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ABSTRACT
Objective  Gastrointestinal (GI) bleeding commonly 
requires intensive care unit (ICU) in cases of 
potentialhaemodynamiccompromise or likely urgent 
intervention. However, manypatientsadmitted to the ICU 
stop bleeding and do not require further intervention, 
including blood transfusion. The present work proposes 
an artificial intelligence (AI) solution for the prediction of 
rebleeding in patients with GI bleeding admitted to ICU.
Methods  A machine learning algorithm was trained and 
tested using two publicly available ICU databases, the 
Medical Information Mart for Intensive Care V.1.4 database 
and eICU Collaborative Research Database using freedom 
from transfusion as a proxy for patients who potentially 
did not require ICU-level care. Multiple initial observation 
time frames were explored using readily available data 
including labs, demographics and clinical parameters for a 
total of 20 covariates.
Results  The optimal model used a 5-hour observation 
period to achieve an area under the curve of the receiving 
operating curve (ROC-AUC) of greater than 0.80. The 
model was robust when tested against both ICU databases 
with a similar ROC-AUC for all.
Conclusions  The potential disruptive impact of AI in 
healthcare innovation is acknowledge, but awareness 
of AI-related risk on healthcare applications and current 
limitations should be considered before implementation 
and deployment. The proposed algorithm is not meant to 
replace but to inform clinical decision making. Prospective 
clinical trial validation as a triage tool is warranted.

INTRODUCTION
Gastrointestinal (GI) haemorrhage is a 
common condition that frequently requires 
hospitalisation, often in the intensive care 
unit (ICU)1 with considerable associated 
morbidity. In particular, ICU admission is 
associated with increased costs and a greater 
rate of complications and poor outcomes 
compared with ward admission.2–4 Some 
patients are initially admitted to the ICU for 
haemodynamic instability but stabilise without 

further intervention and are discharged to 
the ward the following day.

Previous instruments, such as the Rockall 
or the Blatchford score5 have been applied 
to triage patients based on the likelihood of 
mortality, recurrent/ongoing bleeding, need 
for hospitalisation and requirement for endo-
scopic intervention. However, these models 
are validated only for upper GI bleeding 
with a focus on endoscopic intervention 
and mortality and do not assist in informing 
level of monitoring for hospitalised patients. 
Currently, there is no model to assist in 
triaging patients with GI bleeding including 
those with an undifferentiated source to an 
appropriate acuity of care.

We identified the need for blood transfu-
sion as a surrogate for persistent bleeding. 
Previous prospective studies have shown that 
up to half of patients with GI bleeding may 
not require transfusion.6 We used an ICU 
database to train a prediction model but 

Summary

What is already known?
►► Gastrointestinal bleeding is a severe event that re-
quires admission to the ICU.

►► Many patients in the ICU for gastrointestinal bleed-
ing undergo only increased monitoring without 
intervention.

►► ICU stay is associated with increased cost and 
morbidity.

What does this paper add?
►► An algorithmic approach using artificial intelligence 
on readily available electronic data can accurately 
predict ICU transfusion need.

►► Using this approach to identify patients at low risk 
for ongoing bleeding and transfusion could be vali-
dated prospectively to identify patients who may not 
require ICU-level care.
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focused on the first few hours on arrival as a proxy of the 
patient’s state in the emergency department.

The use of artificial intelligence (AI) represents an 
opportunity for more effective and efficient care delivery 
by predicting disease trajectory and complications.7–12 
Previous work in GI bleeding has used methods such as 
artificial neural networks,13 14 support vector machines13 
to predict the need for intervention; and fuzzy models15 
to identify which lab test is likely to contribute informa-
tion gain and influence clinical management of patients 
with GI bleeding in the ICU. This study focused on using 
machine learning to predict transfusion to better identify 
those patients who continue to bleed.

METHODS
This study is reported in accordance with the Strength-
ening the Reporting of Observational Studies in Epide-
miology statement.16

Database description
Data were collected from the Medical Information Mart 
for Intensive Care-III (MIMIC-III) V.1.417 and in the eICU 
Collaborative Research Database V.2.0 (eICU-CRD).18 
Both databases contain information from patients 
admitted to the ICU. The MIMIC-III database collects 
detailed haemodynamic and clinical parameters from all 
ICU patients admitted to a single major academic medical 
centre between 2008 and 2014, whereas the eICU-CRD 
is a multicentre database with high granularity data for 
over 200 000 admissions to ICUs monitored by an eICU19 
across the USA.

