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Background: To identify multiparametric magnetic resonance imaging (mp-MRI)-based

radiomics features as prognostic factors in patients with localized prostate cancer

after radiotherapy.

Methods: From 2011 to 2016, a total of 91 consecutive patients with T1-4N0M0

prostate cancer were identified and divided into two cohorts for an adaptive boosting

(Adaboost) model (training cohort: n = 73; test cohort: n = 18). All patients were treated

with neoadjuvant endocrine therapy followed by radiotherapy. The optimal feature set,

identified through an Inception-Resnet v2 network, consisted of a combination of T1, T2,

and diffusion-weighted imaging (DWI) MR series. Through a Wilcoxon sign rank test, a

total of 45 distinct signatures were extracted from 1,536 radiomics features and used in

our Adaboost model.

Results: Among 91 patients, 29 (32%) were classified as biochemical recurrence

(BCR) and 62 (68%) as non-BCR. Once trained, the model demonstrated a predictive

classification accuracy of 50.0 and 86.1% respectively for BCR and non-BCR groups

on our test samples. The overall classification accuracy of the test cohort was 74.1%.

The highest classification accuracy was 77.8% between three-fold cross-validation. The

areas under the curve (AUC) of receiver operating characteristic curve (ROC) indices for

the training and test cohorts were 0.99 and 0.73, respectively.

Conclusion: The potential of multiparametric MRI-based radiomics to predict the BCR

of localized prostate cancer patients was demonstrated in this manuscript. This analysis

provided additional prognostic factors based on routine MR images and holds the

potential to contribute to precision medicine and inform treatment management.
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INTRODUCTION

Prostate cancer is the second most common cancer in men
worldwide. In recent years, there has been a rapid increase in the
incidence of prostate cancer in China, with an average annual
growth rate of 12.07% (1). A common treatment option for
localized prostate cancer includes endocrine therapy combined
with radiation therapy. Biochemical recurrence (BCR) occurs in
a significant number of patients after radiotherapy, with the 5–
8-years biochemical relapse-free survival rates being 65–85% in
patients treated with intensity-modulated radiotherapy (IMRT)
and image-guided radiation therapy (IGRT) (2). Pretreatment
identification of BCR in patients with localized prostate cancer
can be useful to predict prognosis and guide treatment decisions.
Factors that have shown prognostic value in previous work
include absolute baseline prostate-specific antigen (PSA), PSA
doubling time (PSADT), tumor stage (T-stage), and pathologic
findings (including Gleason score and lymph node status) (3).

Multiparametric magnetic resonance imaging (mp-MRI)
has shown promising results in the diagnosis, localization,
risk stratification, and staging of prostate cancer. It has also
afforded opportunities for focal treatment for prostate cancer
(4, 5). However, MRI is rarely used to predict the efficacy of
radiotherapy, especially in BCR prediction settings. Ginsburg SB
et al. analyzed sixteen patients and found computer–extracted
texture features on T2-weight MRI are useful for predicting
the likelihood of developing biochemical recurrence following
radiation therapy (6). A recent study also demonstrated that T2-
weight Haralick features appeared to be strongly associated with
BCR for peripheral zone prostate cancer (7).

Radiomics has attracted increased attention in recent years.
The concept was introduced <5 years ago but has been
explored by many researchers in the clinical medicine and
biomedical engineering communities globally. By converting
medical images into high-dimensional, mineable data via
high-throughput extraction of quantitative features, additional
information beyond the original raw images can be obtained
by subsequent data analyses (8–10). Although radiomics studies
have been extensively performed in multiple cancer sites, such as
lung and colorectal cancers, few have been conducted for prostate
cancer. Among the studies in which radiomics was applied for
prostate cancer, only a few involved the use of radiomics to
predict the prognosis after radiotherapy (6, 7, 11–20). Therefore,
the aim of this study was to investigate the correlation of mp-MRI
features in predicting the prognosis of localized prostate cancer
after radiotherapy.

