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Abstract

Motivation: Simulation is an essential technique for generating biomolecular data with a ‘known’ history for
use in validating phylogenetic inference and other evolutionary methods. On longer time scales, simulation
supports investigations of equilibrium behavior and provides a formal framework for testing competing
evolutionary hypotheses. Twenty years of molecular evolution research have produced a rich repertoire of
simulation methods. However, current models do not capture the stringent constraints acting on the domain
insertions, duplications, and deletions by which multidomain architectures evolve. Although these processes
have the potential to generate any combination of domains, only a tiny fraction of possible domain combina-
tions are observed in nature. Modeling these stringent constraints on domain order and co-occurrence is a fun-
damental challenge in domain architecture simulation that does not arise with sequence and gene family
simulation.

Results: Here, we introduce a stochastic model of domain architecture evolution to simulate evolutionary
trajectories that reflect the constraints on domain order and co-occurrence observed in nature. This
framework is implemented in a novel domain architecture simulator, DomArchov, using the Metropolis–
Hastings algorithm with data-driven transition probabilities. The use of a data-driven event module enables
quick and easy redeployment of the simulator for use in different taxonomic and protein function contexts.
Using empirical evaluation with metazoan datasets, we demonstrate that domain architectures simulated by
DomArchov recapitulate properties of genuine domain architectures that reflect the constraints on domain order
and adjacency seen in nature. This work expands the realm of evolutionary processes that are amenable to
simulation.

Availability and implementation: DomArchov is written in Python 3 and is available at http://www.cs.cmu.edu/
~durand/DomArchov. The data underlying this article are available via the same link.

Contact: mstolzer@andrew.cmu.edu or durand@cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Simulation is an essential technique for studying protein evolution,
where most processes of interest act on the time scales that exceed a
human lifetime. However, modeling the evolution of multidomain
proteins poses special challenges.

Multidomain proteins are mosaics of sequence segments that en-
code structural or functional modules (Fig. 1), called domains.
Domains act as independent units that may be found in many, other-
wise unrelated proteins. Modular domains are able to fold correctly
in multiple sequence contexts.

The domain content of a protein sequence (Fig. 1a) can be deter-
mined by scanning a database of probabilistic domain models that
encode the variation in the residue observed at each position of a
multiple alignment of a domain superfamily (Blum et al., 2021;
Letunic et al., 2006; Lu et al., 2020; Mistry et al., 2021). The result
of such a scan is (Fig. 1c) the sequence of ‘tokens’ (e.g. domain

names or ids) representing constituent domains in N- to C-terminal
order (Vogel et al., 2004). In this domain architecture representation,
the amino acid sequence of the domain instances is ignored, as is the
sequence of the linker regions separating the domains.

1.1 Multidomain evolution
The domain content of a gene evolves via domain gain and loss
(reviewed in Han et al., 2007; Moore et al., 2008; Vogel et al.,
2004), giving rise to families that encode related proteins with vari-
able domain content (Fig. 2). The modular nature of multidomain
sequences imposes selective forces on the evolutionary process; i.e.
the function and structure of individual domains, the interactions
between domains, and the overall integrity of the protein must all be
preserved.

These constraints are clearly apparent in domain and protein
sequences observed in nature. Multiple alignments of sequences
encoding a particular domain superfamily exhibit a characteristic
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pattern of conserved sites (Fig. 1d), consistent with its function and
interaction requirements. Constraints acting on domain order and com-
position are also readily apparent; only a tiny fraction of possible do-
main combinations is observed in nature (Apic et al., 2003; Bashton
and Chothia, 2002; Kummerfeld and Teichmann, 2009; Weiner III
et al., 2006). For example, the two most common SUPERFAMILY
domains in primate genomes, the Zinc Finger (57667) and the
Immunoglobulin (48726) domains, never co-occur in the same protein.

1.2 Simulating protein family evolution
Single domain protein family evolution entails changes on two levels
of organization: gene events and sequence evolution. Birth–death mod-
els, originally designed to model changes in population size (Kendall,
1949), have been adapted to modeling the expansion and contraction
of a gene family via gene events (duplications, transfers, and losses).
Simulation of these events on a species tree results in a gene tree,
wherein each divergence corresponds to a specific gene event or co-
divergence with speciation. Gene family sequences can then be pro-
duced by generating an ancestral sequence at the root of the gene tree
and simulating substitutions along its branches. The result is a set of
‘present-day’ sequences with a known evolutionary history that can be
used to test the accuracy of alignment and phylogeny reconstruction
software. Some simulators, such as GenPhyloData (Sjöstrand et al.,
2013), SimPhy(Mallo et al., 2016), and Zombi (Dav�ın et al., 2020),
support simulation of both processes by combining a birth-death
model of changes in family content and a stochastic model of sequence
evolution in a unified framework.

