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Abstract: Hürthle cell thyroid carcinoma (HTC) accounts for 3–5% of all thyroid malignancies.
Widely invasive HTC is characterized by poor prognosis and limited responsiveness to standard
therapy with radioiodine. The molecular landscape of HTC is significantly different from the genetic
signature seen in other forms of thyroid cancer. We performed a comprehensive literature review on
the association between the molecular features of HTC and cancer metabolism. We searched
the Pubmed, Embase, and Medline databases for clinical and translational studies published
between 1980 and 2020 in English, coupling “HTC” with the following keywords: “genomic
analysis”, “mutations”, “exome sequencing”, “molecular”, “mitochondria”, “metabolism”, “oxidative
phosphorylation”, “glycolysis”, “oxidative stress”, “reactive oxygen species”, and “oncogenes”.
HTC is characterized by frequent complex I mitochondrial DNA mutations as early clonal events.
This genetic signature is associated with the abundance of malfunctioning mitochondria in cancer
cells. HTC relies predominantly on aerobic glycolysis as a source of energy production, as oxidative
phosphorylation-related genes are downregulated. The enhanced glucose utilization by HTC is used
for diagnostic purposes in the clinical setting for the detection of metastases by fluorodeoxyglucose
positron emission tomography (FGD-PET/CT) imaging. A comprehensive metabolomic profiling
of HTC in association with its molecular landscape might be necessary for the implementation of
tumor-specific therapeutic approaches.

Keywords: mitochondria; metabolism; Hürthle cell; oxidative phosphorylation; thyroid
cancer; oncogenes

1. Introduction

Differentiated thyroid cancer (DTC) arises from the follicular cells of the thyroid gland and is
the fifth most common malignancy in women [1–3]. Based on histologic phenotypes, DTC is divided
into three major groups: (1) the most common papillary thyroid cancer; (2) follicular thyroid cancer;
(3) Hürthle cell thyroid cancer (HTC). HTC accounts for 3–5% of DTC and is characterized by its
unique clinical and biological behavior [4–7]. Recent advances in elucidating the molecular landscape
of HTC revealed that it is distinct from other DTCs, showing that it is not a subtype of follicular
thyroid cancer, as previously believed [5,6]. Hürthle cells are large oxyphilic cells characterized
by abundant mitochondria, prominent nucleoli, and loss of cell polarity [8–10]. The mitochondrial
content results in an eosinophilic granular cytoplasm upon staining with hematoxylin and eosin.
These properties of oxyphilic (i.e., oncocytic) cells were first thoroughly described in 1907 by Theodor
Langhans [11]. Interestingly, oxyphilic cells can be present not only in cancer but also in benign thyroid
conditions such as Hashimoto thyroiditis, multinodular goiter, and adenoma [8–10]. The differentiation
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between a benign thyroid Hürthle cell adenoma and HTC cannot be made solely on the basis of
the cell morphology derived from the cytology material obtained from the fine needle aspiration
biopsy (FNAB) [4]. Most often, ultrasonography reports and indeterminate cytological samples
cannot provide a substantial identification of the pathological condition [10]. In such situations, final
diagnoses can be obtained after partial or total thyroidectomy. HTC is characterized by a capsular and
vascular invasion, while benign Hürthle cell adenoma lacks invasive features [4]. Thus, a detailed
histopathological characterization is required in order to distinguish between benign Hürthle cell
adenoma and HTC [12]. However, the inability to predict from FNAB specimens which Hürthle cell
neoplasm is malignant has led to surgical over-treatment [4,13]. Therefore, there has been a significant
effort in recent years to enhance the diagnostic accuracy of FNAB by combining it with the analysis of
the molecular signature of thyroid nodules [13]. Currently available molecular tests, such as the Afirma
Gene Sequencing Classifier (GSC; Veracyte, South San Francisco, CA, USA) and ThyroSeq v3.0 (test
developed by Molecular and Genomic Pathology laboratory at The University of Pittsburgh Medical
Center, Pittsburgh, PA, USA) have incorporated testing methodology that evaluates chromosomal loss
and mitochondrial DNA mutations, which are typically seen in HTC [8,14,15]. The main distinction
between benign Hürthle cell adenoma and HTC is based on copy number alterations and a nearly
complete genome haploidization specific to HTC, as identified by ThyroSeq v3.0 [16]. The benign
call rate is another measure used to compare Hürthle cell adenomas and HTC using GSC, which
combines next generation sequencing with machine learning tools. As a result, an increasing number of
indeterminate nodules have been determined as benign in nature [17,18]. Consequently, this has led to
a significant improvement in the specificity and positive predictive value of the test, with the predicted
ability to avoid up to 60% of unnecessary surgeries for benign conditions [8]. The remaining 40% is a
result of the overlap between the benign and malignant Hürthle cell neoplasms that still exists and
refers to common somatic mutations, such as variants of the RAS gene, associated with both benign
and malignant thyroid tumors. The genetic information of the patients who test positive, combined
with the clinical data and imaging techniques, can pave the way for individualized therapy [19].

