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Abstract

Multi-scanner MRI studies are reliant on understanding the apparent differences in

imaging measures between different scanners. We provide a comprehensive analysis

of T1-weighted and diffusion MRI (dMRI) structural brain measures between a 1.5 T

GE Signa Horizon HDx and a 3 T Siemens Magnetom Prisma using 91 community-

dwelling older participants (aged 82 years). Although we found considerable differ-

ences in absolute measurements (global tissue volumes were measured as ~6–11%

higher and fractional anisotropy [FA] was 33% higher at 3 T than at 1.5 T), between-

scanner consistency was good to excellent for global volumetric and dMRI measures

(intraclass correlation coefficient [ICC] range: .612–.993) and fair to good for 68 corti-

cal regions (FreeSurfer) and cortical surface measures (mean ICC: .504–.763).

Between-scanner consistency was fair for dMRI measures of 12 major white matter

tracts (mean ICC: .475–.564), and the general factors of these tracts provided excel-

lent consistency (ICC ≥ .769). Whole-brain structural networks provided good to

excellent consistency for global metrics (ICC ≥ .612). Although consistency was poor

for individual network connections (mean ICCs: .275�.280), this was driven by a

large difference in network sparsity (.599 vs. .334), and consistency was improved

when comparing only the connections present in every participant (mean ICCs:

.533–.647). Regression-based k-fold cross-validation showed that, particularly for

global volumes, between-scanner differences could be largely eliminated (R2 range

.615–.991). We conclude that low granularity measures of brain structure can be reli-

ably matched between the scanners tested, but caution is warranted when combining

high granularity information from different scanners.
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1 | INTRODUCTION

Understanding how estimates of brain structure vary across different

MRI hardware and field strengths is an important aspect of neuroim-

aging research since knowledge of between-scanner differences and

the means to match measures between scanners is an essential pre-

requisite for multi-site analyses or multi-scanner longitudinal studies.

Cross-scanner comparisons of brain measures across scanner hard-

ware is useful in multiple settings, including hardware replacement,

relocation in ongoing research studies, or pooling of multi-site data

(Kruggel, Turner, & Muftuler, 2010). An increase in the use of 3 T

scanners is driven in part by the potential to increase tissue contrast

and reduce background noise (thereby increasing the signal-to-noise

ratio and contrast-to-noise ratio), acquire higher resolution scans

more quickly, acquire higher b-values and thinner slices in diffusion

MRI (dMRI), use advanced methods such as neurite orientation disper-

sion and density imaging (Zhang, Schneider, Wheeler-Kingshott, &

Alexander, 2012), and potentially increase diagnostic accuracy

(Fushimi et al., 2007; Schmitz, Aschoff, Hoffmann, & Grön, 2005;

Tanenbaum, 2005; Wardlaw et al., 2012). In clinical practice, although

higher field strength MRI may improve image quality and diagnostic

accuracy, the theoretical doubling of the signal-to-noise ratio in prac-

tice was only 25%, though 3 T appeared to outperform 1.5 T technol-

ogy in research settings (Wardlaw et al., 2012). Although the

possibility of combining MRI data points from different scanner hard-

ware is appealing, this is challenging because scanner-dependent geo-

metric distortions and differences in tissue contrast can be problematic

(Gunter et al., 2009).

When considering the potential for two different field strengths

to yield different estimates of the same brain measurements, interpre-

tation should be tempered by the finding that even same-scanner

measurements, taken twice or more over short periods, are not per-

fectly reliable. Same-scanner test–retest studies of the same subjects

report agreement as low as .8 in terms of the intraclass correlation

coefficient (ICC) for global volumetric and water diffusion measures

(Iscan et al., 2015; Luque Laguna et al., 2020; Melzer et al., 2020).

Agreement is generally lower for specific regional volumetric mea-

sures, where cortical thickness ICCs > ~.50 have been reported

(Madan & Kensinger, 2017), and ICCs > ~.8 even when both acquisi-

tions were taken in the same session (Liem et al., 2015). Similarly,

tract- or region-specific diffusion measures have been reported with

ICCs < .54 (Luque Laguna et al., 2020), ICCs > .72 (Boekel,

Forstmann, & Keuken, 2017), and coefficient of variation (CoV) <10%

(Clayden, Storkey, Maniega, & Bastin, 2009). This trend is echoed by

structural connectomic measures, in which global network properties

had more reliable (but still imperfect) test–retest agreement (ICCs >

~.6), in contrast to lower reliability (ICCs > ~.5) of regional/nodal prop-

erties (Buchanan, Pernet, Gorgolewski, Storkey, & Bastin, 2014;

Cheng et al., 2012).

In this context, the extant cross-field comparison studies which

compare brain MRI measures between 1.5 and 3 T indicate that

agreement, in small samples of generally younger participants, may

not be substantially lower than same-scanner test–retest findings. For

example, between-field-strength differences have been reported as

<10% for brain and tissue volumes (Heinen et al., 2016), and ~10% for

subcortical measurements (Chu, Hurwitz, Tauhid, & Bakshi, 2017).

White matter (WM) diffusion measures have been reported with CoV

<7.5% (Grech-Sollars et al., 2015). Regional cortical measures have

also shown relatively acceptable to good reliability across scanner

manufacturer and field strength in some samples (Han et al., 2006;

Pfefferbaum, Rohlfing, Rosenbloom, & Sullivan, 2012; Reuter,

Schmansky, Rosas, & Fischl, 2012; Wonderlick et al., 2009), whereas

others report discrepant results (Gronenschild et al., 2012; Morey

et al., 2010; Srinivasan et al., 2020). In some studies, global properties

such as volume and cortical thickness are generally larger at higher

field strengths (Chu et al., 2017; Han et al., 2006; Heinen et al., 2016;

Pfefferbaum et al., 2012), although West, Blystad, Engström,

Warntjes, and Lundberg (2013) reported that grey matter (GM) and

cerebrospinal fluid (CSF) volume were higher at 3 T, but WM volumes

were lower.

However, these studies have typically been conducted using

modest sample sizes (often N ≤ 20, but see Pfefferbaum et al., 2012

and Srinivasan et al., 2020) and among adults almost exclusively youn-

ger than 65 years old. Brains that, on average, exhibit greater degen-

eration are “further” from the average atlases upon which some

neuroimaging pipelines rely, and older participants have a greater

array of physical limitations which are a barrier to achieving artifact-

free imaging data during extended scanning sessions, for example,

arthritis. The wider variability in structural brain measures among indi-

viduals who are at greatest risk of cognitive decline and a range of

age-related diseases and disorders might hamper the generalizability

of findings from younger groups. Moreover, the low sample sizes

mean that any statistical analyses aimed at identifying meaningful dif-

ferences between conditions are likely to be substantially underpow-

ered, providing speculative estimates of the comparability of data

across field strengths. Finally, only a single, or a small subset, of MRI-

derived phenotypes has been considered at once. Such factors funda-

mentally complicate the meaningful synthesis of extant data for

assessing the likely cross-scanner impact on structural and diffusion

measures in older participants.