Ethical approval
Both databases are previously de-identified and have 
been reviewed by the institutional review boards (IRB) of 

their hosting organisations and determined to be exempt 
from subsequent IRB.

Definition of outcome
The outcome of this study is ongoing GI bleeding after 
admission to the ICU. Since this outcome variable is 
not encoded, blood transfusions were used as surrogate 
marker.

Software
Models were developed in Python V.3.7 using data science 
packages including pandas V.0.25.3 (data wrangling),20 
NumPy V.1.17.5 (computations),21 SciPy V.1.4.1 (hypoth-
esis testing),22 Scikit-learn V.0.22.1 (modelling)23 and 
Hyperopt V.0.2.3 (hyperparameter optimisation).24

Data preparation
We included non-pregnant adult patients (≥18 years old) 
admitted to the ICU and diagnosed with GI bleeding 
based on the International Classification of Diseases 
(ICD-9) codes (see table A1, online supplemental digital 
content 1,). For patients with multiple ICU admissions 
within a single hospitalisation event, only the first ICU 
stay was considered. The inclusion criteria for each data-
base are further detailed in figure 1.

Missing records were imputed with the last observation 
available carried forward. Patients missing their first value 
were imputed with the intra-subject median. In order to 
take into account the dynamics of the observed features 
within the training window (eg, increasing, decreasing 
trends), we adopted a feature engineering approach (see 
text, online supplemental digital content 2). Also, non-
normally distributed features (skewness >3) were log-
transformed25 in order to obtain a normal distribution 
for improved model performance.

Figure 1  Inclusion criteria for the cohort extracted from the (A) eICU-CRD and (B) MIMIC-III. eICU-CRD, eICU Collaborative 
Research Database; ICD-9, International Classification of Diseases-9; ICU, intensive care unit; GI, gastrointestinal; MIMIC-III, 
Medical Information Mart for Intensive Care-III.
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Feature selection has been performed by recursively 
discarding features that do not reduce accuracy perfor-
mance when eliminated. This procedure is called recur-
sive feature elimination (RFE), a method used to remove 
non-predictive covariates with a greedy approach26 
(see text, online supplemental digital content 3). Final 
input datasets gather 4333 first ICU admissions from the 
MIMIC-III database and 10520 first ICU admissions from 
the eICU-CRD along with 20 covariates. Input variables 
include several laboratory analyses and demographic 
information that are available in each database. Detailed 
information of these features is described in table 1.

Prediction time windows
Several time windows were assessed for data extraction 
of the training/testing data and the data for the output 
variable (blood transfusion) that was predicted. Four 
different time windows starting from ICU admission 
(hour 0) were evaluated: training time from 0 to 3 hours/

prediction time 4–24 hours, training time 0–4 hours/
prediction time 5–24 hours, training time 0–5 hours/
prediction time 6–24 hours, training time 0–6 hours/
prediction time 7–24 hours. The training timeframe 
contains the covariates recorded during that time frame 
for each ICU stay. All training time windows include 
information recorded prior to the ICU admission (up 
to −1 hour). The prediction time window is when the 
surrogate variable (blood transfusion) was recorded (see 
figure 2).

This analysis helped us to find the optimal training/
prediction time windows. The selected time windows 
were those that achieved the best predictive perfor-
mance. In addition to that, the best training time 
window is the one that gathered the highest amount of 
data before a blood transfusion. Except from that, there 
is no other contextual detail that was considered during 
this analysis.

Table 1  List of covariates, the output variable and demographic information for each cohort. Continuous variables are stated 
as mean (IQR), otherwise are the number of occurrences. only a subset of these variables (selected by recursive feature 
elimination procedure) enters in the final models.