HTC is further characterized based on the extent of vascular invasion—tumors with <4 foci of
vascular invasion are categorized as minimally invasive, while tumors with ≥4 foci are categorized as
widely invasive. Moreover, low-risk HTC is characterized by a different molecular profile compared
with high-risk HTC, with the latter characterized by a significantly higher mutation burden, frequent
loss of heterozygosity, and mitochondrial DNA mutations affecting complex I involved in the electron
transport chain [5,6]. While minimally invasive HTC is characterized by an excellent prognosis, widely
invasive HTC is associated with a high metastatic potential and high mortality [20–24]. The latter
is partially due to the unresponsiveness of HTC to standard therapy with radioactive iodine or to
chemotherapeutic agents [25–29]. It is critical to better understand the molecular landscape, biology,
and metabolism of these tumors in order to find novel effective therapeutic approaches. Therefore,
the goal of this study was to provide a comprehensive review of the molecular landscape of HTC,
particularly the widely invasive form of HTC.

2. Search Strategy and Selection Criteria

We performed a thorough literature review in PubMed, Embase, and MEDLINE. Data were
reviewed from full-length articles, including translational in vitro and in vivo studies, clinical case
reports, case series, observational retrospective and prospective studies, systematic reviews, and
meta-analyses, published between January 1, 1980 and March 31, 2020 in English. Search terms
included HTC coupled with the following keywords: “exome sequencing”, “genomic analysis”,
“mutations”, “molecular”, “mitochondria”, “oxidative phosphorylation”, “metabolism”, “glycolysis”,
“reactive oxygen species”, “oxidative stress”, and “oncogenes”. The final reference list was created
based on the originality of the articles as well as their relevance to the broad scope of this review.
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3. Genetic Alterations in HTC

Widely invasive HTC is characterized by a significantly—on average, six-fold higher— mutational
burden than other forms of DTC [6,11]. This mutational burden resembles more aggressive tumors
such as glioblastoma multiforme or ovarian cancer [11]. In contrast, minimally invasive HTC is
characterized by a low mutation frequency (0.4 non-silent mutations per megabase), which is similar
to more indolent forms of DTC such as classic papillary thyroid cancer [5].

The most common genetic alterations observed in HTC include pathogenic variants in the genes
associated with abnormal protein translation, such as EIF1AX (eukaryotic translation initiation factor
1A X-linked), MADCAM1 (mucosal vascular addressing cell adhesion molecule 1), or DAXX (death
domain associated protein). EIF1AX is mainly involved in the preinitiation complex during translation.
It is considered to be one of the genes involved in tumor initiation [30]. Apart from HTC, this gene is
present in a highly mutated form in uveal melanomas [31], as well as in about 1% of papillary thyroid
cancers [32]. The upregulation of MADCAM1, which is important for adhesion processes, can also lead
to increased protein translation and phosphorylation of AKT, resulting in enhanced proliferation [33].
DAXX pathogenic variants act as potential driver mutation candidates for HTC tumorigenesis, as they
lead to the altered transcriptional activities of various transcription factors [5,34]. These data suggest
that the dysregulation of translation is highly significant for HTC’s pathogenesis [6].