Multidomain evolution requires modelling changes on three
levels of biological organization (gene events, domain events, and se-
quence evolution).

1. Juxtaposing gene and domain events on a species tree provides a

description of the temporal relationships between events on mul-

tiple levels of biological organization. As before, gene trees are

generated by simulating gene events on a species tree. Simulating

domain events (duplications, insertions, and losses) on a gene

tree gives rise to genes represented as mosaics of domain seg-

ments, as well as domain trees, one for each domain family

encoded in the gene family.

2. This results in mosaics of segments that have different evolution-

ary histories. On the sequence evolution level, these segments

correspond to sequences that are evolving at different rates.

This model can be made more realistic by modeling each
domain-encoding segment as an instance of a genuine domain fam-
ily. This imposes two additional requirements:

3. Functional and structural constraints acting on the evolution of

each domain sequence preserve its characteristic sequence motifs,

e.g. the propensity for alanine at Position 2, aromatic amino acids

at Position 6, and tryptophan at Position 32 in SH3 (Fig. 1d).

4. Changes in domain architecture resulting from domain gains or

losses must reflect the constraints on domain order and co-

occurrence that are observed in nature, such as the absence of

genes encoding both a Zinc Finger domain and an

Immunoglobulin domain in the same protein.

A comprehensive multidomain protein simulator that supports
all four goals has yet to be developed. Several systems have been
developed that realize one or more of these goals. The simulator
indel-Seq-Gen (Strope et al., 2009) allows for different evolutionary
constraints in different regions of a sequence (Goal 2). SaGePhy
(Kundu and Bansal, 2019) simulates both gene and domain events
by applying the GenPhyloData simulator (Sjöstrand et al., 2013) at
two levels of organization, first to simulate gene trees on a species
tree and then to simulate domain trees on each gene tree. SaGePhy
links phylogenetic histories between the species, gene, and domain
trees (Goal 1) and generates mosaics of sequence segments (Goal 2).
However, the individual segments are not treated as representations
of genuine domains (e.g. from PFAM) with sequence characteristics
resulting from evolution under structural or functional constraints.

REvolver (Koestler et al., 2012) models the evolution of a mosaic
of sequence segments that correspond to genuine domain families,
interspersed with linker sequences. Its sequence evolution model
imposes the domain-specific constraints encoded in the HMM of
each domain superfamily and maintains domain-specific length dis-
tributions. REvolver preserves the characteristic features of each do-
main (Goal 3) and supports a mosaic organization (Goal 2), but
does not model an ongoing process of domain gain and loss.

None of these models captures the constraints acting on domain
order and adjacency (Goal 4). The problem of modeling the con-
straints on domain order and adjacency during domain architecture
evolution does not arise in SagePhy, because sequence segments in
SagePhy do not correspond to genuine domains. Sequence segments
in REvolver do correspond to genuine domains, but REvolver does
not model explicit domain events that modify domain architectures.

1.3 Our contributions
Here, we present a domain architecture simulator specifically
designed to generate domain architectures that mimic the con-
straints on domain order and co-occurrence observed in nature
(Goal 4). DomArchov is a Python implementation of this design. To
our knowledge, no algorithms or software that address this problem
are currently in existence.

In our model, each state corresponds to a domain architecture
(DA), i.e., to an ordered list of domains in N- to C-terminal order.
Two states are adjacent if they differ by a single domain (Fig. 3).

... GGVTTFVALYDYESRTETDLSFKKGERLQIVNNTEGDWWLAHSLSTGQTGYIPSNYVAPSDS ... WYFGKITRRESERLLLNAENPRGTFLVRESETTKGAYCLSVSDFDNAKGLNVKHYKIRKLDSGGFYITSRTQFNSLQQLVAYYSKHADGLCHRLTTVC ... 

... LRLEVKLGQGCFGEVWMGTWNGTTRVAIKTLKPGTMSPEAFLQEAQVMKKLREKLVQLYAVVSEEPIYIVTEYMSKGSLLDFLKGETGKYLRLPQLVDMAAQIASGMAYVERMNYVHRDLRAANILVGENLVCKVADFGLARLIEDNEYTARQGAKFPIKWTAPEAAL

YGRFTIKSDVWSFGILLTELTTKGRVPYPGMVNREVLDQVERGYRMPCPPECPESLHDLMCQCWRKEPEERPTFEYLQAFLEDYF ... 

