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1UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
2Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
3Co-first author
4Present address: Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta,

GA 30332, USA
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SUMMARY

The cortical local field potential (LFP) is a common
measure of population activity, but its relationship
to synaptic activity in individual neurons is not fully
established. This relationship has been typically
studied during anesthesia and is obscured by shared
slow fluctuations. Here, we used patch-clamp re-
cordings in visual cortex of anesthetized and awake
mice tomeasure intracellular activity;we then applied
a simple method to reveal its coupling to the simulta-
neously recorded LFP. LFP predicted membrane po-
tential as accurately as synaptic currents, indicating a
major role for synaptic currents in the relationship be-
tween cortical LFP and intracellular activity. During
anesthesia, cortical LFP predicted excitation far bet-
ter than inhibition; during wakefulness, it predicted
them equally well, and visual stimulation further
enhanced predictions of inhibition. These findings
reveal a central role for synaptic currents, and espe-
cially inhibition, in the relationship between the
subthreshold activity of individual neurons and the
cortical LFP during wakefulness.

INTRODUCTION

The aggregate activity of neuronal populations in the cortex pro-

duces an electrical signal that can be easily measured from

outside the cranium (electroencephalography) or within the cor-

tex (local field potential, LFP). The LFP reflects the activity of

local populations (Buzsáki et al., 2012; Katzner et al., 2009; Des-

texhe et al., 1999), is closely linked to the blood-oxygen signal

measured in fMRI (Logothetis et al., 2001), and is an attractive

signal for brain-machine interfaces. The current sources and

sinks generating the LFP have been well-studied in vitro and

under anesthesia; nonetheless, there remain open questions

regarding the usefulness of the LFP for inferring synaptic activity

of individual neurons in intact, awake cortex.
One open question concerns the relationship of the LFP to

intrinsic, nonsynaptic currents in single neurons (Buzsáki et al.,

2012). Studies in vitro indicate that intrinsic currents provide

a measurable contribution to the LFP in both hippocampus

(Jefferys and Haas, 1982) and neocortex (Buzsáki et al., 1988).

Large-scale simulations have offered differing estimates of this

contribution: some suggest that the LFP mainly reflects synaptic

activity (Einevoll et al., 2013; Lindén et al., 2011), and others sug-

gest a dominant role for intrinsic conductances (Reimann et al.,

2013). It is not known how the LFP relates to subthreshold activ-

ity in single neurons, particularly in the intact and awake cortex.

A second question concerns the relative roles of synaptic exci-

tation and inhibition. The traditional view is that the cortical LFP

largely reflects the activity of pyramidal neurons, which are

numerous and well-aligned in space (Braitenberg and Schuz,

1991). Indeed, activation of excitatory afferents produces large

and localized extracellular current sinks (Mitzdorf and Singer,

1978). Inhibition, conversely, is thought to contribute little to

the cortical LFP because inhibitory cells and synapses are fewer,

have lower driving force, and are not well-aligned in space (Bar-

tos et al., 2007; Hubbard et al., 1969). However, measurements

in vitro have revealed conditions where the LFP reflects inhibitory

activity, both in hippocampus (Bazelot et al., 2010; Glickfeld

et al., 2009) and in neocortex (Trevelyan, 2009). Moreover, inhib-

itory currents recorded in vitro and under anesthesia are involved

in fast patterns in the LFP (Atallah and Scanziani, 2009; Hasen-

staub et al., 2005; Okun and Lampl, 2008; Penttonen et al.,

1998; Poo and Isaacson, 2009; Salkoff et al., 2015). It remains

unknown how the LFP is related to synaptic excitation and inhi-

bition of individual neurons in the intact, awake cortex.

A third question concerns the effect of sensory stimuli on the

relationship between the LFP and synaptic currents. Extracel-

lular recordings show that visual stimulation reduces the correla-

tion between spikes and the LFP in mouse primary visual cortex

(V1), both under anesthesia (Nauhaus et al., 2009) and in

wakefulness (Ray and Maunsell, 2011). Synaptic mechanisms

underlying these changes in the relationship between the LFP

and single neurons remain unclear.

Answering these questions has been hampered by two diffi-

culties. First, previous studies of the LFP’s relationship to excita-

tion and inhibition were performed in vitro or under anesthesia.
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Figure 1. Fast Coupling between Vm and LFP in Cortical Area V1
(A) LFP and simultaneous whole-cell patch-clamp recording of Vm in L2/3 of anesthetized mouse V1 during spontaneous activity.