Other pathogenic variants commonly observed in HTC lead to enhanced cell proliferation. These
include pathogenic variants in the RAS family of oncogenes that are involved in controlling cell division,
as well as mutations in the negative regulator of RAS pathway–NF1 (neurofibromatosis type 1) and
CDKN1A (cyclin dependent kinase inhibitor 1A), which is involved in cell cycle regulation [32,35–37]. In
addition, commonly mutated ATXN1 (antioxidant protein 1 homolog), involved in the regulation of the
cell cycle and oxidative stress, may play a role in HTC oncogenesis [38]. Another important mutation
leading to enhanced HTC tumorigenesis is observed in the TP53 gene [5]. The TERT (telomerase
reverse transcriptase) promoter mutations observed in HTC are essential for the immortalization of
transformed cells [5,30,39]. These mutations are also seen in forms of thyroid cancer other than HTC.

Interestingly, HTC is also commonly associated with pathogenic variants leading to altered
cytoskeleton dynamics, such as mutations in UBXN11 (UBX domain protein 11) [6]. Cytoskeleton
abnormalities may facilitate metastatic potential and resistance to therapy [32] (Figure 1). Moreover,
the somatic GRIM-19 mutation which has been observed in HTC is one of the mutations of 19p13
which is associated with cell proliferation, apoptosis, and mitochondrial metabolism [40]. Maximo et
al. discovered that germline GRIM-19 pathogenic variants might be associated with familial forms of
HTCs [41].

To summarize, the most common somatic mutations in HTCs are associated with aberrant
signaling, leading to enhanced proliferation, abnormal protein translation, and altered cytoskeletal
dynamics (Figure 1).
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Figure 1. Diagram representing the role of mitochondrial mutations, near haploid genome and 
somatic mutations in Hürthle cell thyroid cancer development. Mitochondrial mutations, leading to 
the inactivation of complex I of the respiratory chain, are associated with the decreased OXPHOS and 
increased glycolysis. Near haploid genome, associated with the inactivation of several tumor 
suppressors, leads to the overactivation of PI3K/AKT/mTOR signaling pathway, enhancing cell 
proliferation and glycolysis. Somatic mutations in nuclear DNA are associated with abnormal protein 
translation, overactivation of PI3K/AKT/mTOR and RAS/RAF/MEK/ERK signaling pathways and 
altered cytoskeleton, leading to enhanced proliferation, resistance to apoptosis, and metastatic 
potential. 

4. LOH and Activation of AKT/mTOR Signaling 

Another landmark of HTC, clearly distinguishing it from other types of thyroid cancer, is the 
widespread loss of heterozygosity (LOH) [5,6,11,42] (Figure 1). This feature is clearly associated with 
the invasive forms of primary tumors, characterized by a high recurrence rate and metastatic 
potential.  

A study utilizing the Cancer Genome Atlas (TCGA) database for the pan-cancer analysis of LOH 
suggested that, apart from HTC, sarcoma and glioblastoma multiforme were the only cancers to have 
more than 0.6 of the genome alterations caused by LOH. This strongly underscores the relevance of 
LOH in HTCs (Figure 1). The level of uniparental disomy (UPD) found in certain HTCs was 
remarkably high and, in certain cases, affected the complete genome. This widespread LOH is 
associated with the inactivation of several tumor suppressor genes [43]. Interestingly, tumors with 
high LOH can have enhanced genetic instabilities and tend to be activated with cyclin-dependent 
kinase signaling [6]. 

Recent studies also revealed whole-chromosomal duplication appearing in a non-random 
pattern, particularly in chromosomes 5 and 7, in HTC. Interestingly, this phenomenon is associated 
with the overactivation of the PI3K/AKT/mTOR pathway, along with the RAS/RAF/MAPK signaling 
pathways (Figure 1), leading to enhanced cell proliferation and reduced apoptosis [6].  