SH3 SH2 Kinase

PFam HMM for SH3 

(a) (b)

(d)(c)

Fig. 1. Example multidomain protein: proto-oncogene tyrosine-protein kinase Src in human. (a) Domains in the sequence are identified by PFAM (Mistry et al., 2021) HMMs:

SH3 (PF00018), SH2 (PF00017), and a protein tyrosine kinase (PF07714). Sequence in linker regions represented as (� � �). (b) The 3D structure of Src, with the SH2, SH3, and

kinase folds shown in purple, red, and blue. (c) Src domain architecture, showing its constituent domains in N- to C-terminal order. (d) A sequence LOGO for the PFAM SH3

domain model.
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Loss
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Fig. 2. Schematic showing changes in domain architecture via insertion, duplication,

and deletion of domains
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State transitions, therefore, correspond to the gain or loss of a specif-
ic domain at a specific location. We require a stochastic procedure
that, with high probability, visits states that correspond to domain
architectures with properties that are typical of genuine domain
architectures.

The birth-death formalism, widely used to simulate gene events,
is not sufficiently expressive to capture constraints acting on domain
order and adjacency. States in the birth-death model correspond to
family size. Each state is adjacent to two neighboring states corre-
sponding to a birth event, which increments family size, and a death
event, which decrements family size. State transition probabilities
and the distribution of waiting times between events are fully deter-
mined by the birth and death rates, which are explicit state-
independent parameters, and a single state parameter, the family
size. Thus, birth-death is a single-dimensional model and benefits
from various properties that facilitate efficient simulation. In par-
ticular, the history of birth and death events can be simulated by re-
peatedly sampling from the waiting time distribution using the
Gillespie algorithm.

In contrast, in DomArchov, states of the system are defined by a
sequence of domains. The probability of gaining or losing a domain
depends on the specific location of the proposed change in the cur-
rent DA. For this model, a different simulation strategy is required
to account for high dimensionality and transition probabilities can-
not be expressed as a simple function of state-independent event
rates. To address this problem, we developed a novel stochastic
model, described in detail in Section 2, that simulates the evolution-
ary trajectory of a DA using the Metropolis–Hastings algorithm.

DomArchov can be applied at multiple time scales. In the sta-
tionary regime, DomArchov can be used to sample DAs according
to an (unknown) equilibrium distribution to investigate evolutionary
processes, test competing hypotheses or probe steady-state behavior.
On much shorter, non-equilibrium timescales, DomArchov can be
applied to generate evolutionary trajectories, producing datasets
with ‘known’ histories for testing, validation, and comparison of
evolutionary algorithms and software (e.g. Fig. 2).

DomArchov provides an important contribution for studies that
use the DA abstraction as the primary data structure. The DA ab-
straction is widely used to probe questions of protein evolution,
including the co-occurrence and variation in domain repertoire
across taxonomic lineages (Cromar et al., 2016; Dohmen et al.,
2020; Karev et al., 2004; Tordai et al., 2005; Ye and Godzik, 2004),
plasticity in domain order (Bashton and Chothia, 2002;
Kummerfeld and Teichmann, 2009; Weiner III et al., 2006), domain
occurrence graphs (Cromar et al., 2014; Karev et al., 2002;
Przytycka et al., 2006; Vogel et al., 2005), and domain promiscuity,
i.e. the propensity of a domain to co-occur with many other domains
(Basu et al., 2008, 2009; Cohen-Gihon et al., 2011; Cromar et al.,
2014; Marcotte et al., 1999). DomArchov provides, for the first
time, a simulation engine to complement such studies.

DomArchov is a significant step towards the development of a
comprehensive simulator for multidomain protein evolution. By
modeling constraints on domain architectures that are not captured

by any other software, DomArchov complements a rich body of
work for simulating protein evolution on other levels of biological
organization. DomArchov can be combined with simulators that
model gene tree topologies and amino acid sequence evolution to
create hierarchical models of multidomain protein evolution that re-
flect the multiple scales on which these families evolve. For example,
following generation of a gene tree using a birth-death simulation of
gene events on a species tree, DomArchov is applied to simulate the
evolution of a domain architecture along the branches of that tree.
In this scenario, an artificial DA is instantiated at the root of the
gene tree. Next, an amino acid sequence is instantiated for each do-
main based on the HMM model for that domain. Linker sequences
inserted between domains are based on the background distributions
of sequence composition and linker lengths. DomArchov is then
applied to evolve the DAs along each gene tree branch, progressing
from the root to the leaves. Finally, domain sequences are evolved
using a simulator that constrains evolution based on the domain
model. Linker sequences are modeled using a standard sequence
evolution simulator.

Transitions between states in Metropolis–Hastings depend on
the ratio of state probabilities. Because there is no general theory of
‘modular collaboration’ that would allow us to calculate state prob-
abilities directly from domain architectures, we estimated state
probabilities using a first-order approximation wherein the prob-
ability of observing a domain depends only on the identity of the do-
main that immediately precedes it. A key question is whether an
algorithm that makes decisions based only on the immediate genetic
neighborhood can nevertheless recapitulate longer range domain
architecture properties. To investigate this question, we simulated
DAs using four training sets derived from four disparate metazoan
lineages and, in each case, compared the simulated DAs with genu-
ine architectures taken from the same lineage as the training data.