(B) As in (A), during wakefulness.

(C and D) Same as (A) and (B), during visual stimulation (bottom). Single-trial (darker) and average responses to ten trials (lighter). Spikes truncated at �20 mV.

(A)–(D), four separate neurons.

(E and F) Normalized crosscorrelation of spontaneous LFP and Vm under anesthesia (E) and wakefulness (F). Light traces, mean across pairs ± SEM (shaded).

Dark traces, autocorrelation of LFP. Values are full width at half maximum (arrows).

(G and H) Same as (E) and (F), during visual stimulation.

(I and J) Optimal coupling filters between LFP and Vm for spontaneous activity under anesthesia (I) or wakefulness (J). Shuffling trials destroys coupling filters.

Inset: coupling filter at same timescale as correlation in (E).

(K and L) Same as (I) and (J), during visual stimulation.

(M and N) Coupling filters predict single-trial spontaneous Vm (top) from LFP (bottom) during anesthesia (M) or wakefulness (N). Crossvalidated coupling filters

were convolved with LFP to predict simultaneous Vm (blue). Percentages indicate explained variance of predicted trace compared to actual trace (gray).

(O and P) Same as (M) and (N), during visual stimulation (bottom). (M)–(P), four separate neurons. See also Figures S1 and S2.
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Anesthesia is not expected to alter the physics of extracellular

current sources and sinks that generate the LFP; however, anes-

thesia does alter neuronal interactions atmany timescales (Ecker

et al., 2014). Second, the common method to relate LFP to sin-

gle-neuron activity is to calculate crosscorrelations. These corre-

lations are contaminated by the autocorrelations of the signals,

which are dominated by shared slow fluctuations even during

wakefulness (Okun et al., 2010; Poulet and Petersen, 2008).

Even if the relationship between LFP and membrane potential

(Vm) was instantaneous, their crosscorrelation would reflect the

timescale of shared autocorrelations.

Here,weovercome these limitations usingsimultaneouspatch-

clamp and LFP recordings in the anesthetized and awake mouse

visual cortex. We introduce a linear regularized method that sep-

arates the influence of slow autocorrelations from the fast (milli-

second) coupling of LFP with intracellular activity. This method

allows us to quantify how well the LFP predicts subthreshold

excitatory and inhibitory activity of single cortical neurons.

RESULTS

We recorded the LFP in V1 and simultaneously measured intra-

cellular activity in layer 2/3 with whole-cell patch-clamp record-

ings. We first made current-clamp recordings to investigate the

relationship between LFP and Vm. In a second set of experi-

ments, we recorded in voltage clampwhile blocking intrinsic cur-

rents. We could thus assess the role of synaptic currents and the

relationship between the LFP and synaptic excitation and inhibi-

tion. To study the effects of brain state and of sensory drive, we

made ourmeasurements in anesthetized and awakemice, and in

the presence and absence of a brief visual stimulus. All proce-

dures were made in accordance with the Animals (Scientific

Procedures) Act 1986, UK.

Fast Coupling of LFP to Membrane Potential
The LFP bears close similarity to the Vm of nearby pyramidal neu-

rons, but the relevant timescale of this relationship is obscured

by shared slow fluctuations (Figures 1A–1D). This relationship

is commonly characterized by computing crosscorrelations be-

tween the two signals (Figures 1E, 1F, and S1, available online).

The temporal extent of crosscorrelations is dominated by slow

fluctuations in the LFP. Indeed, under anesthesia, the timescale

of LFP-Vm correlation was as broad as the LFP’s autocorrelation

(Figure 1E). During wakefulness, LFP-Vm correlation was smaller

(Figure S1) and briefer but was again as broad as the LFP’s auto-

correlation (Figure 1F).

The presence of a visual stimulus hardly changed the time-

scale of LFP-Vm correlation. Stimulus-evoked correlations had

similar timescale as spontaneous correlations, for anesthetized

(Figure 1G) or awake (Figure 1H) visual responses, and for both

signal and noise correlations (Figure S1). Therefore, regardless

of brain state or sensory condition, correlations between LFP

and Vm are dominated by slow fluctuations shared between pop-

ulation activity and cellular activity.