5. Distinct Metabolic Profile of Cancer Cells 

Cancer cells are distinct from normal cells due to their uncontrolled cell division phenotype. 
They require abundant amounts of energy to fulfill their accelerated growth and proliferation 
demands. The classic “Warburg effect” was introduced by Nobel Prize Laureate Otto Warburg in the 
1920s. He proposed that cancer cells preferentially use glycolysis as a source of energy production 
despite an abundant supply of oxygen [44]. This was a striking discovery as glycolysis is not as 
efficient as oxidative phosphorylation (OXPHOS) in generating ATP [45]. This metabolic shift from 

Figure 1. Diagram representing the role of mitochondrial mutations, near haploid genome and
somatic mutations in Hürthle cell thyroid cancer development. Mitochondrial mutations, leading
to the inactivation of complex I of the respiratory chain, are associated with the decreased OXPHOS
and increased glycolysis. Near haploid genome, associated with the inactivation of several tumor
suppressors, leads to the overactivation of PI3K/AKT/mTOR signaling pathway, enhancing cell
proliferation and glycolysis. Somatic mutations in nuclear DNA are associated with abnormal protein
translation, overactivation of PI3K/AKT/mTOR and RAS/RAF/MEK/ERK signaling pathways and
altered cytoskeleton, leading to enhanced proliferation, resistance to apoptosis, and metastatic potential.

4. LOH and Activation of AKT/mTOR Signaling

Another landmark of HTC, clearly distinguishing it from other types of thyroid cancer, is the
widespread loss of heterozygosity (LOH) [5,6,11,42] (Figure 1). This feature is clearly associated with
the invasive forms of primary tumors, characterized by a high recurrence rate and metastatic potential.

A study utilizing the Cancer Genome Atlas (TCGA) database for the pan-cancer analysis of LOH
suggested that, apart from HTC, sarcoma and glioblastoma multiforme were the only cancers to have
more than 0.6 of the genome alterations caused by LOH. This strongly underscores the relevance of
LOH in HTCs (Figure 1). The level of uniparental disomy (UPD) found in certain HTCs was remarkably
high and, in certain cases, affected the complete genome. This widespread LOH is associated with the
inactivation of several tumor suppressor genes [43]. Interestingly, tumors with high LOH can have
enhanced genetic instabilities and tend to be activated with cyclin-dependent kinase signaling [6].

Recent studies also revealed whole-chromosomal duplication appearing in a non-random pattern,
particularly in chromosomes 5 and 7, in HTC. Interestingly, this phenomenon is associated with the
overactivation of the PI3K/AKT/mTOR pathway, along with the RAS/RAF/MAPK signaling pathways
(Figure 1), leading to enhanced cell proliferation and reduced apoptosis [6].

5. Distinct Metabolic Profile of Cancer Cells

Cancer cells are distinct from normal cells due to their uncontrolled cell division phenotype. They
require abundant amounts of energy to fulfill their accelerated growth and proliferation demands.
The classic “Warburg effect” was introduced by Nobel Prize Laureate Otto Warburg in the 1920s. He
proposed that cancer cells preferentially use glycolysis as a source of energy production despite an
abundant supply of oxygen [44]. This was a striking discovery as glycolysis is not as efficient as
oxidative phosphorylation (OXPHOS) in generating ATP [45]. This metabolic shift from mitochondrial
respiration to fermentation is also called “aerobic glycolysis”. The major features associated with
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this process are elevated glucose uptake and accelerated lactate secretion. The enhanced lactate
production results in an acidic tumor microenvironment, triggering neovascularization. The reverse
Warburg effect is a complementary and newly identified phenomenon, which is also referred to as
metabolic coupling. During this process, a close association occurs between the different populations
of tumor and stromal cells (i.e., fibroblasts). As a result, the stromal fibroblasts and a subpopulation
of tumor cells utilize aerobic glycolysis to generate lactate, which is distributed to the surrounding
cancer cells as a nutrient-substrate, facilitating the TCA cycle. The increased ATP production resulting
from this process is required for anabolic growth. Interestingly, this kind of metabolism enhances
chemoresistance and leads to the reduced effectiveness of therapeutic strategies [46].