We examined properties including those that are not explicitly
reflected in domain pair statistics used as training data: domain
architecture probabilities, the number of copies in tandem arrays of
repeated domains, domain promiscuity, and the propensity of do-
main pairs to co-occur in the same protein. Remarkably, although
state transitions are based only on local information about domain
order and proximity, DomArchov is able to elicit global properties
of domain architectures.

2 Materials and methods

2.1 Simulator design
In our simulator, the evolution of a domain architecture is modeled
as a Markov chain (Algorithm 1). Each state is a DA, where each do-
main instance is represented by its superfamily ID. Let D be the set
of ND domain superfamilies in the training data and Dd be an

D2D3

D1D3

D1D2

D1D2D3

DXD
1D2D3

D1DXD
2D3

D1D2DXD
3

D1D2D3DX

Fig. 3. The state transition diagram showing states adjacent to a DA of length n¼3.

Each stack of circles on the right represents the ND states that can be reached by a

domain gain at the associated position.

Algorithm 1: DA simulator (DomArchov) pseudocode

Input: DA0, initial DA; T, maximum iterations

1 DA ¼ DA0

2 for t ¼ 0 to T do

3 n ¼ length(DA)

4 r ¼ U½0;1� // Choose new event uniformly at

random

5 if r > 1
ND

then // Insert

6 i ¼ RandomNumber(0, nþ1)

7 d ¼ RandomNumber(0, ND)

8 DA0 ¼ insert(DA, d, i)

9 else // Delete

10 i ¼ RandomNumber(0, n)

11 DA0 ¼ delete(DA, i)

12 if n ¼¼ 0 then next; // Prevent extinction

13 else with probability min(1, pðDA0)=pðDAÞ), DA ¼ DA0
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instance of domain superfamily d 2 D. A DA of length n is denoted
by D0

/D1
d1

D2
d2
� � �Dn

dn
Dnþ1

/ , where the superscript indicates the pos-
ition in the DA and the subscript gives the domain superfamily ID.
The NULL domain, D/, is used to mark the termini of the DA. State
transitions correspond to domain gains and domain losses. Given a
DA of length n, there are n possible deletion sites and nþ1 possible
insertion sites. For each insertion site, there are ND possible inser-
tions, resulting in nþ ðnþ 1ÞND adjacent states (e.g. Fig. 3).
Generally, ND is on the order of a few thousand, and n can reach
100, resulting in the possible number of adjacent states reaching on
order of 105. When n¼1, deletions are forbidden to avoid extinc-
tion. Thus, architectures composed of a single domain have 2ND ad-
jacent states.

At each iteration, a new state is proposed, uniformly at ran-
dom, from all states that are adjacent to the current state.
DomArchov allows the user to modify the ratio of gain to loss state
proposals; however, deviation from uniformly distributed state
proposals will disrupt the convergence properties of the model.
First, an event type (gain or loss) is selected. Since the number of
gain states exceeds the number of loss states by a factor of roughly
ND, the probability of selecting a gain event is set to be ND times
greater than a loss event to ensure that all states transitions are
considered with equal probability. Once the event type has been
determined, a state is selected uniformly at random among the ad-
jacent states corresponding to that event.

Proposed states are accepted or rejected in accordance with the
Metropolis–Hastings algorithm. The probability of a transition
from state s to an adjacent state t is:

P½s; t� ¼ min 1;
pt

ps

� �
; (1)

where ps and pt are the probabilities of the DAs associated with
states s and t, respectively. The probability of observing a given DA
is estimated from domain pair frequencies using a first-order ap-
proximation, in which the probability of observing a domain is only
dependent on the domain that immediately precedes it. For example,
the probability of observing state s ¼ D0

/ � � �Di�1
di�1

Di
di
� � �Dnþ1

/ is
approximated by:

ps � pðD0
/ÞpðD1

d1
jD0

/Þ � � � pðDi
di
jDi�1

di�1
Þ � � �pðDnþ1

/ jDn
dn
Þ: (2)

Let state t be the DA that results from the gain of Ddx
between Di�1

di�1

and Di
di

in s:

t ¼ D0
/ � � �D

j�1
di�1

Dj
dx

Djþ1
di
� � �Dnþ1

/ :

Then, the ratio of the probabilities of t and s can be approximated
by the ratio of two first-order approximations. Most of the terms in
the numerator and the denominator of that ratio cancel, yielding:

pt

ps
� pðDdx

jDdi�1
ÞpðDdi

jDdx
Þ

pðDdi
jDdi�1

Þ : (3)

Similarly, the transition probability for deletion of the domain at
position i is:

pt

ps
� pðDdiþ1

jDdi�1
Þ

pðDdi
jDdi�1

ÞpðDdiþ1
jDdi
Þ : (4)

The conditional probability pðDdi
jDdi�1

Þ is estimated from
bigram frequencies in genuine data:

pðDdy
jDdx
Þ ¼

CðDdx
Ddy
ÞP

dk2D CðDdx
Ddk
Þ ; (5)

where CðDdx
Ddy
Þ is the number of observed Ddx

Ddy
pairs.