MIMIC-III
(n=4314)

eICU-CRD
(n=10 306)

Demographics

Age at admission (years) 83.5 (56–81) 76.7 (56–79)

Gender (n)

 � Male 2491 5927

 � Female 1823 4379

Output variable (transfusion)

Transfused patients (n, % wrt total number of patients) 2077 (48.15%) 2712 (26.31%)

Covariates

Heart rate (bpm) 92.9 (79.0–105.7) 94.0 (79.9–106.5)

Mean blood pressure (mm Hg) 78.9 (68.5–87.8) 78.4 (67.6–87.5)

Systolic blood pressure (mm Hg) 114.5 (99.0–129.0) 108.1 (93–121)

Diastolic blood pressure (mm Hg) 60.3 (54.7–65.2) 62.6 (56.0–68.2)

Respiratory rate (breaths/min) 21.2 (18.0–24.0) 21.9 (17.8–24.4)

Haematocrit (%) 28.4 (23.8–32.6) 26.5 (20.7–31.6)

Haemoglobin (g/L) 97 (80–112) 87 (67–104)

White blood cell (×109/L) 11.8 (7.2–14.1) 11.7 (7.4–14.4)

Platelet (×109/L) 227.5 (137.0–286.0) 207 (129.0–263.0)

Creatinine (mg/dL) 1.79 (0.85–1.88) 1.73 (0.80–1.90)

Blood urea nitrogen (mg/dL) 39.5 (19.0–51.0) 39.2 (19.0–51.0)

Potassium (mEq/L) 4.34 (3.80–4.70) 4.38 (3.80–4.80)

Bicarbonate (mEq/L) 22.6 (20.0–26.0) 22.7 (20.0–26.0)

Amount blood transfused (mL) 601.0 (375.0–750.0) 571.9 (324.0–700.0)

Glucose (mg/dL) 160.2 (106.0–174.0) 153.2 (105.0–176.0)

Albumin (g/dL) 3.17 (3.2–3.2) 2.96 (2.8–3.1)

Temperature (°C) 36.3 (36.0–36.7) 36.4 (36.4–36.5)

Partial thromboplastin time (s) 37.3 (26.1–37.9) 35.3 (26.0–37.0)

eICU-CRD, eICU Collaborative Research Database; ICU, intensive care unit; MIMIC-III, Medical Information Mart for Intensive Care-III.
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Training and testing partitions
Several training/testing partitions and strategies were 
designed in order to fully exploit the information 
contained in both datasets. Specifically, both datasets 
are randomly divided into a test (25% of records) and 
training set (75% of records). A model is fitted on each 
of the training sets and on a combination of the two. All 
training subsets were split to perform 10-fold cross vali-
dation and to optimise model’s hyperparameters. The 
testing subsets had data that were not used for training/
validation.

Three different training sets were considered: (1) 
including MIMIC-III data only (n=3235); (2) including 
eICU-CRD data only (n=7729) and (3) a training set 
composed by 29.17% of MIMIC-III and 70.83% of 
eICU-CRD (n=10 964). The performance of the models is 
then gauged on both the test sets, allowing for an external 
validation of the classifiers for a total of three models per 
each considered time window:
1.	 Train on MIMIC-III, internal validation on MIMIC, ex-

ternal validation on eICU-CRD.
2.	 Train on eICU-CRD, internal validation on eICU-CRD, 

external validation on MIMIC-III.
3.	 Train on MIMIC-III and eICU-CRD, internal validation 

on MIMIC-III and eICU-CRD.

Predictive models
In order to improve the performance of individual 
machine learning models, the final classifier is deter-
mined as an ensemble of machine learning models 
combined together. To select the models for this 
ensemble, we assessed several classifiers. Hyperparam-
eter tuning was performed through Bayesian optimis-
ation27 with a stratified 10-fold cross validation, where 
class imbalance is taken into account in the parameters 
of the models. This tuning is carried out with a custom-
ised loss function that takes into account accuracy and F1 
score (see text, online supplemental digital content 4). 
This delivers a model based (and hence non arbitrary) 
procedure to find cut-off-thresholds that optimise jointly 
the accuracy, specificity and sensitivity of the model. By 
specifying the weights of F1 score and accuracy inside 
the custom loss function the model could be oriented 
to avoid false negative predictions (higher F1 score and 
recall) with a high accuracy. However, since the model 

also provides the probability that a patient will bleed the 
physician could in principle perform standard sensitivity–
specificity trade-off decisions.