To address these gaps in the literature, the current study assesses

an array of T1-weighted and dMRI imaging variables using 91 partici-

pants, aged 82 years, scanned at both 1.5 and 3 T. Between-scanner

comparison of imaging variables was performed at several levels:

overall brain and tissue volumes; regional cortical and subcortical GM

volumes; cortical volume, surface area, and thickness; dMRI measures

in global WM, dMRI measures in 12 WM tracts; and whole-brain

structural networks. Additionally, we used 10-fold cross validation to

test prediction of “unseen” 1.5 T values from 3 T data using linear

regression.

2 | MATERIALS AND METHODS

2.1 | Participants

Data were drawn from the Lothian Birth Cohort 1936 (LBC1936), an

on-going study on the influences on cognitive ageing from age 11 into
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the eighth and ninth decades of life (Deary et al., 2007; Deary, Gow,

Pattie, & Starr, 2012; Taylor, Pattie, & Deary, 2018). Structural imag-

ing including dMRI has been performed on the same well-maintained

1.5 T scanner at all imaging waves (Wardlaw et al., 2011). A subset of

participants were also imaged at 3 T. This was motivated by the inten-

tion to safeguard against potential unexpected breakdown of the

scanner, or facility relocation, and an incentive to use modern MRI

acquisitions, reducing participant burden in terms of comfort and

duration for those who are becoming increasingly frail and less able to

lie still in a scanner for the hour-long 1.5 T acquisition. A total of

105 (60, 57.1% male) community-dwelling participants in the Lothian

area were therefore recruited from the fifth wave of the LBC1936.

Prior to undergoing either scan, participants who had indicated they

would undergo the standard 1.5 T session were invited to also

undergo a 3 T imaging session—then, following a successful 1.5 T scan

they were booked for 3 T imaging. Participants were recruited on a

first-come, first-served basis and 3 T imaging ended after 105 partici-

pants had successfully completed both scans. The mean interval

between scans was 71.9 (SD = 16.6; range 28–111) days. At the time

of the 1.5 T scan, participants had a mean age of 82.0 (SD = 0.3)

years. Written informed consent was obtained from each participant

under protocols approved by the Lothian (REC 07/MRE00/58) and

Scottish Multicentre (MREC/01/0/56) Research Ethics Committees.

2.2 | MRI acquisition

MRI acquisition parameters at 1.5 T have been described previously

(Wardlaw et al., 2011) and are summarized in Table 1. All participants

underwent brain MRI on the same 1.5 T GE Signa Horizon HDx clini-

cal scanner (General Electric, Milwaukee, WI) with a manufacturer

supplied 8-channel phased-array head coil. High resolution 3D T1-

weighted inversion-recovery prepared, fast spoiled gradient-echo vol-

umes were acquired in the coronal plane with 160 contiguous 1.3 mm

thick slices resulting in voxel dimensions of 1 � 1 � 1.3 mm. For the

dMRI protocol, single-shot spin-echo echo-planar (EP) diffusion-

weighted whole-brain volumes (b = 1,000 s mm�2) were acquired in

64 noncollinear directions, along with seven T2-weighted volumes

(b = 0 s mm�2). Seventy-two contiguous axial 2 mm thick slices were

acquired resulting in 2 mm isotropic voxels.

The same 105 participants had a brain MRI on a 3 T Siemens

Magnetom Prisma (Siemens Healthcare Gmbh, Erlangen, Germany)

using a 32-channel matrix phase array head coil. High resolution 3D

T1-weighted magnetisation prepared rapid acquisition gradient echo

volumes were acquired in the coronal plane with 224 contiguous

1 mm thick slices resulting in 1 mm isotropic voxels (Table 1). The

multi-shell dMRI protocol employed a single-shot spin-echo EP

diffusion-weighted sequence which acquired 14 b = 0 s mm�2,

3 b = 200 s mm�2, 6 b = 500 s mm�2, 64 b = 1,000 s mm�2 and

64 b = 2,000 s mm�2 whole-brain volumes. Seventy-four contiguous

axial 2 mm thick slices were acquired resulting in 2 mm isotropic

voxels. A reverse phase encoding EP dataset with 6 b = 0 s mm�2

whole brain volumes was also collected for subsequent EP susceptibil-

ity distortion correction using the same acquisition parameters as the

main dMRI protocol. Two participants were excluded from T1-

weighted analyses and five were excluded from dMRI analyses due to

incomplete or missing scans at 1.5 T.

2.3 | T1-weighted processing

Volumetric segmentation and cortical reconstruction were performed

with the FreeSurfer image analysis suite (http://surfer.nmr.mgh.harvard.

edu) version 6.0.0. The Desikan–Killiany atlas delineated 34 cortical

structures per hemisphere (Desikan et al., 2006; Fischl et al., 2004). Sub-

cortical segmentation was applied to obtain eight GM structures per

hemisphere: accumbens area, amygdala, caudate, hippocampus, palli-

dum, putamen, thalamus, and ventral diencapahlon (Fischl et al., 2002;

Fischl et al., 2004). Grey and white tissue matter masks were obtained.

Total CSF volume was computed as the sum of the volumes of the ven-

tricular system, nonventricular CSF and choroid plexus.

We applied FreeSurfer using the default parameters and opted

not to undertake any manual editing so as not to introduce any rater-

specific bias into the comparison between scanners. The outputs of

FreeSurfer were manually quality checked (QC by Colin R. Buchanan

and Simon R. Cox) to exclude participants with severe motion artifact

TABLE 1 Acquisition parameters for MRI scanning

Scanner Sequence

Field-
of-view Matrix Slices Thickness Voxel TR/TE/TI b-values

(mm) (pixels) (mm) (mm) (ms) (s mm�2)

1.5 T T1-weighted: 3D IR-Prep

FSPGR

256 � 256 192 � 192a 160 1.3 1 � 1 � 1.3 10/4/500 —

3 T T1-weighted: 3D MPRAGE 256 � 208 256 � 208 224 1 1 � 1 � 1 2520/4.37/1270 —

1.5 T Diffusion: single-shot SE EPI 256 � 256 128 � 128 72 2 2 � 2 � 2 16,500/98 1,000

3 T Diffusion: multi-shell single-

shot SE EPI

256 � 256 128 � 128 74 2 2 � 2 � 2 4300/74 200, 500, 1,000,

2,000

Abbreviations: EPI, echo planar imaging; FSPGR, fast spoiled gradient echo; IR-Prep, inversion recovery prepared; MPRAGE, magnetisation prepared rapid

acquisition gradient echo; SE, spin echo.
aZero filled to 256 � 256.
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or gross segmentation errors. Participants with brain lesions or

suspected stroke (N = 8) were not excluded from our sample as we

intended to compare between-scanner segmentation with representa-

tive data of our older age sample. Eight participants failed QC at 1.5 T,

seven participants failed at 3 T, and in total 91 participants passed QC

at both 1.5 and 3 T. For each region delineated by the FreeSurfer pro-

cedure the total volume in T1-weighted space was recorded. Cortical

surface analyses were performed using the SurfStat MATLAB toolbox

(http://www.math.mcgill.ca/keith/surfstat). Surfaces were aligned

vertex-wise into a common space (the FreeSurfer average template)

and spatially smoothed at 20 mm full width at half maximum

(FWHM), allowing sample-wide analyses of volume, area and thick-

ness across the cortex. In a supplementary analysis to test the efficacy

of smoothing, we also computed the same measures over a range of

smoothing widths from 0–25 mm.