The matrix of domain bigram frequencies is very sparse. A
pseudocount is required to account for bigrams that have not been
previously observed. This also ensures that the state space is con-
nected and that the Markov chain is therefore irreducible. Based on
the Add-k smoothing method (Jurafsky and Martin, 2008), a small
value k is added to the count of each bigram. To offset the fact that

the number of pseudocounts added per domain is OðNDÞ, in our
analysis, we chose k ¼ 1

ND
� 0:0009. This value prevents over-

smoothing, while still allowing un-observed domain combinations
to occur given reasonably long simulations.

2.2 Implementation
DomArchov is written in Python 3 and is composed of three
modules:

1. Raw data pre-processing of genomes downloaded from

SUPERFAMILY, with domain architectures as the output;

2. Pre-calculation of domain statistics used when calculating transi-

tion probabilities; and

3. The simulator.

The pre-processing module extracts domain annotations to
calculate the domain architectures as well as the domain alphabet,
bigrams, and trigrams, and their associated counts. The pre-
calculation module then calculates information that will be used re-
peatedly during simulations, such as the domains that are observed
between domain pairs, the number of domains observed following a
given domain, domains that are never observed in a multidomain
context, etc. These two modules are used to set up the suitable envir-
onment for the simulator and are the basis for calculating transi-
tions. They only need to be run once for a given set of genomes.

The simulation module takes as input a JSON file that includes
the user-defined parameters for the simulation, including the start-
ing DA, chain length, number of replicates, and pseudocount k. A
batch of simulations can also be run over a defined range for a given
variable. Output includes the final DA simulated for each replicate;
these data can be used to calculate the same statistics as the input
genomes. Summary statistics over all replicates are also written to
file, and options exist to output the evolutionary trajectory (states in
the Markov chain) for each replicate.

3 Results

Our goal is to build a domain architecture simulator that can generate
artificial DAs with properties that are comparable to those of genuine
DAs. We evaluated DomArchov empirically using four training datasets
derived from four metazoan lineages: 7 primate genomes, 11 fish
genomes, 13 Drosophila genomes, and 4 cnidarian genomes (see
Supplementary Table S1). We focused on metazoan datasets because of
the size and complexity of metazoan multidomain protein families (Ye
and Godzik, 2004).

For each of the four datasets, we carried out simulation experi-
ments for chain lengths ranging from T ¼ 7:5K to T ¼ 12:8M,
where T is the number of states proposed by the Metropolis–
Hastings algorithm (see Algorithm 1). Each experiment consisted of
a suite of replicates equal in number to the number of unique DAs in
the corresponding training set (Supplementary Material S1). In this
study, each replicate was initiated with a randomly selected state (a
single domain). The final DA in each replicate, following T
attempted state transitions, was tabulated, generating a set of DAs
for evaluation. Statistics of proposed and accepted domain additions
and deletions were also recorded. For convergence tests, we kept
detailed traces for 1000 replicates from primate DA simulations
with T ¼ 3:2M, including DA length and event positions in the DA.

3.1 Training data
Domain architectures were downloaded from the online
SUPERFAMILY database, version 1.75 (Gough and Chothia,
2002). Each genomic annotation file includes the species identifier
and, for each domain, the sequence in which it is found, the first and
last amino acid positions for the domain model, and the domain
family and superfamily identifiers. SUPERFAMILY annotations
were chosen because the domain models are based on the SCOP
structural classification (Andreeva et al., 2020) and related domain
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instances are grouped in a hierarchical organization, where families
that share a common ancestor are grouped into a superfamily.

Domain bigram statistics were obtained by first extracting a list
of all DAs from the genome annotation file. To avoid over-
representation of bigrams caused by gene duplication, rather than
domain-level changes, the set of unique DAs was then determined
from this list. Observed monogram and bigram frequencies, as well
as first-order conditional probabilities for bigrams, were then calcu-
lated from this set of unique DAs. Training data summary statistics
are provided in Table 1.

3.2 Convergence
We first considered the convergence properties of the simulator and the
stability of the sampling process. A formal assessment of model conver-
gence was obtained using the Gelman and Rubin (1992) diagnostic for
multiple parallel chains, which compares the between-chain variance
and within-chain variance and reports the ‘shrink’ factor, a measure of
the agreement between these variances. For convergence tests, we
focused on the primate dataset, which contains the largest and most
complex domain architectures. An overall shrink factor below 1.1 is
typically considered evidence of approximate convergence (Brooks
et al., 2011). In our tests with primate data (Fig. 4a), we obtained final
shrink factors below 1.1 for all comparisons when T ¼ 3:2M. When
50 chains were compared, the shrink factor dropped below 1.13 with
Drosophila data and to 1.16 with fish. For all other cases, we obtained
final shrink factors below 1.1.