PATIENTS AND METHODS

Patients
This retrospective analysis was approved by an institutional
review board, and the informed consent requirement was waived.
The entire cohort of this study was retrieved from the records of
the Institutional Picture Archiving and Communication System
(NEUPACS version 5.5, Shenyang, Liaoning, China) between
October 2011 and June 2016. Baseline clinical pathologic data,
including age, histological grade, T-stage, N-stage, PSA, and dates

of baseline MRI were obtained from medical records. Tumor
staging was defined according to the American Joint Committee
on Cancer (AJCC) TNM staging system manual, 7th edition.
Gleason score and risk group were defined according to the
National Comprehensive Cancer Network (NCCN) guidelines,
version 2.2017.

Inclusion Criteria
(a) Patients with histologically confirmed T1-4N0M0 prostate

carcinoma without evidence of lymphatic or distant
metastases at diagnosis.

(b) Patients who had undergone a pretreatment 3.0 Tesla
MRI scan (Achieva TX, Philips Healthcare, Best,
The Netherlands).

(c) Pretreatment MRI images (including CET1-w and T2-w
images) were available in the PACS.

(d) Patients received neoadjuvant endocrine therapy for 1–
3 months.

(e) Patients were followed up every 1–3 months during the first
2 years, every 6 months in years 2–5, and annually thereafter.

(f) Biochemical failures were diagnosed by Phoenix consensus:
PSA increase by 2 ng/mL or more above the nadir PSA after
EBRT with or without hormone therapy (21).

(g) Clinical data, such as age, histology and overall stage,
were available.

Exclusion Criteria
(a) Patients who received radiotherapy, chemotherapy, or

endocrine therapy before their first MRI scan.
(b) Patient MRI was not acquired with a 3.0 T MR scanner.
(c) Incomplete clinical data.

Of the 384 consecutive patients treated for prostate cancer during
this time period, a total of 91 patients (mean age, 73.8 ± 7.8
years; range, 50–90 years) met the inclusion criteria and were
enrolled into the study. The radiation regimen included 74–80Gy
delivered in 37–40 fractions by using IMRT/IGRT techniques.
Sixty-two patients (68%) were classified as non-BCR and 29
(32%) as BCR. The median follow-up time was 56.2 months
(range, 10–131 months). The detailed clinical characteristics
of the patients are listed in Table 1. There were no statistical
differences between the BCR and non-BCR groups in terms
of age, Gleason score or TNM stage. However, the initial PSA
level, pre-radiotherapy PSA level, and NCCN risk groups differed
significantly between the two cohorts (p < 0.05, see Table 1).

The 91 patients were divided into training and test cohorts at
a ratio of 4:1 by using computer-generated random numbers in
order to construct and verify the Adaboost model. Seventy-three
(80%) patients were allocated to the training cohort, and 18 (20%)
were allocated to the test cohort.

MRI Protocols
All patients underwent a pretreatment 3.0 T MRI scan. For
feature selection, axial T2-weighted images, axial T1-weighted
images, and axial diffusion-weighted images (DWI) archived in
the PACS were used. All images were in raw format without any
post-processing or normalization.

Frontiers in Oncology | www.frontiersin.org 2 May 2020 | Volume 10 | Article 731

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhong et al. mp-MRI Radiomics and Prostate Cancer

TABLE 1 | Characteristics of patients and tumors.

Characteristics Non-BCR

N = 66

BCR

N = 27

P

Age, mean ± SD, years 74.3 ± 6.9 72.4 ± 9.5 0.054

Initial PSA level, mean

± SD, ng/ml

36.1 ± 52.4 84.2 ± 73.2 0.032

Pre-radiotherapy PSA

level, mean ± SD

2.7 ± 7.8 26.4 ± 76.3 0.000

Gleason score group 0.069

Group 1 14(21.2) 3(11.1)

Group 2 18(27.3) 4(14.8)

Group 3 9(13.6) 2(7.4)

Group 4 12(18.2) 7(25.9)

Group 5 13(19.7) 11(40.7)

NCCN risk 0.010

Low 6(9.1) 0(0)

Intermediate 20(30.3) 1(3.7)

High 34(51.5) 20(74.1)

Very high 6(9.1) 6(22.2)

T stage 0.698

T1 2(3.0) 0(0)

T2 44(66.7) 9(33.3)

T3 17(25.8) 15(55.6)

T4 3(4.5) 3(11.1)

Data show number of patients (%) unless otherwise indicated. BCR, biochemical

recurrence; PSA, prostate-specific antigen; NCCN, National Comprehensive

Cancer Network.