2.4 | Diffusion MRI processing and tractography

The 1.5 T dMRI raw data were read and converted from DICOM to

NIfTI-1 format using TractoR v2.6.2 (http://www.tractor-mri.org.uk;

Clayden et al., 2011). Using tools freely available in the FSL toolkit

v4.1.9 (FMRIB, Oxford University: http://www.fmrib.ox.ac.uk; Smith

et al., 2004), data underwent brain extraction (Smith, 2002) performed

on the T2-weighted EP volumes acquired along with the dMRI data.

The brain mask was applied to all volumes after correcting for system-

atic eddy-current induced imaging distortions and bulk patient motion

using affine registration to the first T2-weighted EP volume of each

subject with “eddy_correct” (Jenkinson & Smith, 2001). Due to the

longitudinal character of the LBC1936 study, the dMRI processing

protocol at 1.5 T has remained unchanged since the first LBC1936

imaging wave in 2007.

We determined that alternative processing was required for the

3 T dMRI data due to greater susceptibility-induced distortions at this

field strength. These data were read and converted from DICOM to

NIfTI-1 format using TractoR v 3.3.1, masked using FSL's brain extrac-

tion tool (Smith, 2002) and corrected for susceptibility and eddy cur-

rent induced distortions using “topup” and “eddy” from FSL version

5.0.9 (Andersson, Skare, & Ashburner, 2003; Andersson & Sotiropoulos,

2016). Additionally, to test the impact of different preprocessing pipe-

lines between scanners we also applied the 1.5 T pipeline (Tractor

v2.6.1 and FSL v4.1.9) using 3 T data for 10 subjects.

For all dMRI volumes, diffusion tensors were fitted at each voxel

using FSL's “dtifit” and water diffusion measures were estimated for

axial (AD), radial (RD), and mean (MD) diffusivity, which measure mag-

nitudes of molecular water diffusion. FA was also computed, which

measures the degree of anisotropic diffusion per voxel (Pierpaoli &

Basser, 1996). All diffusion measures and tractography were com-

puted in diffusion space. Mean values of the four dMRI measures

were estimated in cerebral WM using the WM mask obtained from

FreeSurfer, which was aligned to diffusion space using the transform

estimated by the connectome cross-modal registration procedure

(Buchanan et al., 2020). In a supplementary analysis, we also com-

puted the same measures across the whole brain (using the mask

obtained from the T2-weighted EP volume).

Whole-brain tractography was performed using an established

probabilistic algorithm (BEDPOSTX/ProbtrackX; Behrens, Berg, Jbabdi,

Rushworth, & Woolrich, 2007; Behrens et al., 2003). Probability den-

sity functions, which describe the uncertainty in the principal directions

of diffusion, were computed with a two-fiber model per voxel (Behrens

et al., 2007). Streamlines were then constructed by sampling from these

distributions during tracking with a fixed step size of 0.5 mm between

successive points.

Analysis of 12 major WM tracts was performed using probabi-

listic neighborhood tractography (PNT; Clayden et al., 2011). These

tracts were the genu and the splenium of the corpus callosum,

bilateral arcuate fasciculi, anterior thalamic radiations (ATR), fron-

tal projection of the cingulum bundles, uncinate and inferior longi-

tudinal fasciculi (ILF). Although the ventral cingulum bundles were

also computed these were excluded from analysis because they

have previously been deemed unreliable. All tracts were visually

quality checked (by Susana Muñoz Maniega) and exclusions were

made on a tract basis. Probability maps showing the density of

streamlines in each tract were computed across participants for

those who had validated tract data. The weighted mean values of

MD and FA were computed per tract. Consistent with prior work

in the full LBC1936 sample (Ritchie et al., 2015), we also extracted

general factors (gMD and gFA) by performing principal component

analysis on the tract data and extracting the first unrotated princi-

pal component.

2.5 | Network processing

Whole-brain structural networks were computed for 79 participants

(who had passed both T1 and dMRI QC at both field strengths). Net-

works were constructed using 85 neuroanatomical regions (the

84 GM regions described above plus the brain stem) and probabilistic

tractography resulting in 85 � 85 networks (Buchanan et al., 2020).

Networks were computed for both MD and FA by computing the

mean value of each measure in all voxels along the interconnecting

streamlines between a pair of regions. We applied network thresholding

using consistency-thresholding (Roberts, Perry, Roberts, Mitchell, &

Breakspear, 2017) to remove some proportion of putatively spurious

connections across subjects at a threshold level retaining the top 30%

most consistent connections that was previously determined from a

large single-scanner study (Buchanan et al., 2020). To obtain a represen-

tative estimate of between-scanner agreement, thresholding was

applied separately for both field strengths (resulting in nonidentical sets

of connections). Three common global graph-theoretic metrics were

computed using weighted measures (Rubinov & Sporns, 2010): mean

edge weight (mean of all edge weights per subject), global network effi-

ciency (a measure of integration), and network clustering coefficient

(a measure of segregation).
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2.6 | Statistical analysis