To assess the stability of the simulator, we examined the event
acceptance rate; that is the fraction of proposed state transitions
that are accepted by the Metropolis–Hastings algorithm (Fig. 4b).
The frequencies of both accepted gain and accepted loss events
rapidly reached a steady state. Proposed deletions are accepted
much more readily than proposed gains, which is consistent with
the theoretical transition probabilities (Equations 3 and 4).
However, gain proposals exceed deletion proposals by three orders
of magnitude (Algorithm 1), which offsets this discrepancy.
Moreover, the ratio of accepted gains to accepted losses rapidly
approaches one (Fig. 4b).

3.3 Recapitulation of genuine domain architecture

properties
3.3.1 Domain architecture lengths

We first considered the distributions of simulated DA lengths as a
function of MCMC chain length, T, where T varies from 7.5 K to
12.8 M proposed state changes. We observe the same trends in all
four datasets (Fig. 5). The simulated and genuine DA length distribu-
tions agree well: In all cases, the mean simulated DA length continues
to grow until it reaches a plateau close to the observed mean (black
horizontal line.) At this point, the numbers of deletions and insertions
are roughly equal so that the average length of simulated DAs does
not grow indefinitely (Fig. 4b). Median simulated DA lengths also
closely approximate those in genuine data for sufficiently large T.

Interestingly, in the two vertebrate lineages, the longest domain
architectures in genuine data are much more extreme than those in
the simulated data. For example, the longest DA observed in any
replicate in the primate simulation contained 115 domains. There
are 10 primate DAs that exceed this length, with the longest, Titin,
containing 253 domains. This is also true for fish, where 10 genuine
DAs are longer than the longest simulated DA. For the two inverte-
brate datasets, we did not observe more extreme outliers.

The simulated DA length statistics demonstrate the stability of
our model. The Markov model achieves a balance between domain
gain and domain loss that produces realistic DA lengths.

3.3.2 Domain architecture probabilities

The probabilities of the genuine and simulated DAs were also calcu-
lated. These probabilities were estimated using the first-order ap-
proximation given in Equation (2). As expected, the probability of a
DA is inversely related to its length (Supplementary Fig. S1).
Comparing the DA lengths and probabilities reveals that DAs in
simulated data largely recapitulate genuine DA lengths and proba-
bilities. As seen before, the exception lies with the longer DAs
observed in the genuine primate and fish genomes.

To mitigate the effect of these extreme DA lengths, the longest
1% of DAs were removed from the simulated and genuine data, in-
dependently. The distributions were then compared with Q-Q plots
(Supplementary Fig. S2) and quantile correlation (see the DA prob-
ability quantile correlation coefficients in Table 2). The distributions
are highly correlated and appear similar, especially for DAs with
probabilities in the tails of the distribution; however, the middle
quantiles of genuine DAs skew to the right, with the median a higher
probability in genuine data compared with simulated.

The differences in distributions may be due to the fact that the
simulator samples shorter DAs with lower probability more uni-
formly than is observed in genuine data (Supplementary Fig. S1).
This may be due to model choices, such as first-order approxima-
tion, or factors acting on real proteins that are not represented in the
simulator, such as selection.

Table 1. Summary statistics for four training datasets

Primates Fish Fly Cnidaria

Unique DAs 7144 8985 5483 6271

Domains 1132 1131 1017 1159

Unique bigrams 2865 3357 2884 3533

Mean DA length 5.4 6.2 5.2 3.6

Median DA length 3 4 3 3
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3.3.3 Frequencies of domains and domain combinations

We next investigated how well the model recapitulates constraints
acting on domain order and adjacency. If the simulation procedure,
with a first-order approximation as the modeling choice, is success-
ful in mimicking these constraints, then the properties of individual
domains and short domain combinations in simulated DAs should
be similar to those in genuine genomes. As a sanity check, we

verified the agreement between the frequencies of domains, domain
bigrams, and domain trigrams in the genuine and simulated DAs
(T ¼ 3:2M). To probe this question further, we considered the pro-
pensity of a pair of domains to co-occur at any location in the same
protein. Indeed, these quantities are in very good agreement in all
four datasets (Table 2), suggesting that the simulation procedure
does preserve those constraints.

