjugated
Annexin V and propidium iodide (Annexin-V-Fluos Staining Kit, Roche Molecular Biochem-
icals, Germany) and incubated for 15 min at 20 ◦C. The Annexin V-positive parasites were
determined by using a FACScan flow cytometer (Becton Dickinson, San Jose, CA, USA).

4.9. Monodansylcadaverine Labelling

Monodansylcadaverine (MDC), which is an autofluorescent compound due to the dan-
syl residue conjugated to cadaverine, has been shown to accumulate in acidic autophagic
vacuoles. The concentration of MDC in an autophagic vacuole is the consequence of an
ion-trapping mechanism and an interaction with lipids in autophagic vacuoles (autophagic
vacuoles are rich in membrane lipids). The use of MDC staining is a rapid and convenient
approach by which to assay autophagy, as shown in cultured cells [15]. Autophagic vac-
uoles were labeled with MDC by incubating cells on coverslips with 0.05 mM MDC in
PBS at 37 ◦C for 10 min. After incubation, the cells were washed four times with PBS and
immediately analyzed by fluorescence microscopy (Nikon Eclipse E 200, Japan) equipped
with a blue filter. Images were obtained with a Nikon Digital Sight DS-SM (Nikon, Japan)
camera and processed using the program EclipseNet, version 1.20.0 (Nikon, Japan).

4.10. Caspase-1 Detection

To evaluate the level of active caspase-1, the U937 cell line in macrophagic form
infected with T. cruzi was used. Infected macrophages were incubated for 24 h at 37 ◦C
in 5% CO2. Free parasites were removed by extensive washing with RPMI 1640 medium,
and infected cells were either incubated in medium alone (infection control) or incubated
with each compound. After 48 h, the culture medium was removed and treated with the
caspase-1 assay kit (Promega) following the manufacturer’s instructions.
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4.11. Statistical Analysis

All the assays were performed by two observers with three replicate samples and
repeated with three new batches of parasites. The means and standard errors of at least
three experiments were determined. The differences between the mean values obtained for
the experimental groups were evaluated using Student’s t test. p-values of 0.05 or less were
considered significant. The entire statistical analysis was performed using the GraphPad
Prism 5 software. The IC50 values were calculated by linear regression.

5. Conclusions

In conclusion, after testing 17 different compounds previously designed and synthe-
sized by us, we selected a stilbene compound, ST18, endowed with potent antiparasitic
activity in T. cruzi epimastigotes and intracellular amastigotes. The antiparasitic activity
of ST18 together with its ability to activate caspase-1 in infected macrophages and its low
toxicity toward normal cells makes this compound interesting for further biological and
clinical studies in T. cruzi.
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