6. Mitochondrial DNA Mutations in HTC Leading to Decreased OXPHOS

One of the key elements in the molecular landscape of HTC, differentiating it from other forms of
thyroid cancer, is the recurrent somatic loss of function and missense mitochondrial DNA (mtDNA)
mutations in genes encoding subunits of complex I of the electron transport chain [5,6,11,42]. Notably,
alterations in mitochondrial function and oxidative phosphorylation have been associated with widely
invasive HTC [5,6].

It has been established that HTCs have excessive mitochondria as well as mitochondrial
abnormalities to a much greater extent than has been observed in other forms of DTC. Approximately
71.4% of HTCs harbor non-synonymous mtDNA mutations and 36.7% are characterized by
loss-of-function mtDNA variants, which clearly demonstrates the importance of mitochondrial
abnormalities in HTCs [6].

The aberrant mitochondrial function observed in HTC could promote the shift from oxidative
phosphorylation (OXPHOS) to aerobic glycolysis as the predominant source of ATP production [6]. It
still needs to be established whether complex I mutations as well as the near-haploid state emerge at
the same time in the course of cancer progression or whether they originate independently. It has been
reported that mtDNA aberrations are capable of inducing epigenetic modifications within the nuclear
genome, which might be associated with tumor formation [47,48].

The HTC expression profile patterns revealed that widely invasive HTC is characterized by a
significant downregulation of the genes involved in OXPHOS, particularly those involved in the
electron transfer chain, such as MT-CO1, MT-ATP6, MT-CO2, MT-CO3, MT-ND2, MT-ND4, MT-CYB,
SDHA, COX6A1, COX5A, COX7A1, COX7B, CYCS, ATP5B, and UQCRQ [6]. The complex I mutations
can occur in the ND1, ND2, ND3, ND4, ND5, ND6, and ND4L regions of the mitochondrial genome [49].
HTC harbors near-specific aberrations in ND2 and ND4 complex I regions. In contrast, mutations in
the ND1, ND3, ND5, ND6, and ND4L regions of complex I have been found in other types of cancer,
such as prostate cancer [50], pancreatic cancer [51], colon cancer [52,53], bladder cancer [54], breast
cancer [55], and medulloblastoma [56].

Savagner et al. found that ATP synthesis was markedly decreased in Hürthle cell tumors in
comparison to controls, indicating that the OXPHOS coupling deficiency might be responsible for the
mitochondrial hyperplasia observed in oxyphilic thyroid tumors [57].

These observations were further supported by functional in vitro studies of the XTC.UC1 thyroid
oncocytic (Hürthle cancer) cell line. In contrast to non-oncocytic cell lines, XTC.UC1 could not survive
in media with galactose as the major nutrient. In this condition, cells are forced to meet their metabolic
demands only through mitochondrial respiration. However, the mitochondrial respiration rate is
significantly diminished in XTC.UC1 cells. These cells are also characterized by a significant reduction
in the enzymatic activity of complex I as well as complex III of the mitochondrial respiration chain and
increased ROS formation when compared to the control cells [58]. These observations were further
validated in osteosarcoma derived transmitochondrial cell hybrids, also known as cybrids, which
carried the mtDNA of XTC.UC1. The cybrid clones of XTC.UC1 displayed decreased ATP and reduced
viability in a galactose-containing medium [58].
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In contrast, Stankov et al. demonstrated that XTC.UC1 cells had elevated complex I and II activity
but reduced activity in complex III. They were mostly dependent on OXPHOS for energy production
and also formed excessive amounts of ROS [59]. The discrepancy in the results of the above-mentioned
studies could be associated with different in vitro conditions and different methods of measuring
mitochondrial respiration [59].