Between-scanner comparison of imaging variables was performed at

several levels: global (overall tissue volumes, dMRI measures in WM,

global network metrics), regional (GM regions, major WM tracts), and

sub-regional level (cortical surface vertex analysis, networks connec-

tions). Imaging variables were paired between scanners and we com-

puted both the between-scanner difference and ICC to assess

agreement. For a paired set of subject-specific measures, x1:5T1 , …,

x1:5TN and x3T1 , …, x3TN , the average between-scanner difference was

computed,

1=N
XN
i

x3Ti �x1:5Ti

� �
: ð1Þ

Similarly, the mean between-scanner difference expressed at per-

cent change from the 1.5 T values was computed,

100=N
XN
i

x3Ti �x1:5Ti

x1:5Ti

 !
: ð2Þ

The ICC (Shrout & Fleiss, 1979) was originally formulated for

assessing multiple raters measuring the same quantity but has been

widely adopted for repeated measurements. For each imaging mea-

sure, we computed ICC using a two-way model (i.e., each subject was

measured by both scanners) with single measures and using consis-

tency of measurements between sessions (R package irr). This formu-

lation of ICC ranges from �1 to 1, where 0 indicates random

agreement and negative values would not be expected in a test–retest

study (Hallgren, 2012). For ICC scores we adopted the four level rat-

ing from (Cicchetti, 1994): poor for <.40; fair for .40–.59; good for

.60–.74; and excellent for .75–1.00. Rather than reporting ICC agree-

ment, which reflects both rank order agreement and intercept differ-

ences (e.g., also accounts for between-scanner discrepancies in

absolute volumes), we also conducted a more detailed investigation

in which we tested our ability to predict “unseen” 1.5 T values from

3 T data using linear regression. To estimate the generalization perfor-

mance of a linear model, we computed the required slopes and inter-

cepts for all imaging variables, and used 10-fold cross-validation to

iteratively estimate a linear fit on 9/10th of the data, applying predic-

tion for the held-out fold and reporting average model fit (predicted

R2). All imaging measures were modeled and estimated separately.

In order to assess if larger GM regions resulted in higher

between-scanner consistency than smaller regions, we also reported

the correlation between region volume (mean value of 1.5 and 3 T

volumes) and the regional ICCs (for volume, surface area, and thick-

ness). False discovery rate (FDR) was used to correct these correla-

tions for multiple comparisons. For the cortical surface analyses, in

addition to providing regional maps of ICCs and percent difference,

we performed linear regression between 1.5 and 3 T values and com-

puted uncorrected p-value maps to indicate areas of difference

between scanners. To illustrate the impact of smoothing, we also

provide average ICCs across the cortical mantle for volume, area and

thickness smoothed with a 0, 5, 10, 15, 20, and 25 mm FWHM kernel.

3 | RESULTS

Table 2 summarizes the between-scanner statistics at each level of

analysis. Broadly, we found a wide range (�13.2 to 39.1%) in the dif-

ference between imaging measures at 1.5 and 3 T. Figure 1 shows

horizontal slices of two participants imaged at 1.5 T alongside the

equivalent slice at 3 T. We observed different contrasts for skull, CSF,

GM, and WM between field strengths. Discrepancies in both the

GM–WM boundary and the GM–CSF boundary were visible between

field strengths and it was apparent that more GM and WM was visible

at 3 T than at 1.5 T. Gibbs ringing artifacts were apparent at 1.5 T but

much less so at 3 T.

3.1 | Between-scanner agreement of global
volumetric measures

Supratentorial, GM, and WM were estimated as 6.6–10.2% greater at

3 T than at 1.5 T. In particular, GM volumes were 8.9% greater for

total GM, 10.2% greater for cortical GM and 6.6% greater for subcor-

tical GM. WM volume was estimated as 7.0% greater at 3 T than at

1.5 T. Conversely, total CSF volume was estimated as 4.4% lower

at 3 T than at 1.5 T. Scatter plots (Figure 2a) indicated that the

between scanner relationships were largely linear (slopes between

0.688 and 1.048), and the Bland–Altman plots showed that there

were few participants >2 SD from the mean difference (Figure 2b).

Between-scanner consistency of global volumes, as assessed by

ICC was considered excellent for all six global volumetric measures

(ICCs ≥ .824; Table 2). Notably, total CSF volume had near perfect

agreement between scanners (ICC = .993). Consistency was also

excellent for supratentorial volume (ICC = .953), total GM (ICC = .915),

cortical GM (ICC = .892), subcortical GM (ICC = .851), and WM volume

(ICC = .824). Furthermore, consistency was good to excellent (ICC

range: .680–.993) for all global volumetric measures estimated by the

FreeSurfer volumetric processing stream (Table S1).

3.2 | Between-scanner agreement of GM
measures

Mean values and between-scanner differences for cortical regions

(volume, thickness, and surface area) and subcortical volumes are

reported in Tables S2–S5 and summarized in Table 2. The volumes of

the 68 cortical regions were measured as 10.8% greater at 3 T than at

1.5 T on average (range: �7.0 to 28.6%). The volumes of the 16 sub-

cortical regions were measured as 7.3% greater at 3 T than at 1.5 T

(range: �21.0 to 27.6%). Cortical surface areas were measured as

12.3% larger at 3 T than at 1.5 T (range: �12.0 to 29.5%). Cortical
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thicknesses were measured as 4.4% (range: �4.6 to 12.3%) or

0.089 mm thicker on average at 3 T than at 1.5 T.

Figure 3 shows the between-scanner ICC consistency in volume,

surface area, and cortical thickness. Consistency was variable across

measures and regions (ICC range: .142–.930). For the 68 cortical

regions the mean ICC for volume was .750 (range: .340–.921) with

consistency rated as excellent for 40 regions, good for 20 regions, fair

for 6 regions, and poor for the left/right frontal pole. Between-

scanner consistency for cortical surface area was similar to cortical

volume with a mean ICC of .733 (range: .335–.930). ICCs for surface

area were rated as excellent for 40 regions, good for 14 regions, fair

for 12 regions, and poor for the left entorhinal and right insula. ICCs

for cortical thickness were ~.2 lower than either cortical volume or

surface area, with a mean ICC of .504 (range: .142–.783) and consis-

tency rated as excellent for only the right precuneus, good for

16 regions, fair for 40 regions, and poor for 11 regions. Agreement

was broadly similar between hemispheres for all regions (Figure 3).

The cortical volumes and ICC values were weakly to moderately cor-

related (volume: r = .431, q < 0.001; area: r = .275, q = 0.035; thick-

ness: r = .246, q = 0.043; FDR corrected), which indicated that ICCs

were generally lower for smaller regions, for example, frontal pole and

pallidum. Between-scanner consistency for subcortical volumes (mean

TABLE 2 Summary of the between-scanner comparison performed at various levels of analysis using participants scanned at both 1.5 and
3 T: mean values, between-scanner differences, and intraclass correlation coefficient (ICC)

1.5 T mean 3 T mean BSD (%) ICC

Global T1-weighted volumetric measures (cm3) Supratentorial volume 880.575 948.232 67.657 (7.7) .953

Total CSF volume 58.855 56.239 �2.616 (�4.4) .993

Total GM volume 535.118 582.489 47.370 (8.9) .915

Subcortical GM volume 46.056 48.920 2.864 (6.6) .851

Cortical GM volume 392.928 432.806 39.878 (10.2) .892

Cerebral WM volume 386.890 413.609 26.719 (7.0) .824

1.5 T mean 3 T mean

Mean

BSD (%)

Mean

ICC (SD)

Regional GM measures (16 subcortical, 68 cortical) Subcortical volume (cm3) 2.760 2.969 0.209 (7.3) .592 (.174)