The acquisition parameters were as follows: axial T2-
weighted spin-echo images (repetition time/echo time [TR/TE]:
1,599/100ms, field of view [FOV] = 22 × 22 cm, number
of excitations/average [NEX] = 1.5, slice thickness = 4mm,
spacing= 1.0mm), axial T1-weighted spin-echo images (TR/TE:
480/10ms, FOV = 25 × 32 cm, NEX = 1.5, slice thickness =
4mm, spacing= 1.0mm), and axial DWI SE-EPI images (TR/TE:
2,905/61, FOV= 24× 24 cm, NEX= 3.0, slice thickness= 4mm,
spacing= 1.0mm, b= 0, 1,000 s/mm2).

Region of Interest
For every patient in the training cohort, multiple MR images
of prostate tumors were acquired in three scanning modes: T1,
T2, and DWI. In the radiomics analysis, segmentation of region
of interest (ROI) was one of the most critical steps to reduce
uncertainty. The process was automated as much as possible
with minimal manual intervention. Images were automatically
registered via DICOM so the ROI could be copied from one
image to another. To maximize consistency, the prostate ROI
was contoured using T1 and T2 axial images by the same
radiation oncologist and reviewed/approved by another senior
radiation oncologist. Voxels outside the prostate contour were
removed from all three MR image types to reduce computational
complexity. Only voxels inside the prostate ROI were maintained
for radiomics image analysis. The MRI ROI and an integral flow
chart are as shown in Figure 1.

Feature Extraction
Radiomics images were derived from content-based image
properties, which could be categorized into three levels, i.e.,
pixel-level, object-level, and semantic-level, based on the number
of image attributes captured by the features and the biological
interpretability of the features (22). The semantic-level features
were generated to predict the BCR in prostate images.

Semantic-level features were in a higher level of the
information hierarchy, meaning these features capture
interpretable concepts. A deep learning method allowed us
to choose the most effective combination of the lower level
features to distill information that was valuable for prediction.
By using deep learning to elevate the lower level features to the
semantic-level features, the accuracy of survival class predictions
can be improved (23). With the biological variations present
in the radiomics images extracted from large training data
sets, the development of semantic-level descriptors became
feasible by employing convolutional neural networks (CNNs). In
addition, the inception-family ability to detect higher dimension
features was maximized using the algorithm outlined by Szegedy
et al. (24).

Our model used the Inception-Resnet-v2 network introduced
by Szegedy et al. (25). The algorithm was a CNN that represented
the state of the art in terms of accuracy in the ILSVRC image
classification challenge. Inception-ResNet-v2 was a variation of
the Inception V3 model that borrowed ideas from the Microsoft
ResNets networks, optimizing speed of convergence while
avoiding the exploding gradient problem. Residual connections
included shortcuts in models that, as mentioned above, allowed
researchers to train even deeper networks that achieved better
performance. This also allowed a significant simplification of the
inception blocks. The hyperparameters used in this study are
listed in Table 2:

Feature Selection
The data consisted of 3 MRI sequences (DWI, T1, T2) for every
patient. The missing data in (DWI, T1, T2) was set to 0. The
biochemical recurrence prediction ability of each sequence was
analyzed separately and jointly.

An Inception-Resnet v2 network was used to analyze the MR
images. The input of this network included each of the three
MRI sequences and patient labels. The output was a total of
1,536 quantitative features. Feature kernels were convolved with
the pixel matrices of each of the MRI sequences to obtain a
series of smaller matrices, which were labeled as convolution
operation (Figure 2A). Feature selection was applied with the
Inception-Resnet v2 network (Figure 2B), to identify an optimal
feature combination, collecting the correlation between each
pixel and its neighborhood. In the following step, themean values
from each slice were adopted as input to the next machine-
learning classifiers.