1

2

3

4

5

6

7

L
en

gt
h

Z
oo

m

7.5
K

10
K

15
K
17

.5K 20
K

50
K

70
K

10
0K

14
0K

20
0K

40
0K

80
0K

1.6
M

3.2
M

6.4
M
12

.8M

ge
nu

ine

Chain length

0

50

100

150

200

250

D
om

ai
n

ar
ch

it
ec

tu
re

le
ng

th

Domain architecture lengths (primates)

1

2

3

4

5

6

7

L
en

gt
h

Z
oo

m

7.5
K

10
K

15
K
17

.5K 20
K

50
K

70
K

10
0K

14
0K

20
0K

40
0K

80
0K

1.6
M

3.2
M

6.4
M
12

.8M

ge
nu

ine

Chain length

0

50

100

150

200

250

D
om

ai
n

ar
ch

it
ec

tu
re

le
ng

th

Domain architecture lengths (fish)

1

2

3

4

5

6

7

L
en

gt
h

Z
oo

m

7.5
K

10
K

15
K
17

.5K 20
K

50
K

70
K

10
0K

14
0K

20
0K

40
0K

80
0K

1.6
M

3.2
M

6.4
M
12

.8M

ge
nu

ine

Chain length

0

50

100

150

200

250

D
om

ai
n

ar
ch

it
ec

tu
re

le
ng

th

Domain architecture lengths (Drosophila)

1

2

3

4

5

6

7

L
en

gt
h

Z
oo

m

7.5
K

10
K

15
K
17

.5K 20
K

50
K

70
K

10
0K

14
0K

20
0K

40
0K

80
0K

1.6
M

3.2
M

6.4
M
12

.8M

ge
nu

ine

Chain length

0

50

100

150

200

250

D
om

ai
n

ar
ch

it
ec

tu
re

le
ng

th

Domain architecture lengths (Cnidaria)

(a) (b)

(c) (d)

Fig. 5. Final DA length as a function of chain length (horizontal axis not to scale). Top panels: Close-up view of the same distribution. Mean DA length shown as solid dots.
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We further investigated domain ‘promiscuity’, the tendency of
some domains to be found in combination with many other domains in
different domain architectures (Marcotte et al., 1999). We considered
two metrics: the number of unique neighbors of each domain and the
weighted bigram promiscuity of the 100 most promiscuous domains,
proposed by Basu et al. (2008). These quantities also show a strong
correlation between the genuine and simulated sets of DAs (Table 2).

3.3.4 Dependence of domain gains and losses on ordinal position

Several studies, using a variety of comparative approaches, report
evidence that evolutionary events occur more commonly at the ter-
mini of multidomain proteins than in the interior (Björklund et al.,
2005; Buljan and Bateman, 2009; Buljan et al., 2010; Kummerfeld
and Teichman, 2005; Snel et al., 2000; Weiner III et al., 2006).
Several mutational processes that modify domain architectures re-
sult in modifications at the N- or C-terminal of a protein, including
gene fusion, acquisition of premature stop codons, and acquisition
of an alternative transcriptional or translational start signal.
Proteins may also be more resilient to changes at the termini, since
those regions are often located on the surface of the folded protein,
rather than contributing to the structural integrity of the protein
core (Buljan and Bateman, 2009).

To determine whether the simulator recapitulates this behavior,
we tabulated the positions of accepted gain and loss events. Figure 6
shows the frequency of accepted events at each position in simulated
DAs of lengths 3–8 observed in 1000 primate replicates (T ¼ 3:2M).
In all cases, there is a clear preference for terminal over internal
gains and losses.

3.3.5 Duplications

Domain repeats are prevalent in multidomain proteins and play im-
portant roles in binding specificity and structural integrity

(Björklund et al., 2006, 2010; Schüler and Bornberg-Bauer, 2016).
In DomArchov, domain duplications are implicitly modeled by gains
of multiple instances of the same domain superfamily at adjacent
positions. Since acceptance probabilities are driven by observed
bigram frequencies, domains with a high propensity for tandem
arrangements in the training data are also expected to have an ele-
vated propensity for insertion next to members of the same super-
family in the simulator.

To determine whether this is sufficient to generate DAs that ex-
hibit patterns of tandem repeats similar to those in genuine proteins,
we compared tandem array lengths in simulated and genuine do-
main architectures. Our results show that tandem array lengths are
highly correlated (Table 2), although the association is not as strong
as the agreement between domain combination frequencies.

We further asked whether domains frequently observed in tan-
dem arrays in genuine data also have a tendency to form tandem
arrays in the simulated data. We ranked domain superfamilies by
their tandem copy number aggregated over all unique domain archi-
tectures. The same 10 domain superfamilies ranked highest in both
the genuine and the simulated data (Table 3). This suggests that the
DomArchov prototype, which derives domain gain probabilities
from bigram frequencies, preserves the propensity to form tandem
arrays without explicitly modeling duplication.

4 Discussion

Here, we present a simulation strategy that mimics the patterns of
domain order and adjacency in multidomain architectures over the
course of evolution. Our algorithm has been implemented in Python
3 as DomArchov. Domain architecture evolution is governed by a
set of constraints that differ fundamentally from those modeled by
other simulators used in molecular evolution. As such, our simulator
is novel and unique in its conception.