It is widely accepted that aberrant mitochondrial respiration and dysregulated mitochondrial
function can result in increased oxidative stress, which can further lead to oncogenesis. Therefore, as
Hürthle cells have abundant mitochondria, there was a recent attempt to investigate the association
between the genes involved in the oxidative stress response and HTC. HTCs demonstrate increased
production of reactive oxygen species (ROS), which enhances oxidative stress. These events further
induce the oncogenic signaling pathways causing the malignant transformation of cells and resistance
to several therapeutic drugs and radiation therapies [6]. Moreover, NFE2L2 (nuclear factor erythroid
2-related factor 2) and KEAP1 (kelch-like ECH-associated protein 1) mutations have been identified
in samples derived from patients with HTC [5,6]. These alterations might be of importance, as
NFE2L2, which is negatively regulated by KEAP1, enhances survival after cellular damage [60–63].
Moreover, there are no significant changes in the anti-oxidative stress machinery in HTC. Krhin
et al. showed no direct association between the expression of antioxidant genes, including GPX1
(glutathione peroxidase 1), GSTP1 (glutathione-S-transferase P1), GSTT1 (glutathione-S-transferase
T1), GSTM1 (glutathione-S-transferase M1), SOD2 (superoxide dismutase 2), and CAT (catalase), and
the development of HTC. Interestingly, the study suggested that the GPX1 Pro198Leu polymorphism
might be associated with the risk of HTC [64]. However, these findings need to be validated within
a larger population. The dysregulated mitochondrial function leading to excessive ROS production
and downregulated OXPHOS which has been observed in HTC is associated with the compensatory
upregulation of aerobic glycolysis [65–67].

7. Enhanced Glycolysis in HTC

Phosphatidylinositide 3 kinases (PI3Ks), along with AKT and mTOR (downstream target of AKT),
play a fundamental role in glycolysis and the regulation of glucose homeostasis by modulating glucose
uptake and insulin action [68]. Overactive PI3K/AKT/mTOR signaling in HTC is associated with
increased glycolysis as a major source of energy production (Figure 1). It has also been reported that in
the thyroid gland and the pancreas, the PI3K-AKT pathway plays a crucial role in Glut-1 translocation
from the cytoplasm to the plasma membrane [69,70].

Consistent with these observations, there is evidence for the upregulation of the genes involved
in glycolysis in HTC. Kim et al. reported an overexpression of hexokinase II—the rate-limiting first
enzyme in the glycolysis pathway. In addition, the glucose transporter GLUT1 and monocarboxylate
transporter MCT4, which is responsible for lactate release from the cell, were significantly upregulated
in HTC in comparison with benign thyroid tumors [71]. Moreover, the expression of hexokinase II
was correlated with tumor size and elevated MCT4 expression was associated with the extrathyroidal
extension of HTC. Additionally, carbonic anhydrase IX (CAIX), a cell pH regulator involved in the
Warburg effect, has been found to be associated with vascular invasion of HTC [71]. The transcription
factor HIF-1α (hypoxia inducible factor- 1α) is known to be strongly associated with increased glucose
metabolism and angiogenesis in cancer [72–76]. Studies have reported expression of VEGF, a target
gene of HIF-1α, in benign as well as malignant Hürthle cell tumors, suggesting the activation of HIF-1α
pathway in these lesions [77]. So far, there has been no concrete evidence of the direct role of HIF-1α in
promoting HTC tumorigenesis. The enhanced glucose uptake and increased glycolysis of HTC cells
has been translated to the clinical setting and used for diagnostic and prognostic purposes through
functional imaging relying on radiolabeled glucose uptake in HTC metastases.

Fluorodeoxyglucose (FDG) is an analog of glucose that is widely utilized for PET/CT scans.
In cancer tissues with accelerated glucose metabolism, there is a high uptake of 18FDG. HTCs are
characterized by enhanced glucose uptake and reduced iodine uptake due to the decreased expression
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of the sodium-iodide symporter. Therefore, the sensitivity of FDG-PET/CT scanning in the detection
of HTC metastases is significantly higher when compared with the gold standard in the imaging of
DTC—diagnostic radioactive iodine whole body scanning [4,47,78,79].