Cortical volume (cm3) 5.793 6.395 0.602 (10.8) .750 (.136)

Cortical surface area (cm2) 22.047 25.081 3.034 (12.3) .733 (.152)

Cortical thickness (mm) 2.330 2.419 0.089 (4.4) .504 (.134)

1.5 T mean 3 T mean BSD (%) ICC

Global dMRI measures in cerebral WM AD 1.041 1.103 0.062 (6.0) .776

RD 0.653 0.566 �0.086 (�13.2) .882

MD 0.782 0.745 �0.037 (�4.7) .867

FA 0.312 0.415 0.103 (33.0) .740

1.5 T mean 3 T mean Mean BSD (%) Mean ICC (SD)

Regional dMRI measures in 12 WM tracts MD 0.793 0.740 �0.054 (�5.8) .564 (.193)

FA 0.383 0.520 0.137 (37.4) .475 (.127)

gMD �0.102 �0.064 0.044 — .850 —

gFA 0.104 0.021 �0.014 — .769 —

1.5 T mean 3 T mean BSD (%) ICC

Global network measures Mean edge (MD) 0.701 0.733 0.032 (4.7) .612

Network efficiency (MD) 0.492 0.493 0.001 (0.3) .888

Network clustering (MD) 0.526 0.498 �0.028 (�5.3) .883

Mean edge (FA) 0.350 0.484 0.134 (39.1) .680

Network efficiency (FA) 0.248 0.328 0.080 (32.6) .794

Network clustering (FA) 0.248 0.318 0.070 (28.6) .799

1.5 T mean 3 T mean Mean BSD (%) Mean ICC (SD)

Network connections MD-weighted 0.701 0.733 0.032 (4.6) .280 (.305)

(1,071 connections) FA-weighted 0.350 0.484 0.134 (38.4) .275 (.242)

Note: T1-weighted images were segmented using FreeSurfer 6.0. AD, RD, and MD are measured in �10�3 mm2/s.

Abbreviations: AD, axial diffusivity; BSD, between-scanner difference; CSF, cerebrospinal fluid; FA, fractional anisotropy; GM, grey matter; MD, mean

diffusivity; RD, radial diffusivity; WM, white matter.
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ICC = .592, range: .217–.853) was lower than cortical consistency.

ICCs for subcortical regions were rated as excellent for four regions,

good for five regions, fair for five regions and poor for the left/right

pallidum.

3.3 | Between-scanner agreement of vertex-wise
cortical measures

Figure 4 shows the between-scanner differences and ICCs for volume,

area, and thickness for data smoothed at 20 mm FWHM. Volume, sur-

face area, and thickness were all measured as greater at 3 T than at

1.5 T. The mean between-scanner difference at vertex level was

0.132 mm3 (11.5% greater at 3 T) for volume, 0.065 mm2 (14.1%

greater at 3 T) for surface area, and 0.092 mm (4.8% thicker at 3 T)

for cortical thickness.

When computed across all vertices, the mean ICC values were

broadly in line with those for the atlas-based regions reported above

(Table 2): .747 (95% inter-percentile range [IPR]: .435–.894) for corti-

cal volume, .763 (95% IPR: .379–.915) for surface area, and .535 (95%

IPR: .192–.761) for cortical thickness. Excellent between-scanner con-

sistency (ICC > .75) was observed for 56.9% of individual vertices for

volume and 64.6% of vertices for surface area, but this figure was

substantially lower for cortical thickness (3.2% of vertices).

Scanner effects were somewhat regionally heterogeneous. Volu-

metric differences in the ICCs in the superior frontal lobe are mainly

contributed to by lower ICCs for thickness, whereas lower volumetric

ICCs in orbital frontal, cingulate, and medial temporal regions were

common to both area and thickness. Additionally, between-scanner

contrasts for these three measures (Figure S1), indicated that for our

sample most cortical vertices were not significantly different between

scanners (p < .05, uncorrected). Small areas of significant difference

F IGURE 1 Axial and coronal
T1-weighted slices at both 1.5
and 3 T of one participant where
the between-scanner
supratentorial volume difference
was measured at 55.86 cm3

(a) and another where
supratentorial volume difference
was 113.67 cm3 (b). The slices

shown are in native T1 space (not
co-registered) and were matched
between scanners as closely as
possible. Image intensity ranges
were adjusted for visualization
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F IGURE 2 Between-scanner comparison of T1-weighted data: (a) scatter plots of six volumetric measures identified using FreeSurfer 6.0 for
91 participants scanned at both 1.5 and 3 T, where the continuous blue line shows linear fit with 95% CI; (b) Bland–Altman plots of the same six
measures showing the mean of between-scanner volumes and the difference between these volumes where the blue line indicates the mean and
the red lines represent ±2 SDs. CSF, cerebrospinal fluid; GM, grey matter; WM, white matter
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were observed in dorsal precentral gyrus (volume and thickness) and

temporal poles (volume and area).

Between-scanner consistency increased as greater levels of

FWHM smoothing were applied to the vertex level data (Figure S2).

For unsmoothed data, the mean ICCs of the three measures were

between .150 and .403 but at the highest level of smoothing (25 mm)

the mean ICCs were between .540 and .772. Smoothing had a larger

effect on the mean ICCs for volume and surface area than for

thickness.

3.4 | Between-scanner agreement of global dMRI
measures

Figure 5 shows both scatter plots and corresponding Bland–Altman

plots for four global dMRI measures (AD, RD, MD, and FA) measured

in cerebral WM. RD was measured as 13.2% lower and MD as 4.7%

lower at 3 T than at 1.5 T. AD was measured as 6.0% higher and FA as

33.0% higher at 3 T than at 1.5 T. Scatter plots indicated that the

between scanner relationships were largely linear (slopes between
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F IGURE 3 Intraclass correlation coefficients (ICC) and estimated 95% CIs between 1.5 and 3 T acquisitions for 84 grey matter regions

identified by FreeSurfer 6.0 (N = 91) measuring volume, surface area and thickness. Surface area and thickness were not computed for
subcortical regions
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0.624 and 0.937). Additionally, Bland–Altman plots showed that there

were very few participants >2 SD difference from the mean difference.

Despite the differences in absolute levels, between-scanner con-

sistency was considered excellent (RD ICC = .882; MD ICC = .867;

AD ICC = .776), or good (FA ICC = .740; Table 2). In a supplementary

analysis, we observed that ICCs were ~.1 lower in WM than when the

same four measures were sampled across the whole-brain (Table S6).

The lower values for WM could be explained by the discrepancy in

GM/WM segmentation between 1.5 and 3 T, by which the whole-

brain measures were unaffected.