Given that eICU-CRD exhibits target imbalance (26% 
transfused patients against 74% non-transfused patients) 
classifiers trained on this dataset are imbalance-aware in 
order not to skew predictions towards the majority class 
(ie, predicting all patients as low risk patients, which is 
not desirable).

Permutation feature importance28 of the five most 
important covariates is estimated for each model. Moreover, 
the partial dependence function29 function of the outcome 
with respect to the most important variable is estimated (see 
text, online supplemental digital content 5).

In order to assess the goodness of the classifier during 
testing, we estimated the model’s accuracy, sensitivity 
(recall or true classification positive rate), specificity (true 
negative classification rate) and area under the curve of 
the receiving operating curve (ROC-AUC).

To conclude, models are calibrated through Platt’s 
scaling30 31 to obtain reliable probability estimates. The 
effects of the calibration can be diagnosed visually with 
the calibration curves (see text, online supplemental 
digital content 6).

RESULTS
The best results are achieved when the models are 
trained on the MIMIC-III dataset (see table A2, online 
supplemental digital content 7), and the lowest values 
are observed in the models trained on the eICU-CRD 
data (see table A3, online supplemental digital content 
8). When both datasets are merged (see table A4, online 
supplemental digital content 9), the performance does 
not improve considerably, but we can observe a signifi-
cant improvement in terms of sensitivity. Of note, the 
sensitivity obtained in the models trained with MIMIC-III 
is the highest among all other models; which indicates 
that it is better to detect true positive cases or patients that 
would require transfusion.

It is also interesting to highlight that the models trained 
on MIMIC-III (see table A2, online supplemental digital 
content 7) have a greater discriminative power on the 
eICU-CRD testing set than the models trained only on 
the eICU-CRD data (see table A3, online supplemental 
digital content 8) and even if these are tested on the same 
database. Thus, a model trained on MIMIC-III is capable 
of generalising better to patients that the model does not 
train on.

These observations could be explained by the fact the 
MIMIC-III input dataset is not skewed (48.14% of the 
entries required transfusion) as the input dataset from 
the eICU-CRD (26.31% of the entries required transfu-
sion). This imbalance could skew the model predictions 
towards the majority class (the most frequent label in the 
population) that are the patients that did not bleed (not 
required transfusion).

Figure 2  Graphical schema of the time windows.
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To avoid these misclassifications, the decision threshold 
was tuned during the optimisation procedure. In case the 
models were optimised only in terms of accuracy, it could 
have pushed the model to predict the majority class (non-
transfused). By using the customised loss function, it was 
forced to jointly maximise precision and the recall of the 
final model notwithstanding the accuracy.

Looking at the results reported in table 2, online supple-
mental tables A5–A7 (see tables A, online supplemental 
digital content 10–12) we notice that the performances 
of all the time windows are satisfying and the overall best 
ones are obtained when the training phase is performed 
with data collected in the time window 0–5 hours and the 
prediction time window is from 6 to 24. Hence, in the 
following, we will mainly focus on this subdivision.

The models achieve greater ROC-AUC values when they 
are tested on the MIMIC-III dataset (>0.80) compared 
with the models tested on the eICU-CRD (0.76–0.79) as 
shown in table 2. Only accuracy and specificity improve 
when the models are trained in the eICU-CRD, but no 

improvement is detected in terms of sensitivity. The 
highest true classification positive rate is achieved in the 
models trained on the MIMIC-III, a critical metric being 
that it indicates how good are the models to predict the 
need of transfusions (true positives). We remark that 
this behaviour was expected since the eICU-CRD dataset 
has a larger variety of patients and hospitals than on the 
MIMIC-III. Therefore, adding more training data with 
different characteristics is beneficial for the former but 
not for the latter.

The highest value of ROC-AUC is achieved when 
the model is both trained and tested in the MIMIC-III 
(0.81) as verified in figure  3 as well. When the same 
model is tested in the eICU-CRD dataset, we observed 
lower ROC-AUC values. This metric is improved (0.79) 
when the model is trained with both datasets, but tested 
in the same dataset. In terms of the ability to predict 
transfusion, the model trained in MIMIC-III and tested 
on the eICU-CRD dataset achieves the best sensitivity 
(0.93).

