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An automated robust feature extraction technique is proposed in this paper based on inherent structural distribution of heart sound
to analyze the phonocardiogram signal in presence of environmental noise and interference of lung sound signal. The structural
complexity of the heart sound signal is estimated in terms of sample entropy using a nonlinear signal processing framework. The
effectiveness of the feature is evaluated using a support vector machine under two different circumstances which include Gaussian
noise and pulmonary perturbation. The analysis framework has been executed on a composite data set of 60 healthy and 60
pathological individuals for different SNR levels (−5 to 10 dB) and the performance accuracy is close to that of the clean signal.
In addition, a comparative study has been done with conventional approaches which includes waveform analysis, spectral domain
inspection, and spectrogram evaluation. The experimental results show that sample entropy based classification method gives an
accuracy of 96.67% for clean data and 91.66% for noisy data of SNR 10 dB. The result suggests that the proposed method performs
significantly well over the visual and audio test.

1. Introduction

Heart sounds are produced due to blood circulation through
the heart valves. Recorded phonocardiogram (PCG) signal
from a normal subject comprises four sporadic parts, of
which two fundamental components are S1 and S2. During
ventricular contraction, closure of the mitral and tricuspid
valves results in the occurrence of the first heart sound S1.
S2, the second heart sound, is produced due to closing of
pulmonary and aortic valves during ventricular relaxation [1].
The other two constituents of the heart sound signal with
low amplitude and low frequency components are S3 and S4.
The third and the forth components and the heart murmurs
occur in the systolic and diastolic interval. Murmurs are
produced due to several reasons like abnormal blood flow
through the valves, defects in opening or closing of the valves,
and blockage inside the cardiovascular system [2]. The heart
murmurs play a crucial role in detection of heart diseases.

The pathological status of the heart can be diagnosed at
an elementary level by using auscultation.This procedure has
been used since the invention of stethoscope by a French

doctor Laennec in 1816 [3]. Cardiac auscultatory proficiency
of physicians plays an important role in diagnosis of heart
disease. Moreover, the process of auscultation is effected by
environmental noise and also the interference of the lung
sound with the heart sound.

To overcome the limitation of the auscultation process,
nowadays cardiologists have easy access to various invasive
and noninvasive ways for diagnosis of heart diseases. The
invasive techniques include echocardiograph and angiogra-
phy [2]. With the development of technologies in the field
of digital signal processing, several tests are being conducted
to detect the dysfunctioning of heart like echocardiogram,
cardiac computed tomography, and so forth [4]. Amongst
these noninvasive methods one of the most widely used
is echocardiogram (ECG). However, the performances of
these photographic techniques depend on the physician
skill, knowledge, and experience. Furthermore, this is a
time consuming process and its effectiveness degrades under
noisy condition. A patient with heart disorders resulting
from abnormalities in mechanical functioning are not always
correctly identifiable by echocardiogram [5]. CT scan is also
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time consuming and can even be harmful for repetitive
injection of X-ray into the body.

The drawbacks of the auscultation process and pho-
tographic techniques motivate the researchers to develop
new methods for better interpretation of cardiac sounds.
Several investigations have been done to analyze heart sound
signal based on machine learning and pattern recognition
approaches [2, 6–14]. Most of these techniques consist of sev-
eral stages such as data acquisition phase, preprocessing stage,
feature extraction phase, and decision making operation. In
the first intermediate stage, that is, preprocessing, irrelevant
information like noise and artifacts removal operation is
performed. The second intermediate stage involved with
pattern recognition task is based on temporal, spectral,
tempospectral, and statistical domain features. However, the
multilayer based detection processes are time consuming due
to multiple operations and their performance depends on
several factors associated with different stages. Hence, these
approaches are not suitable for real-time applications.