3.5 | Between-scanner agreement of major WM
tracts

The mean values and the between-scanner differences of 12WM tracts

are reported in Table S7 and summarized in Table 2. Figures S3 and S4

show scatter plots and Bland–Altman plots for these tracts. Visual

inspection of the probability maps of each tract generated by probabilis-

tic tractography revealed that streamlines more coherently followed the

anatomical pathways at 3 T than at 1.5 T (Figure 6a—maps created

using all data, prior to removal of QC fails), presumably due to the

higher signal-to-noise and improved distortion correction at the higher

field strength. Visual quality checking and exclusion of individual tracts

identified more aberrant streamlines across subjects at 1.5 T than at 3 T

with a tract success rate of 91.6–98.9% at 1.5 T and 95.3–100% at 3 T.

Across all tracts, FA was consistently higher at 3 T (mean: 37.4%;

range: 23.6–48.6%), and MD consistently lower (mean: 5.8%, range:

�15.1 to 1.0%), with only the right cingulum bundle having a 1.0%

increase in MD at the higher field strength. We also applied the 1.5 T

pipeline to 3 T data from 10 subjects and found that for the 12 tracts

the FA values were measured as 3.4–24.8% higher using the 3 T pipe-

line, suggesting that the apparent increase in FA at 3 T was partly

driven by the new FSL tools used in the 3 T tractography pipeline.
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F IGURE 4 Between-scanner comparison of cortical volume, surface area, and thickness for 91 participants imaged at both 1.5 and 3 T:
(a) heatmaps show the between-scanner difference (BSD) expressed as percent change from 1.5 T values at each cortical vertex location with
corresponding histograms below; (b) intraclass correlation coefficient (ICC) of the same three measures with corresponding histograms.
Processing was performed by FreeSurfer 6.0 and spatial smoothing using FWHM at 20 mm
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Overall agreement was slightly better for MD (mean ICC = .564;

range .243–.881) than for FA (mean ICC = .475; range .182–.723;

Figure 6b). Between-scanner ICC consistency was rated as fair for the

majority of tracts: 6/12 in MD and 8/12 tracts in FA. Consistency was

excellent for only MD in the left and right arcuate (ICCs ≥ .873). Con-

sistency was good for MD in the right uncinate and right ILF and for

FA in the left arcuate. Consistency was poor (ICCs ≤ .282) for the left

ILF (MD and FA) and for the splenium (MD).

General factors (gMD and gFA) of the 12 tracts were extracted

using principal component analysis (loadings of the first unrotated

principal component are listed in Table S8). For gMD, the first

unrotated principal component explained 44% of the variance at 1.5 T

and 56% at 3 T. For gFA, the first principal component explained 35%

of the variance at 1.5 T and 31% at 3 T. Both gMD and gFA provided

excellent between-scanner consistency (ICCs of .850 and .769,

respectively), which was ~.3 greater than the mean ICC of the

12 tracts (Figure 6b and Table S7).

3.6 | Between-scanner comparison of connectome

MD- and FA-weighted whole-brain networks were computed allowing

3,570 possible connections for unthresholded networks, but only

1,071 connections were retained after consistency-thresholding at

30%. Between-scanner results for individual connection weights

(edges) and three global graph-theoretic measures (mean edge weight,

global network efficiency, and network clustering coefficient) are

shown in Table S9 and summarized in Table 2.

For unthresholded networks, the connection density was 79.6%

greater at 3 T than at 1.5 T (mean network sparsity: 0.599

[SD = 0.037] for 1.5 T; 0.334 [SD = 0.048] for 3 T), meaning that con-

siderably more interregional WM connections were identified at the

higher field strength, presumably due to higher signal-to-noise. How-

ever, after network thresholding, which retained only the top 30%

most consistent connections across subjects, each participant's net-

work was constrained to have a sparsity of ~0.7. Separate thresholds

were applied at 1.5 and 3 T which resulted in a different set of con-

nections after thresholding. However, we found that there was an

overlap in the connections retained (ICC = .687 or 835/1307

matching connections) when comparing the binary masks obtained

from the thresholding procedure between the two field strengths.

For MD weighted networks, mean edge weight was measured as

4.7% greater, network efficiency as 0.3% greater and network cluster-

ing coefficient as 5.3% lower at 3 T than at 1.5 T. For FA weighted

networks, mean edge weight was 39.1% greater, network efficiency

was 32.6% greater and network clustering coefficient was 28.6%

greater at 3 T than at 1.5 T. Figure 7a,b shows the between-scanner

results for these network metrics for both MD and FA networks. Con-

sistency was rated as good to excellent for all global metrics (ICC

range: .612–.888). The greatest consistency was for network effi-

ciency with MD (ICC = .888) and network clustering coefficient with

MD (ICC = .883). FA-weighted metrics were rated as excellent for

network clustering coefficient (ICC = .799) and network efficiency

(ICC = .794). The lowest consistency for these measures, which was

rated as good, was for mean edge weight with FA (ICC = .612) and

MD (ICC = .680). Despite these differences in between-scanner

F IGURE 5 Between-scanner differences of four water diffusion measures, namely, axial diffusivity (AD), radial diffusivity (RD), mean
diffusivity (MD), and fractional anisotropy (FA), measured in cerebral white matter for 79 participants scanned at both 1.5 and 3 T: (a) scatter
plots where the continuous blue line shows linear fit with 95% CI; (b) Bland–Altman plots of the same four measures showing the mean of
between-scanner measures and the difference between these measures where the blue line indicates the mean and the red lines represent
±2 SDs
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consistency for the three metrics, we noted strong collinearity among

the three graph-theoretic measures (r > .796 for MD; and r > .943

for FA).

The ICCs for each of the 1,071 individual connections which were

retained following 30% network thresholding are shown in Figure 7c.

Overall between-scanner consistency was poor for both MD and FA

networks (mean ICCs ≤ .280; Table 2). For FA, the mean ICC was .275

although the 95% IPR was broad (�0.051 to 0.795). This cor-

responded to a proportion of excellent/good/fair/poor of

5.4/9.0/12.4/73.2%. For MD, the mean ICC was .280 (95% IPR:

�0.095 to 0.870) corresponding to a proportion of excellent/good/

fair/poor of 14.5/8.0/6.5/71.1%. Whereas 30% thresholded networks

achieved better between-scanner consistency (mean ICCs ≤ .280)

than unthresholed networks (mean ICCs ≤ .142), this result was driven

by the large difference in network sparsity between scanners, that is,

there are many more zero-valued connections (marking an absence of

connection between regions) at 1.5 T compared to 3 T. When all

zero-valued connections (Figure S5) were excluded and ICCs were

computed for only the 428 network connections (12% of all possible

connections), which had a nonzero value in every participant, then the

F IGURE 6 Between-scanner
comparison of 12 white matter
(WM) tracts in 90 participants:
(a) anatomical probability maps
for both 1.5 and 3 T showing the
streamline density of each tract
(left-side only for bilateral tracts)
across participants for whom
validated tract data was available;

(b) intraclass correlation
coefficients (ICCs) and estimated
95% CIs between 1.5 and 3 T
acquisitions for 12 tracts (and
their general factors) identified by
probabilistic neighborhood
tractography and measuring both
mean diffusivity (MD) and
fractional anisotropy (FA). ATR,
anterior thalamic radiations; ILF,
inferior longitudinal fasciculus
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between-scanner consistency was considerably higher (mean ICC of

.647 for MD and .533 for FA).