Finally, kernel principal component analysis (k-PCA) was
performed to reduce the number of dimensions in the feature
space. In the field of multivariate statistics, k-PCA is an extension
of PCA using techniques of kernel methods. A simple example
of k-PCA is as shown in Figure 3. Using a kernel, the originally
linear operations of PCAwere performed in a reproducing kernel
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FIGURE 1 | Feature extraction workflow (A) and study flowchart (B).

TABLE 2 | Hyperparameters used in feature extraction.

Momentum Initial learning

rate

Decay Number of epochs

per decay

Weight decay

rate

End learning

rate

Batch size

0.9 0.01 0.95 2 0.00004 0.00001 32

Hilbert space, so that k-PCA could extract nonlinear information
from the data.

Statistical Analysis
Individual variables were analyzed for significant differences
using the t-test and the Wilcoxon-Mann-Whitney test for non-
normally distributed parameters. Group results were reported
as mean standard deviations. Intergroup differences were
compared with a paired difference test; P < 0.05 was considered
statistically significant.

Adaboost Model
An Adaboost model was constructed to conduct this
classification task. The 45 radiomics features (15 features
from each of the three sequences) were used as the input
of the neural network for training. Since the 91 sample sets
were randomly divided into training cohort (80%) and test
cohort (20%), the samples in the training and test cohorts were
considered to come from the same distribution.

Region of interest (ROI) segmentation, MRI normalization
and feature extraction and selection were performed using
AIMED version 1.7.5 (https://www.blothealth.com). Model
construction was conducted using AIMED version 1.7.6 (https://
www.blothealth.com).

RESULTS

In the Adaboost model, the classification was performed via
an iterative 3-fold cross-validation process, and the resulting
mean and standard deviation values for the classification
accuracy were computed. In addition, receiver operating
characteristic (ROC) analysis and area under the curve (AUC)
measurements were used to quantify the extracted features’
ability to predict prostate cancer. All of the parameters in
our model were obtained by cross-validation. A confusion
matrix was used to describe the performance of a classification
model as illustrated in Figure 4. The matrix was a table with
two rows and two columns that reported the number of
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FIGURE 2 | Convolutional operation (A) and feature extraction with Inception-Resnet V2 (B).

FIGURE 3 | A simple example of reducing the feature dimensionality from 2d to 1d with PCA (A) and k-PCA (B). We used the green line as a new dimension to replace

the original x and y dimensions when the data showed the clumped distribution observed in the figures. With the increase in dimensions, the data loss reduced rapidly.

false positives, false negatives, true positives (TP), and true
negatives (TN).

The training cohort contained 23 positive and 50 negative
samples in each fold. The correct classification rate of

training samples was 100% (Figures 4A–D), which was
attributable to the ensemble learning model. In the test
cohort, six positive and 12 negative samples participated
in each fold. As demonstrated in the findings (the bottom
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FIGURE 4 | Confusion Matrix; (A–D) the training confusion matrix; (E–H) the test confusion matrix.

FIGURE 5 | ROC curve; (A) the training ROC; (B) the test ROC.

of Figure 4), the overall classification accuracy of the test
cohort was 74.1% (accuracy = (TP+TN)/total). The correct
classification rate for positive samples was 50.0% and the
correct classification rate for negative samples was 86.1%.
The highest classification accuracy was 77.8% for 3-fold
cross-validation.

Classifier output requires validation of data integrity. One
figure of merit representing the neural network to sample data
coherence is the receiver operating characteristic plot. It indicates
how the false-positive and true-positive rates relate as thresholds
of outputs. It has a value from 0 to 1, with 1 being that false
positive and true positive are completely unrelated. The AUC
of the ROC curve was used as the evaluation index for model
quality. In our final model, the mean AUC of the training cohort
and validation cohort was 0.99 (Figure 5A). The mean AUC of

the test cohort was 0.73. The AUC of each fold was 0.67, 0.82,
0.71 (Figure 5B).