To understand the fast relationship between LFP and single

neurons, we implemented a linear model that infers the optimal

function needed to reproduce intracellular activity from the

simultaneously recorded LFP. We used crossvalidated regular-
ized linear regression to obtain these optimal functions (coupling

filters; Mackay, 1992; Sahani and Linden, 2002). This method

avoids overfitting while robustly estimating coupling filters inde-

pendent from the influence of slow autocorrelations (see Supple-

mental Experimental Procedures). Convolving the LFP with the

coupling filter yields a prediction of the intracellular signals.

The accuracy of prediction enables assessment of the strength

of coupling. We quantified this as the percentage of variance in

the intracellular signal explained by the LFP. Explained variance

ranges from 0 (for a constant model that merely predicts the

mean) to 1 (perfect prediction).

This procedure yielded coupling filters whose bandwidth was

optimized via crossvalidation, and that were an order of magni-

tude briefer than crosscorrelations, for both spontaneous (Fig-

ures 1I and 1J) and evoked activity (Figures 1K and 1L). Shuffling

LFP-Vm pairing across trials (destroying simultaneity) produced

flat coupling filters. This demonstrates that fast, millisecond

coupling between LFP and Vm occurs uniquely within individual

trials and does not simply reflect average stimulus onsets across

trials. In agreement with correlations (Figure S1), spontaneous

and evoked LFP-Vm coupling was significantly larger during

anesthesia (filter area was as follows: 25 ± 0.2 and 22 ± 0.4, n =

39 and 21; mean ± SEM) than during wakefulness (11 ± 0.5 and

10 ± 0.8, n = 33 and 15; p < 0.01; Kruskal-Wallis ANOVA). Similar

effects were observed with spike-triggered LFP (Figure S2).

Changes in the magnitude of coupling filters could reflect

changes in the amplitude of the underlying signals, or changes

in the ability of one signal to predict the other. To distinguish

these possibilities, we convolved the LFP traces with the

coupling filters to generate predicted Vm traces. As illustrated

for four example neurons (Figures 1M–1P), these LFP predictions

captured a substantial portion of simultaneously recorded Vm

variance. Across all conditions, LFP predicted Vm better during

anesthesia than during wakefulness (results for spontaneous

activity are as follows: 38.0% ± 2.4% versus 26.7% ± 4.2% ex-

plained variance; results for evoked activity are as follows:

35.7% ± 3.2% versus 22.3% ± 3.7%, mean ± SEM). Simulations

showed that regularized coupling filters significantly outper-

formed both unregularized linear regression and filters obtained

directly from crosscorrelograms (Figure S2). This method accu-

rately recreated subthreshold single-neuron activity from the

surrounding population activity, and the changes in coupling

reflect how accurately the cortical LFP predicts intracellular

activity.

Fast Coupling between LFP and Synaptic Currents
We next investigated the relationship between the LFP and syn-

aptic currents (Figure 2). We blocked spikes and most other

intrinsic currents in the recorded neuron (see Supplemental

Experimental Procedures). We held membrane potential near

�80 mV to measure excitatory postsynaptic currents (EPSCs;

Figure 2A) or near +20 mV to measure inhibitory postsynaptic

currents (IPSCs; Figure 2B). We then used the same methods

as before to obtain the coupling between those synaptic currents

and the LFP (Figures 2C–2F).

LFP coupling to synaptic currents showed consistent differ-

ences in timing, with excitation reliably preceding inhibition (Fig-

ures 2C–2F). During anesthesia, LFP-EPSC coupling preceded
Neuron 90, 35–42, April 6, 2016 ª2016 The Authors 37
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Figure 2. Fast Coupling between LFP and Synaptic Currents

(A and B) EPSCs (magenta) or IPSCs (cyan) recorded from the same neuron simultaneously with LFP (black, bottom). Single-trial (dark) and average responses

(light) during awake visual stimulation (flashed bar, bottom). EPSCs recorded at �80 mV and IPSCs at +20 mV, respectively.

(C and D) Population coupling filters between LFP and PSCs during anesthetized (left) and awake (right) spontaneous activity. Filters from shuffled trials are flat

(lighter colors). Mean ± SEM (shaded) shown for all.