DomArchov is based on a Markov model wherein transition
probabilities are estimated using domain bigram frequencies to cal-
culate first-order conditional probabilities. These probabilities de-
pend only on the domain content in the immediate neighborhood of
the site of change. Remarkably, although state transitions are based
only on local information about domain order and proximity,
DomArchov is able to elicit global properties of domain architec-
tures. These include DA length distributions, mean tandem array
lengths, the propensity to co-occur at any location in the same do-
main architecture, not just at adjacent positions, and the ability to
reproduce a preference for events at domain architecture termini.

4.1 Comparison with other simulation models
Our strategy bears some similarity to the use of word n-gram models
in predicting continuations in natural language processing (NLP).
Indeed, our pseudocount model is based on smoothing methods
used in NLP (Jurafsky and Martin, 2008). However, some NLP

Table 2. Domain combination statistics in genuine and simulated

DAs (T ¼ 3:2M) are highly correlated (Pearson correlation coeffi-

cient, p < 1e � 15 for all tests)

Primate Fish Drosophila Cnidaria

Singleton frequency 0.998 0.999 0.994 0.994

Bigram frequency 0.997 0.998 0.994 0.988

Trigram frequency 0.969 0.968 0.986 0.962

Pair co-occurrence 0.868 0.832 0.944 0.888

Unique neighbors 0.925 0.922 0.918 0.946

Wtd bigram promiscuity 0.843 0.870 0.925 0.821

Mean tandem array length 0.889 0.927 0.935 0.942

DA probability quantiles 0.976 0.973 0.964 0.984
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Fig. 6. Frequency of accepted gain (left axis) and loss (right axis) positions; bars for

gains (blue) and losses (red) are interleaved, starting with gains.

Table 3. The 10 domains with the most copies in tandem arrays

Genuine Simulated

Superfamily Total Max Total Max

Immunoglobulin 2752 106 2968 22

EGF/Laminin 2085 19 2142 11

Spectrin repeat 2039 49 1907 48

Fibronectin Type III 1758 29 1779 16

LDL receptor-like module 997 12 1219 23

ARM repeat 858 13 775 12

Beta-beta-alpha zinc fingers 826 23 768 25

Cadherin-like 819 34 857 78

Complement control mod-

ule/SCR domain

811 37 1025 14

Growth factor receptor

domain

696 9 711 7
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techniques based on n-gram statistics are beyond our reach because
of the modest size of the domain architecture datasets available for
training. For example, domain architecture training data are typical-
ly too small to permit evaluation strategies that require separate
training and testing datasets. Instead, to offset the risk of circularity,
we focus on test statistics selected to be independent from the statis-
tics used to instantiate the model.

Although it may seem that simulation techniques for sequence
evolution could be adapted to modeling domain architecture evolu-
tion, the entities (biomolecular sequences and domain architectures)
are governed by very different sets of mutational processes, selective
constraints, and data size. In nucleic and amino acid sequences, sub-
stitutions at a single site are the fundamental unit of change.
Although more recent models have been expanded to account for
indels and site-specific interactions, the core process focuses on re-
placement of a residue with a different residue at a single site.

In contrast, domain architectures change through domain gain
and domain loss, but not domain replacement. In nature, replace-
ment of one sequence segment by another is mediated by homolo-
gous recombination, which requires that the sequences be related.
This mechanism can, and likely does in some cases, act to replace an
instance of a domain superfamily with a different instance of the
same superfamily. Such events would indeed change the sequence,
but not its DA representation. Domain replacement in the DA model
would necessitate the replacement of a sequence segment encoding
one domain superfamily with a segment encoding an unrelated
superfamily. It is not clear what molecular mechanism would result
in a such a replacement in a single event.

4.2 Future work
Combining domain architecture simulation with simulation of other
aspects of protein evolution is an important next step. There are also
important new directions to explore within the restricted context of
domain architecture evolution. Currently, a single event is used to
model all gains in DomArchov; there is no distinction, e.g. between
domain insertion and domain duplication. Expanding DomArchov
to distinguish between various mechanisms that result in the add-
ition of a domain is a fruitful area of future research. Modeling the
gain or loss of several domains in a single event is another important
future direction. This is particularly relevant for realistic simulation
of tandem repeat formation, where duplication of several adjacent
copies is a frequent occurrence (Björklund et al., 2006, 2010; Han
et al., 2007).

From an empirical standpoint, the studies presented here have
focused on metazoan lineages. Whether DomArchov’s data-driven
functions perform as well in other taxonomic lineages must be
examined. This study has focused on establishing convergence and
characterizing the steady-state behavior of the simulator. We look
forward to probing its behavior on shorter time scales, as well.
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