3.7 | Prediction of “unseen” 1.5 T imaging
variables from 3 T data

Slopes and intercepts from a linear fit of global and regional imaging

variables between scanners are reported in Tables S1–S7 and S9,

alongside the predicted model fit (R2) obtained from 10-fold cross-

validation with a linear model. The range of predicted model fit was

variable across all imaging measures (.155–.991) but the highest R2

values indicted that differences between scanners could be virtually

eliminated (almost perfect prediction) for global volumetric measures

and large brain structures. For global T1 volumetric measures (-

Table S1), the R2 range was .615–.991 with estimated intracranial vol-

ume having the lowest and CSF having the highest R2. For volumetric

variables derived from FreeSurfer volumetric and subcortical

F IGURE 7 Between-scanner results for whole-brain structural networks using 85 nodes with 30% network thresholding, connection strength
weighted by both MD and FA and computed using 79 participants scanned at both 1.5 and 3 T: (a) scatter plots for three global network metrics,
where the continuous blue line shows linear fit with 95% CI; (b) Bland–Altman plots of the same network metrics showing the mean of between-
scanner measures and the difference between these measures where the blue line indicates the mean and the red lines represent ±2 SDs;
(c) anatomical network plots for FA- and MD-weighted networks, where link color and thickness represent the intraclass correlation coefficient
(ICC) for each connection (edge). Node abbreviations are listed in Table S10
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processing (Table S2), the R2 range was .130–.990 with left pallidum

lowest and right lateral ventricle highest. For the cortical measures

(Tables S3–S5), the R2 range was .202–.860 for volume, .195–.852 for

surface area, and .155–.684 for cortical thickness with the right fron-

tal pole, insula, and entorhinal areas scoring lowest and right

precuneus obtaining the highest R2 for volume and area. For global

dMRI measures (Table S6) the R2 range was .648–.863 with FA in

WM lowest, and MD in whole-brain highest. For WM tracts (Table S7)

the R2 range was .196–.845 with left ILF (FA) lowest and left arcuate

(MD) highest. For global network metrics (Table S9) the R2 range was

.483–.827, with mean edge weight (MD) lowest and network cluster-

ing coefficient (MD) having the highest R2.

4 | DISCUSSION

In one of the largest between-scanner comparisons to date, we report

previously lacking information on a wide range of structural brain

measures in an exclusively older group of participants. We found

excellent levels of consistency (ICC > ~.75) between the 1.5 and 3 T

scanners for the largest brain structures (whole-brain, ventricular and

tissue volumes; global dMRI measures in WM; and global network

metrics) that were similar to same-scanner test–retest studies

(Buchanan et al., 2014; Iscan et al., 2015; Luque Laguna et al., 2020;

Melzer et al., 2020). We noted that there were overall mean shifts in

the absolute levels of most measures between 1.5 and 3 T: volumetric

measures and thickness appeared larger at 3 T, RD, and MD were

lower, and AD and FA were higher at 3 T, consistent with prior obser-

vations from smaller studies on single metrics (Chu et al., 2017; Han

et al., 2006; Heinen et al., 2016; Pfefferbaum et al., 2012), but not

others (West et al., 2013). Regression-based correction for scanner

(using intercept differences) effectively eliminated scanner differences

in unseen (hold-out) data for global brain measures, giving similar (and

sometimes higher) agreement than might be expected from same-

scanner test–retest data: global measures could be accurately

predicted in line with 1.5 T values from 3 T data using 10-fold cross-

validation.

Interestingly, both GM and WM tissue volumes appeared larger

at 3 T than at 1.5 T, but CSF volume was smaller. Contributing factors

are likely to include a combination of higher tissue contrast (resulting

in differences in the tissue-CSF boundary), different scanner-specific

geometric distortions and a slight difference in T1-weighted voxel

dimensions. More numerous sampling instances along a complex sur-

face may result in both superior estimation (cf., Cavalieri), and the

“coastline paradox,” whereby complex shapes appear larger when

measured with greater fidelity (cf., Richardson; Napolitano, Ungania, &

Cannat, 2012). This clearly has important implications for cross-

scanner analyses that use ICV or CSF correction to measure atrophic

change in global tissue volumes from cross-sectional data with differ-

ent voxel dimensions — lower field strengths may potentially result in

higher estimates of atrophy.

As would be expected, between-scanner agreement decreased as

the granularity increased from large brain structures to include smaller

regional imaging variables. Scanner agreement at the regional level

was similar or slightly lower than prior same-scanner work, such as for

cortical regional measures (Boekel et al., 2017; Clayden et al., 2009;

Liem et al., 2015; Luque Laguna et al., 2020; Madan & Kensinger,

2017; Srinivasan et al., 2020). We also found that smaller GM regions

typically had poorer between-scanner agreement than large regions;

this between-scanner finding corresponds well with the known rela-

tionship between reliability and region size observed in same-scanner

work (Iscan et al., 2015; Tustison et al., 2014). This finding indicates

that in this specific case, scanner differences may not contribute a sub-

stantial amount of additional noise to the noise reliability typically seen

in test–retest settings. It also contributes more generally to the litera-

ture on the merits and drawbacks of increasing cortical atlas granularity

for the reliability of the structural connectome (de Reus & van den

Heuvel, 2013) or structural-functional correspondence (Messé, 2020).

Additionally, a recent 1.5–3 T field strength comparison (N = 113),

reported a broadly similar pattern for regional reliability of FreeSurfer

segmentation (Srinivasan et al., 2020). The authors of this study also

identified a bias in the FreeSurfer procedure for under segmentation of

subcortical structures, particularly hippocampal volumes, in older

subjects.

Our vertex-wise cortical analyses were valuable in that they show

that ICCs increase with greater smoothing and show a pattern of

between-scanner ICC consistency which is agnostic to boundaries

imposed by a particular cortical atlas. Prior findings suggest that corti-

cal thickness generally shows lower reliability than either volume or

surface area in a same-scanner setting (Iscan et al., 2015), with which

our findings are consistent. Interestingly, although the percent differ-

ences between 1.5 and 3 T data were wider for volume and surface

area (especially prevalent in lateral and orbital frontal, cingulate and

posterior temporal areas) than for thickness, ICCs were very much

lower for thickness than either volume or area. Thus, whereas the

overall volume or area of cortex identified is proportionally higher at

3 T than for thickness, this overestimation is far more systematic (the

rank order is better preserved across scanners) than for thickness. It is

possible that thickness appears less reliable between 1.5 and 3 T

because the two dimensions upon which it relies (GM-WM and GM-

CSF boundaries) to derive sub-millimeter measurements are those

that would be affected by contrast differences between field

strengths.