DISCUSSION

The mechanism underlying the association between radiomics
features and cancer prognoses is not fully understood. However,
it has been suggested that intratumor heterogeneity may be one
of the major factors because of its important role in diagnosis and
prognosis (26). This view is consistent with our understanding
of cancer cells’ micro-environmental distribution. Malignant
tissues consist of heterogeneous cell populations with distinct
molecular and micro-environmental characteristics, in contrast
to non-malignant tissues. In traditional clinical staging, it is very
difficult to take intratumor heterogeneity into consideration (9).
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However, a radiomics approach can consistently extract higher
dimensional image features intrinsic to shape and texture, which
are highly correlated with intratumor heterogeneity. Therefore,
radiomics signatures should be explored in cancer prognosis in
conjunction with other clinical staging variables (27).

Machine-learning techniques have previously been shown to
be useful in predicting patient prognosis in several cancers (28–
30). For instance, researchers have developed fully automated
microscopic pathology image features to predict non-small cell
lung cancer prognosis (29). Other groups of investigators have
associated features in mp-MRI with the prognosis of rectal
cancer (28). In this study, we demonstrated that the extracted
image features from MRI can predict patient BCR. These
quantitative image features are impossible to spot by manual
inspection. However, computerized methods can efficiently and
effectively identify such features. Since MR images are routinely
used in current clinical practice, our classifiers could be easily
implemented in routine practice.

In our study, an automated workflow to identify objective
features from MR images was designed. A neural network-
based machine-learning classifier was built and validated to
predict the BCR of prostate cancer patients. The results showed
significant promise for the use of mp-MRI as one of the tools
to predict the prognosis of prostate cancer. Previously, the
progression of BCR after radiotherapy for prostate cancer relied
on clinical parameters, such as PSA, PSADT, TNM stage, and
pathologic findings (including Gleason score, surgical margin
status, and lymph node status). In recent years, radiomics has
been extensively explored in terms of tumor diagnosis, treatment
and prognosis. The most widely used imaging modality in
radiomics research is CT, which can quantify tissue density
(8). Unlike CT, MRI can detect tumor density and reveal the
physiologic characteristics of tumors (31). In addition, MRI
provides better tissue contrast, has multiplanar capacity, and
exhibits fewer artifacts from radiation and bony autonomy. MRI
allows the tumor volume to be delineated more accurately (32),
especially for prostate cancer. It also affords a variety of scanning
parameters and techniques. In order to reduce the associated
uncertainty, we used a consistent MRI scan technique in our
study. This was the first study demonstrating that the prognosis
of localized prostate cancer after radiotherapy could be evaluated
using a radiomics approach based on mp-MRI.

There are several limitations to this study. First, only MR
images were included in the model. Other imaging techniques,
such as the prostate-specific membrane antigen (PSMA) ligand
(68) Ga-PET/CT (PSMAPET/CT), can potentially add additional
clinical features into the model. Another limitation was the
potential biased distribution of samples due to limited number
of patients included in this study. Ideally, equal numbers of
samples from BCR and non-BCR groups are recommended in
the training set to train an unbiased classifier. The testing cohort
could be unbalanced but the training set is not recommended to
be unbalanced. However, given the distribution in our patient
group, that was not feasible in this study and could potentially
result in inaccuracy of the model parameters. This might
contribute to the relatively inferior prediction performance of
the positive sample group which certainly warrants further

investigation and improvement with larger sample size. With
the correct classification rate of 86.1% for the negative samples,
we expect that the overall classification accurate will increase
more with the improvement in the predication of positive sample
group. Furthermore, the model parameters may not readily apply
to images from other institutions with different scanners and
settings. In other words, selection bias may have occurred since
strict criteria were used and the randomization hypothesis was
compromised, which could affect the model training. For the first
attempt, we used strict inclusion criteria to select 91 patients with
only clinical stage T1-4N0M0. Our model has not been tested
against N1 and M1 patients. For future study, we plan to increase
the patient sample size by relaxing our inclusion criteria and
further improve the accuracy of the BCR group and potentially
expand this study into a multicenter research project.

In conclusion, our study evaluated the relationship between
pretreatment mp-MRI radiomic features and biochemical
recurrence in patients with localized prostate cancer. Through
a systematic analysis of mp-MRI-based radiomics, we were able
to establish and validate a model with improved predictive
value over conventional imaging metrics. Our model could
facilitate prognostic predictions based on routine MRI, further
contributing to precision oncology and enhanced quality of care.
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