(E and F) Population coupling filters between LFP and PSCs during stimulus-evoked activity. Same neurons as (C) and (D). Significantly faster excitatory-inhibitory

lag during stimulus-evoked activity versus spontaneous (paired Wilcoxon signed-rank, p < 0.01 for both).

(G and H) Coupling filters convolved with LFP (bottom) predict single-trial spontaneous synaptic currents (EPSC or IPSC, top) during anesthesia (G) and

wakefulness (H). Same scales throughout. Percentages indicate explained variance of predicted traces (colored) compared to the actual trace (gray).

(I and J) Same as (G) and (H), during visual stimulation. (G)–(J), four separate neurons.

(K and L) Prediction quality (percent of explained variance) of EPSCs and IPSCs from spontaneous LFP during anesthesia (K) and wakefulness (L). Shaded

regions, 2D Gaussian fit ± 1 s. EPSCs significantly better predicted than IPSCs under anesthesia (repeated-measures ANOVA, p < 0.01). In (K), lighter and darker

points indicate urethane and isoflurane, respectively.

(M and N) Prediction quality of EPSCs and IPSCs from stimulus-evoked LFP. During anesthesia (M), LFP predicts EPSCs significantly better than IPSCs (paired

Wilcoxon signed-rank, p < 0.01). Duringwakefulness (N) LFP predicts IPSCs better than EPSCs (pairedWilcoxon signed-rank, p < 0.05). Total evoked currents are

significantly more predictable than spontaneous currents duringwakefulness (repeated-measures ANOVA, p < 0.01). Dashed ellipse shows fits from (K) and (L). In

(M), lighter and darker points indicate anesthetic as in (K). See also Figures S3–S5.
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Figure 3. Wakefulness and Visual Stimuli Enhance Coupling of LFP to Inhibition
(A) LFP prediction of Vm, EPSCs, and IPSCs during anesthesia (left, n = 40, 22, 22) and wakefulness (right, n = 30, 24, 24). During anesthesia, EPSCs are

significantly more predictable than IPSCs (p = 0.01; repeated-measures ANOVA; n = 22 for both). No significant difference in total LFP predictions of Vm versus

PSCs across states. Median of all spontaneous and stimulus-evoked predictions calculated within neuron then averaged across populations (median ± MAD

[median absolute deviation]).

(B) Prediction quality (percent of explained variance) of spontaneous versus stimulus-evoked Vm during anesthesia (n = 21) and wakefulness (n = 15). Shaded

regions, 2D Gaussian fit ± 1 s throughout figure. No significant effect of stimulus within groups (p = 0.2; p = 0.4).

(C) Prediction quality of spontaneous versus stimulus-evoked EPSCs during anesthesia (red) and wakefulness (magenta). No significant effect of stimulus within

groups (p = 0.2; p = 0.09).

(D) Stimulus-evoked IPSCs are significantly more predictable from LFP than spontaneous IPSCs during wakefulness (p < 0.01; paired Wilcoxon signed-rank). No

significant effect during anesthesia (p = 0.8). See also Figures S3–S5.
LFP-IPSCcouplingby 4.5 ± 0.7ms (Figure 2C; n= 11pairs). Visual

stimulation significantly shortened this lag to 1.0 ± 0.7 ms

(Figure 2E; p < 0.01; paired Wilcoxon signed-rank). These delays

between excitation and inhibition are consistent with values

measured in previous anesthetized work (Atallah and Scanziani,

2009; Hasenstaub et al., 2005; Okun and Lampl, 2008; Poo and

Isaacson, 2009).

LFP coupling to inhibition lagged coupling to excitation dur-

ing wakefulness; this lag was again significantly shortened

by sensory stimulation (from 3.7 ± 1.0 ms to 0.4 ± 1.1 ms,

n = 12 pairs; p < 0.01; paired Wilcoxon signed-rank). These

millisecond timing differences in LFP coupling to synaptic

activity could not have been observed from crosscorrelations

(Figure S1).

Brain state strongly influenced predictions of synaptic currents

from the LFP. Under anesthesia, EPSCs were significantly better

predicted than IPSCs across conditions (Figure 2K; results for

spontaneous activity are as follows: 43.3% ± 6.2% versus

26.8% ± 3.4%; Figure 2M; results for evoked activity are as fol-

lows: 41.5% ± 5.7% versus 26.2% ± 3.3%, n = 11 pairs; p <

0.01 for both; paired Wilcoxon signed-rank). During wakefulness,

instead, the LFP predicted spontaneous EPSCs and IPSCs

equally (Figure2L; 13.1%±2.6%and17.0%±3.3%, n=12pairs).