With respect to dMRI data, the increase in FA and AD, and

decrease in RD and MD between 1.5 and 3 T, as well as the higher

number of WM inter-regional connections may also be indicative of

superior signal-to-noise (a better fit of the diffusion tensor). However,

these differences may be also partly explained by improved distortion

correction at 3 T. On this latter factor, the application of a modified

pipeline for the PNT-identified WM tracts (Tractor v2.6 with FSL

v4 at 1.5 T and Tractor v3.3 with FSL v5) was necessary to work with

multi-shell data for which the prior versions were not optimized, and

to apply the more advanced tools in eddy-current distortion and sus-

ceptibility corrections that we would be using in future study waves

at 3 T. This is likely to have provided an additional source of inconsis-

tency for the PNT-identified WM tract analyses, which were generally
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poorer than ICCs from similar methods in same-scanner designs which

report ICCs > .54 (Boekel et al., 2017; Clayden et al., 2009; Luque

Laguna et al., 2020). Indeed, the contribution of pipeline differences

was borne out in our supplementary analyses: applying a different

pipeline to 3 T substantially affected dMRI measures in a small sample

of our participants and FA increased substantially in WM tracts using

more recent processing algorithms, which provided better distortion

corrections (FA tends to increase with better distortion correction;

Yamada et al., 2014). Nevertheless, our findings in the main analyses

still indicated “fair” consistency, with poorer agreement found for

smaller tracts which involved fewer streamlines and were generally

found close to the ventricles; these were more likely to suffer from

partial CSF contamination for some streamlines.

Global network metrics derived from the structural connectome

showed good to excellent consistency, comparable to same-scanner

results (Buchanan et al., 2014; Cheng et al., 2012). We found between-

scanner consistency to be poor at the level of individual connections,

though this was vastly improved when we accounted for differences in

network sparsity (many more connections were identified at 3 T than

at 1.5 T). Poor between-scanner consistency was not unexpected

because the variability in T1-weighted regional segmentation and

tractography both contribute to the variability in the resulting net-

works. Our results suggest that multi-scanner network analyses require

careful consideration in the treatment of acquisition-specific network

sparsities, such as the use of stringent thresholding or other de-noising

methods (de Reus & van den Heuvel, 2013; Roberts et al., 2017).

4.1 | Limitations

The present study has several limitations which should be taken into

account. Our aim was to determine between scanner differences in a

sample of exclusively older subjects including those with representa-

tive age-related pathology. However, same-scanner test–retest vari-

ability has been shown to be greater in older subjects than in younger

(Jovicich et al., 2009). Additionally, there was a relatively large interval

(mean of 72 days) between scans, but even in older age it is unlikely

that age-related structural changes can be reliably detected by MRI

over such a short period (Resnick et al., 2000). In addition, direct com-

parison to prior between-scanner and same-scanner test–retest stud-

ies is problematic because different statistics are commonly used,

including different formulations of the ICC.

The specific scanner configurations used in this work may limit

the generalizability of the current findings given that between-scanner

agreement can be influenced by scanner manufacturers, acquisition

parameters and image processing software (Heinen et al., 2016;

Jovicich et al., 2009; Tardif, Collins, & Pike, 2010; Wardlaw et al.,

2012). Our study represents a change in field strength, manufacturer,

acquisition and some necessary processing steps (e.g., for dMRI

processing), such that we must be clear that the differences between

scans cannot be only attributed to field strength. A previous between-

scanner comparison showed that reliability is typically better when

the same scanner manufacture was used than when different scanner

manufactures were used (Jovicich et al., 2009). Some between-

scanner volumetric variability must be attributed to the slight mismatch

in T1-weighted voxel dimensions (only 3 T voxels were isotropic). The

spatial resolution used in our primary study was due to constraints on

the scanning time for the required modalities. However, the FreeSurfer

morphometric procedure was designed to be sequence-independent

and involves interpolating T1 volumes to isotropic voxels before seg-

mentation (Fischl, Salat, et al., 2004). Additionally, for longitudinal set-

tings the more recent FreeSurfer longitudinal processing pipeline has

been shown to obtain better cross-session reliability than the cross-

sectional pipeline (Jovicich et al., 2013). Additionally, we did use

openly-accessible and commonly-used methods across a large range of

structural neuroimaging measures. Different versions of dMRI processing

software were used as we needed to keep 1.5 T acquisition and

processing consistent with prior waves of our longitudinal study. We

cannot use the newer FSL software tools with our 1.5 T data as we do

not acquire the necessary reverse phase-encoded volumes (https://fsl.

fmrib.ox.ac.uk/fsl/fslwiki/topup).

We employed a straightforward linear regression approach using

k-fold cross-validation, and therefore cannot rule out that promising

scanner harmonization and calibration methods will not further

improve cross-scanner reliability (Cetin Karayumak et al., 2019;

Keshavan et al., 2016; Pinto et al., 2020; Tax et al., 2019). Finally, we

judged that providing uncorrected, rather than corrected, p-values in

the statistical test of scanner differences at the vertex level was more

sensitive for the purpose of illustrating any potential differences. Nev-

ertheless, there is relatively low statistical power here (e.g., Schönbrodt

& Perugini, 2013)—even though this study represents one of the larg-

est cross-scanner studies—potentially resulting in an underestimation

of cross-scanner differences that may be apparent in larger meta- and

mega-analytic settings.

5 | CONCLUSIONS

Longstanding longitudinal studies are torn between maintaining con-

sistency of the MRI protocol and embracing improvements in scanner

technology. The present study reports previously lacking cross-

scanner results on a broad range of structural brain measures in a

comparatively large sample of older participants. Global measures

showed consistently good or excellent agreement, with lower agree-

ment seen with increasing granularity of measurement, though in

most cases these were still comparable to prior within-scanner test–

retest results. Differences in the absolute level were prevalent, but we

showed that, particularly for global measures, between-scanner vari-

ability could be effectively eliminated in unseen (hold-out) data using

a k-fold cross-validation linear model. We conclude that low granular-

ity measures of brain structure can be reliably measured between the

different scanner manufacturers and field strengths tested. However,

we recommend caution in combining high granularity information

from different scanners. These data have useful implications for multi-

center meta- and mega-analyses combining data across hardware,

software and field strengths (Van Den Heuvel et al., 2019), and
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provide much-needed information in an exclusively older age group

which is underrepresented in this literature.
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