Table 2  Results for the time window composed by the pair training time of 0–5 hours/prediction time 6–24 hours

Training sets

Testing sets

ROC-AUC Accuracy Specificity Sensitivity

MIMIC-III eICU-CRD MIMIC-III eICU-CRD MIMIC-III eICU-CRD MIMIC-III eICU-CRD

MIMIC-III 0.8141 0.7634 0.7470 0.5021 0.6482 0.3502 0.8536 0.9277

eICU-CRD 0.8017 0.7858 0.7470 0.7060 0.7982 0.6872 0.6917 0.7581

MIMIC-III+eICU-
CRD

0.8035 0.7908 0.7488 0.6884 0.7143 0.6535 0.7861 0.7861

eICU-CRD, eICU Collaborative Research Database; MIMIC-III, Medical Information Mart for Intensive Care-III; ROC-AUC, area under the 
curve of the receiving operating curve.

Figure 3  ROC plot for all the test sets. Model is trained on (A) the MIMIC-III training set, (B) the eICU-CRD and (C) on the 
training set that contains both the MIMIC-III and the eICU-CRD. AUC, area under the curve; eICU-CRD, eICU Collaborative 
Research Database; ICU, intensive care unit; MIMIC-III, Medical Information Mart for Intensive Care-III; ROC, receiving 
operating curve.
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The most important features (see figure 4) to predict 
the need of transfusion are the haematocrit and the 
amount of blood already transfused during the training 
time window (0–5 hours) with the corresponding time 
pattern features (slope and intercept of haematocrit). 
Because of the importance of haematocrit, the interac-
tion between this feature and the output variable was 
assessed visually in the partial dependence plots shown 
in figure 5.

Despite the three plots do not have identical shapes, 
the same trend is verified in the three plots: haemato-
crit is inversely proportional to the output variable. That 
implies that if values of haematocrit decreases, the prob-
ability of needing blood transfusion increases. Moreover, 
the partial dependence function shown in figure 5 high-
lights the presence of a discriminative threshold in the 
model with respect to haematocrit. It indicates that if the 
value of haematocrit is greater than this threshold, the 
probability of bleeding increases substantially. We remark 
that the value for this threshold seems to be dependent 
on the dataset that is used for training, where this shift is 
more noticeable (figure 5A).

DISCUSSION
GI bleeding remains a common reason for ICU admission. 
In a dataset consisting of over 10 000 patients admitted to 
the ICU with GI haemorrhage (both upper and lower), 
under half require transfusion during their ICU admis-
sion.32 We present a model based on observations from 
the first 5 hours of ICU admission to predict the need for 
transfusion in the next 24 hours of admission with a high 
level of accuracy (overall AUC of 0.80). The patient’s 
vital signs and laboratory test findings during the first few 
hours in the ICU are a good proxy of the measurements 
in the emergency department.

In the clinical setting, the need for transfusion has been 
an outcome of interest for GI haemorrhage. Prior work 
from Villanueva et al6 found that even in active upper 
GI bleeding, up to half of patients do not require trans-
fusion. Furthermore, it has been established that while 
the minority of patients with upper GI bleeding require 
hospitalisation, this can be a significant driver of costs. 
By identifying patients who will no longer require trans-
fusion, it is possible to safely triage these patients to a 
regular ward, or even discharged to home if ambulatory 
monitoring can be provided.

Previous work in this area has focused either on upper 
or lower GI bleeding separately. In a 2016 analysis by 
Robertson et al,32 the Rockall, AIMS65 and Glasgow-
Blatchford Score (GBS) were all used to predict outcomes 
for upper GI bleeding. In their population, a total of 62% 
of the patients required a blood transfusion. They found 
the GBS to be the best predictor with an ROC-AUC of 
0.90. Both the AIMS65 (ROC-AUC 0.72) and full (ROC-
AUC 0.68)/pre-endoscopy (ROC-AUC 0.66) Rockall 
scores were considerably less accurate. However, the use 
of these scores to predict the need for transfusion has 
limitations. First, the only score with an ROC-AUC over 
0.8, the GBS was validated only on upper GI bleeding 
(primarily ulcer-related in the initial validation). Further-
more, relying on clinical data input from the healthcare 
providers, for example, presence of melena, presentation 
with syncope, presence of heart failure, introduces oppor-
tunities for error and bias. Attempts to generalise the use 
of GBS to lower GI bleeding have found some success 
but focuses primarily on the prediction of mortality and 