Moreover, the awake LFP predicted stimulus-evoked IPSCs

significantly better than EPSCs (Figure 2N; 22.7% ± 3.7% and

13.4%± 2.6%; p < 0.05; pairedWilcoxon signed-rank). These re-

sults show that the anesthetized LFP overwhelmingly reports ac-

tivity of excitatory circuits; in contrast, the awake LFP reports

spontaneous activity of excitatory and inhibitory circuits equally

and predicts stimulus-evoked inhibition better than excitation.

During wakefulness, the strength of LFP coupling to the total

synaptic current reflected stimulus conditions: without a stim-

ulus, the LFP explained 13.2% ± 1.8% of the variance of post-

synaptic currents (Figure 2L; EPSCs and IPSCs combined,

n = 24), but with a stimulus it explained 19.9%± 2.5% (Figure 2N;

p < 0.01; repeated-measures ANOVA). This effect of stimuli was
absent during anesthesia (35.4% ± 4.0% versus 34.2% ± 3.7%,

n = 22).

Wakefulness and Stimuli Enhance Coupling of LFP to
Inhibition
We next assessed whether the LFP more accurately predicts Vm

or synaptic currents. We compared our two recording condi-

tions: when measuring Vm, and when measuring only EPSCs

and IPSCs, while pooling across spontaneous and sensory con-

ditions (Figure 3A). During anesthesia, predictions of Vm (n = 42)

and EPSCs (n = 22) were similarly accurate, while IPSCs (n = 22)

were significantly less predictable (p = 0.01; repeated-measures

ANOVA). During wakefulness, instead, the LFP provided equally

faithful predictions of Vm (n = 30), EPSCs (n = 24), and IPSCs (n =

24). In both anesthesia andwakefulness, there was no significant

difference between the predictability of Vm and of total synaptic

currents. In additional experiments where we recorded both Vm

and EPSCs within the same neurons and without blocking

intrinsic conductances (n = 5), we found that predictions of Vm

and EPSCs were nearly identical with one another (r = 0.95;

p < 0.01; data not shown). Taken together, these results indicate

that synaptic currents provide the main contribution for predic-

tion of cellular activity from the LFP.

During wakefulness, LFP coupling to synaptic currents was

further enhanced by sensory stimulation (Figures 3B–3D). Visually

evoked EPSCs tended to be more predictable than spontaneous

ones (Figure 3C; 17.0% ± 3.3% versus 13.1% ± 2.6%, n = 12;

p = 0.09; paired Wilcoxon signed-rank), but stimulation did not

improve predictions of EPSCs during anesthesia (Figure 3C),

and did not improve LFP predictions of Vm (Figure 3B) in either

brain state.

The effect of visual stimulation was most pronounced for LFP

coupling to IPSCs during wakefulness (Figure 3D). Visual stimu-

lation significantly improved LFP-IPSC predictions (22.7% ±

3.7% versus 13.4% ± 2.6%, n = 12; p < 0.01; paired Wilcoxon

signed-rank). Again, stimuli did not cause these effects on IPSCs
Neuron 90, 35–42, April 6, 2016 ª2016 The Authors 39



during anesthesia. Taken together, these results show that the

awake LFP reliably reflects the influence of both excitation and

inhibition and accurately reports changes in synaptic input

driven by sensory stimulation.

Could distance between the intracellular and LFP electrodes

account for differences across cells? We did not observe a sig-

nificant correlation of LFP prediction quality across the distances

we sampled (Supplemental Experimental Procedures; Figures

S3 and S4; p > 0.05), except during anesthesia, and only in spe-

cific frequency bands. The heterogeneity in LFP coupling may

arise from other factors (Okun et al., 2015).

Finally, we asked whether differences in LFP coupling could

be observed during trial-by-trial fluctuations of cortical state.

To this end, we used the LFP to classify cortical state on individ-

ual trials (Figure S5). This analysis indicated that spontaneous

fluctuations in cortical state caused significant changes in the

strength of LFP coupling to subthreshold activity.