8. Targeted Therapies for HTC

The various signaling pathways and metabolic alterations associated with HTC provide multiple
potential therapeutic targets. The current standard therapy for radioactive iodine non-avid HTC
consists of treatment with tyrosine kinase inhibitors (TKIs). There are two Food and Drug
Administration (FDA)-approved agents for the management of metastatic progressive HTC—lenvatinib
and sorafenib [80]. However, the efficacy of lenvatinib and sorafenib in HTC is limited. Therefore,
there is a need for new therapeutic approaches targeting the overactive oncogenic signaling pathways
as well as altered metabolism (Figure 2). Given the high mutation burden associated with increased
immunogenicity, immunotherapy with immune checkpoint inhibitors has been utilized for advanced
and metastatic HTCs. The monoclonal antibodies against programmed cell death protein 1 (PD-1), PD
ligand 1 (PD-L1), and cytotoxic T lymphocyte associated antigen 4 (CTLA-4), have been utilized either as
monotherapies or combination therapies [81]. Clinical trials which are focused on combination therapies
for HTC include targeting the immunological landscape of HTC along with tumor angiogenesis,
tyrosine kinase receptors, and overactive mTOR signaling. Motesanib (AMG706) is utilized to block
tumor angiogenesis via the inhibition of vascular endothelial growth factors (VEGF) 1–3 as well
as antagonizing platelet-derived growth factor receptor (PDGFR) and c-KIT signaling in metastatic
thyroid cancer (NCT00121628, Phase II). Among combination therapies with TKIs and mTOR inhibitors,
there is a clinical trial utilizing sorafenib tosylate alone or in combination with the mTOR inhibitor
everolimus (NCT02143726, Phase II). Other ongoing clinical trials include a combination of the VEGF
inhibitor cediranib maleate and immunomodulatory agent lenalidomide, which activates T and
natural killer (NK) cells (NCT01208051, Phase I/II), (Figure 2). Some other trials utilizing TKIs and
immunomodulatory agents are implementing a combination of cabozantinib and checkpoint inhibitors
against PD1 (nivolumab) and CTLA4 (ipilimumab) (NCT03914300, Phase II) and a combination of
lenvatinib with anti-PD1 monoclonal antibody (pembrolizumab) (NCT02973997, Phase II), (Figure 2).
There is also an active clinical trial targeting the epigenetic regulation of the tumor with a histone
deacetylase inhibitor (romidepsin) (NCT00098813, Phase II), (Figure 2).
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Figure 2. Model depicting the drug targets in Hürthle cell thyroid cancer that are being exploited in
the ongoing clinical trials. (A) The inhibitory molecules acting upon various oncogenic pathways
are shown in the green box. (B) Diagrammatic representation of the mechanism of action of various
immunotherapy agents currently employed in clinical trials for Hürthle cell thyroid cancer.
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9. Summary and Conclusions

HTC is distinct from other cancers, as demonstrated by the extensive mtDNA mutations as well as
the whole chromosome losses. These genetic alterations lead to decreased oxidative phosphorylation,
enhanced aerobic glycolysis, and oxidative stress, as well as the overactivation of the PI3K/AKT/mTOR
and RAS/RAF/MEK/ERK signaling pathways. Moreover, high-risk HTC is characterized by a significant
mutation burden and aneuploidy, which may result in the enhanced immunogenicity of the tumor
and consequently a better response to immunotherapy [82]. This distinct molecular landscape may
form a basis for novel therapeutic approaches involving combination therapies affecting overactive
signaling pathways, cancer metabolism, and immune landscape, as currently available treatments with
radioactive iodine and FDA-approved TKIs are not effective. It is worthwhile to speculate that targeting
overactive signaling pathways with TKIs and/or mTOR inhibitors in combination with small molecules
blocking glucose transporters (GLUTs) or the enzymes involved in overactive aerobic glycolysis, such
as hexokinase inhibitors, along with targeting the tumor microenvironment by immunotherapy, might
be an effective strategy for novel clinical trials. HTC therapy is an evolving field and the recent findings
described in this review may form a basis for identifying effective strategies which can be exploited to
prolong the survival rate of patients with HTC.
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VEGF Vascular endothelial growth factor
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