Figure 4  Feature importance plots for all the training sets. 
Model is trained on (A) the MIMIC-III training set, (B) the 
eICU-CRD and (C) on the training set that contains both the 
MIMIC-III and the eICU-CRD. eICU-CRD, eICU Collaborative 
Research Database; ICU, intensive care unit; MIMIC-III, 
Medical Information Mart for Intensive Care-III.

Figure 5  Partial dependence plot of the need of transfusion 
on haematocrit for all the training sets. Model is trained on (A) 
the MIMIC-III training set, (B) the eICU-CRD and (C) on the 
training set that contains both the MIMIC-III and the eICU-
CRD. eICU-CRD, eICU-CRD, eICU Collaborative Research 
Database; ICU, intensive care unit; MIMIC-III, Medical 
Information Mart for Intensive Care.
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need for an intervention instead of transfusion, and with 
suboptimal accuracy.

The sensitivity, or recall, of the models trained on 
MIMIC-III is the highest among all other models. A 
high recall means the algorithm identifies the majority 
of patients who require transfusion. For the use case 
presented, sensitivity is more important than precision, or 
the true positivity rate. When several models have similar 
ROC-AUC, sensitivity should be prioritised over preci-
sion. The consequence of missing patients who eventu-
ally bleed and sending them to the regular floor or even 
discharging them home is worse than over-calling poten-
tial persistent bleeders and getting them admitted to the 
ICU. The context in which the algorithm will be used and 
for what purpose are crucial to the model building.

Even when models are externally validated in another 
dataset, there is no guarantee that it will perform well 
in another patient population. External validation does 
not circumvent the need to evaluate algorithms trained 
elsewhere using local data prior to deployment. The 
performance of any predictive model is dependent on 
the database used to train the algorithm, and thus, the 
features available as candidate variables. The relationship 
between the features and the output of an algorithm is 
influenced by local practice patterns. In addition, model 
performance should be continuously monitored after 
deployment as accuracy almost always wanes over time, 
requiring model re-calibration.33

We submit the potential disruptive impact of AI-based 
technologies in precision medicine and in clinical 
decision-support systems. Nonetheless, we are aware of 
AI-related risks on healthcare applications and the pitfalls 
that have occurred in the past.34 Although we reduced the 
risk of misclassification in the design of our models, we 
propose a human in the loop system for decision support. 
A final decision still rests on the healthcare provider after 
a careful clinical assessment which now includes input 
from the algorithm. Moreover, before implementation to 
a real clinical setting, the algorithm requires regulatory 
approval, human factors engineering to incorporate it 
into the workflow and prospective evaluation of its impact 
on hard clinical endpoints including patient harm from 
false negative predictions.

There are key strengths to the model we presented. 
First, the calculation can be completely automated 
without clinician input of symptoms and past medical 
history. Furthermore, it does not require identification 
of the source of bleeding–upper versus lower. The model 
performed well on held out test sets from two different 
databases, one of them collected from more than 200 
hospitals across the USA.

Despite model validation on two databases, the algo-
rithm is not guaranteed to perform accurately in a 
different institution. We present a reproducible meth-
odology that other hospitals can employ to develop their 
own algorithm, as different patient demographics and 
practice patterns would undoubtedly modify the relation-
ship of the features with the outcome being predicted, 

that is, the need for blood transfusion. At the very least, 
medical AI algorithms require evaluation on data from 
the local population prior to prospective evaluation using 
hard clinical endpoints.

Going forward, this work presents a methodology to 
build a clinical AI-based model that potentially can be 
implemented for prediction of the need for transfusion. 
The algorithm is not meant to replace but to inform deci-
sion making, specifically around identification of patients 
who may not benefit from an ICU-level of care. A prospec-
tive trial is warranted to assess the utility of this model in 
clinical usage.
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