DISCUSSION

We have shown that the LFP can be used to predict the sub-

threshold synaptic input to individual neurons in visual cortex.

In intact and awake conditions, the LFP contains substantial pre-

dictive power for millisecond changes in membrane potential,

synaptic excitation, and synaptic inhibition. These findings pro-

vide constraints for computational simulations of neocortex (Izhi-

kevich and Edelman, 2008;Markram et al., 2015) and lendmech-

anistic insight for macroscopic electrical signals (such as EEG

and ECoG) recorded in the awake human cortex.

A first consequence of our findings concerns the relationship

of the LFP to synaptic and intrinsic currents in single neurons.

From the extracellular point of view, both sets of currents

contribute directly to the LFP (Buzsáki et al., 1988, 2012; Einevoll

et al., 2013; Jefferys and Haas, 1982; Lindén et al., 2011; Reim-

ann et al., 2013).We assessed the ability of the LFP to predict ac-

tivity in single neurons when these currents were intact, or largely

suppressed. If nonsynaptic currents play a major role, then the

LFP’s ability to predict membrane potential (intrinsic conduc-

tances intact) should be superior to its ability to predict synaptic

currents alone. Instead, under our experimental conditions, we

found that the LFP predicted relatively well-isolated EPSCs or

IPSCs as well as it predicted membrane potential, indicating

that synaptic currents play a central role in the functional rela-

tionship between the LFP and single-neuron activity.

A second consequence of our findings concerns the relative

contributions of synaptic excitation and inhibition to the LFP.

Confirming previous views, we found that the LFP was strongly

coupled to excitation under anesthesia. However, during wake-

fulness the LFP predicted synaptic inhibition and excitation

more equally. These findings suggest more effective synchroni-

zation of pyramidal neurons by common inhibitory inputs during

wakefulness, consistent with an enhanced role for inhibition in

awake conditions (Haider et al., 2013; Rudolph et al., 2007).

A third consequence of our findings concerns the effect of

sensory stimuli on the relationship between the LFP and synaptic

currents. In V1, visual stimulation reduces the correlation be-

tween spike trains and the nearby LFP (Nauhaus et al., 2009;

Ray and Maunsell, 2011). Our results suggest a synaptic basis
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for these effects during wakefulness: the awake LFP predicted

IPSCs better during visual stimulation than during spontaneous

activity (Figure 3D), and during visual stimulation, it predicted

IPSCs better than EPSCs (Figure 2N). These results indicate

that during wakefulness, sensory stimulation strengthens the

coupling between LFP and inhibitory activity, relative to excit-

atory activity. Prominent inhibition improves awake sensory pro-

cessing (Haider et al., 2013) and may also decorrelate evoked

spikes from the overall population response visible in the LFP.

One of the advantages of our method of estimating coupling

filters is that it revealed temporal relationships at a fast timescale.

As expected from the effects ofmembrane capacitance, the time

course of LFP coupling to synaptic currents was briefer than

coupling to Vm. The coupling of LFP to synaptic excitation, more-

over, preceded the coupling to synaptic inhibition by a few milli-

seconds, a lag that was reduced upon visual stimulation. These

observations in the intact and awake cortex extend previous

measurements made during oscillations in vitro (Mann et al.,

2005; Oren et al., 2006) and under anesthesia in vivo (Atallah

and Scanziani, 2009; Hasenstaub et al., 2005; Okun and Lampl,

2008; Penttonen et al., 1998; Poo and Isaacson, 2009). Synaptic

activity recorded at the soma likely reflects synchronized firing

in presynaptic excitatory and inhibitory populations. In fact, all

coupling filters peaked at positive lags, indicating that the LFP

slightly precedes the currents visible at the soma. The observed

lag of somatic inhibition versus excitation may stem in part

from the delay of fast-spiking interneuron firing relative to

excitatory neurons (Hasenstaub et al., 2005; Luczak et al.,

2007; Salkoff et al., 2015). Some excitatory inputs to layer 2/3

also originate from thalamic afferents (Kloc and Maffei, 2014),

providing a further temporal advantage to excitation during

visual stimulation.

Because our method estimates coupling filters in the temporal

domain, it does not require one to define frequency bandswhose

relevance varies across single trials, subjects, brain states, and

sensory conditions (Jia et al., 2013; Kayser et al., 2003; Ray

and Maunsell, 2010). However, our method does implicitly

emphasize frequencies <100 Hz (determined by the hyperpara-

meters that minimized prediction error). Further studies employ-

ing alternative predictive methods (Park and Pillow, 2011; Rasch

et al., 2009) could further explore LFP coupling to synaptic activ-

ity, including higher frequencies (>100 Hz) where the LFP may

reflect spike activity (Tele�nczuk et al., 2015).

Howmuch of the intracellular activity in single cortical neurons

can be predicted from the LFP? Under anesthesia, the LFP

can predict 20%–60% of the variance in Vm and EPSCs and

20%–40% of the variance in IPSCs. During wakefulness, these

numbers are lower, especially for Vm and EPSCs. Yet these

numbers indicate a surprising degree of predictability. Explained

variance varied approximately as the square of correlation, so an

apparently small amount of explained variance such as 0.25 cor-

responds in fact to a correlation of 0.5. This appears consistent

with previous reports of Vm-LFP correlations (ranging from 0.3

to 0.6) in awake cortex sampling similar distances as our study

(Okun et al., 2010; Poulet and Petersen, 2008). It would be sur-

prising if single-neuron activity was captured perfectly by a

global signal such as the LFP; this would imply that large popu-

lations of neurons behave identically.



Our study focused on predicting single-neuron activity from

the LFP, not on the genesis of the LFP signal itself, and comes

with a number of limitations. First, as with all somatic recordings,

our results are biased toward synaptic activity generated in prox-

imal portions of the neuron (Williams andMitchell, 2008). The thin

distal dendrites of pyramidal cells contain many active conduc-

tances that are difficult to detect using somatic recordings and

are not well-controlled by somatic voltage clamp. These den-

drites may contribute substantially to the LFP; it will be important

in future investigations to understand LFP coupling to both so-

matic and dendritic signals. Second, we concentrated on intra-

cellular signals measured in pyramidal neurons in L2/3 of mouse

V1; it will be interesting to extend this approach to other cell

types (e.g., interneurons), other layers, and other neural circuits

with different connectivity and synaptic dynamics. Third, we

concentrated on spontaneous activity and on activity elicited

during passive presentation of a brief stimulus in mouse V1. It re-

mains to be seen how the LFP is coupled to synaptic activity in

different conditions and brain states, for instance, during behav-

ioral tasks.
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Haider, B., Häusser, M., and Carandini, M. (2013). Inhibition dominates sen-

sory responses in the awake cortex. Nature 493, 97–100.

Hasenstaub, A., Shu, Y., Haider, B., Kraushaar, U., Duque, A., and

McCormick, D.A. (2005). Inhibitory postsynaptic potentials carry synchronized

frequency information in active cortical networks. Neuron 47, 423–435.

Hubbard, J.I., Llinas, R.R., and Quastel, D.M.J. (1969). Electrophysiological

analysis of synaptic transmission (Williams & Wilkins Co.).

Izhikevich, E.M., and Edelman, G.M. (2008). Large-scale model of mammalian

thalamocortical systems. Proc. Natl. Acad. Sci. USA 105, 3593–3598.

Jefferys, J.G., andHaas, H.L. (1982). Synchronized bursting of CA1 hippocam-

pal pyramidal cells in the absence of synaptic transmission. Nature 300,

448–450.

Jia, X., Tanabe, S., and Kohn, A. (2013). g and the coordination of spiking ac-

tivity in early visual cortex. Neuron 77, 762–774.

Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D.L., and Carandini,

M. (2009). Local origin of field potentials in visual cortex. Neuron 61, 35–41.

Kayser, C., Salazar, R.F., and Konig, P. (2003). Responses to natural scenes in

cat V1. J. Neurophysiol. 90, 1910–1920.

Kloc, M., and Maffei, A. (2014). Target-specific properties of thalamocortical

synapses onto layer 4 of mouse primary visual cortex. J. Neurosci. 34,

15455–15465.

Lindén, H., Tetzlaff, T., Potjans, T.C., Pettersen, K.H., Grün, S., Diesmann, M.,

and Einevoll, G.T. (2011). Modeling the spatial reach of the LFP. Neuron 72,

859–872.

Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., and Oeltermann, A. (2001).

Neurophysiological investigation of the basis of the fMRI signal. Nature 412,

150–157.
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