From the perception of clinicians, there is a need to ana-
lyze heart sound signal in hospital environment for a small
period of time. In this paper, a new robust feature extraction
technique has been proposed to analyze the phonocardio-
gram signal in noisy environment.This method includes two
stages. In this approach, the preprocessing stage is excluded
in order to speed up the decision making process with-
out any tradeoff with accuracy. First, the relevant inherent
attributes of the signals are extracted in terms of irregularity
measurement parameter or sample entropy (SampEnt). After
feature extraction, output of this intermediate stage is fed to
the input of the classifier for decision making. The rest of
the chapter is organized as follows. Section 2 illustrates the
concept of support vectormachine (SVM) and Section 3 gives
a description about the data acquisition system and database.
The various stages of cardiac status detection system are
discussed in Section 4. This is followed by the experimental
results and discussion in Section 5. Finally conclusion is given
in Section 6.

2. Theoretical Background

2.1. Support Vector Machine (SVM). The support vector
machine (SVM) networkwas proposed by Cortes andVapnik
in 1995 as an alternative tool of multilayer feedforward neural
network [15]. SVMs are used to solve the classification and
regression problems. The SVMs classify different patterns
through the two steps: (1) first the training data are mapped
to a feature space of high dimension using a nonlinear
kernel function and (2) after that an optimal hyperplane
is constructed using the method of Lagrange multipliers in
order to separate the individual classes [16]. The hyperplane
is used to distinguish two linearly separable classes as given
by

𝑑𝑗 (𝜔
𝑇
𝑓 (𝑦𝑗) + 𝑏) ≥ 1 for 𝑗 = 1, 2, . . . , 𝐿, (1)

where 𝑦𝑗 ∈ R𝑛 is 𝑗th input pattern and 𝑑𝑗 ∈ {−1, 1} is the
corresponding output pattern or target for a training data set
{𝑦𝑗, 𝑑𝑗}

𝐿
𝑗=1. 𝑓(⋅) is a nonlinear mapping function.

The decision surface of (1) is modified by introducing
a nonnegative slack variable 𝜉 in order to separate two
nonlinearly separable classes and represented by

𝑑𝑗 [𝜔
𝑇
𝑓 (𝑦𝑗) + 𝑏] ≥ 1 − 𝜉𝑗 for 𝑗 = 1, 2, . . . , 𝐿. (2)

An optimal hyperplane can be obtained by minimizing the
function 𝐹(𝜔, 𝜉) with respect to 𝜔 and 𝜉𝑗 and it is expressed
by

𝐹 (𝜔, 𝜉) =

1

2

𝜔

𝑇
𝜔 + Γ

𝐿

∑

𝑗=1

𝜉𝑗, (3)

where Γ is the reciprocal of a regularization parameter and it
controls the tradeoff between complexity of the machine and
the number of nonseparable points [17].

To construct a decision function 𝜙(𝑦) (equation (4)) for
a SVM classifier, it is required to maximize the objective
function 𝑄𝑓(𝛼) with respect to Lagrange multipliers {𝛼𝑗}

𝐿
𝑗=1,

subject to the two constraints as expressed by (6):

𝜙 (𝑦) = sign(
𝐿

∑

𝑗=1

𝛼𝑗𝑑𝑗𝐾𝑓 (𝑦, 𝑦𝑗) + 𝑏) , (4)

𝑄𝑓 (𝛼) =

𝐿

∑

𝑗=1

𝛼𝑗 −
1

2

𝐿

∑

𝑗=1

𝐿

∑

𝑖=1

𝛼𝑗𝛼𝑖𝐾𝑓 (𝑦𝑗, 𝑦𝑖) 𝑑𝑗𝑑𝑖 (5)

subject to
𝐿

∑

𝑗=1

𝑑𝑗𝛼𝑗 = 0, 0 ≤ 𝛼𝑗 ≤ Γ, 𝑗 = 1, 2, . . . , 𝐿. (6)

The kernel function 𝐾𝑓(𝑦, 𝑦𝑗) must satisfy Mercer’s condi-
tion.

3. Data Acquisition

The cardiac sound signals are recorded from normal as
well as abnormal male and female subjects using a single
channel stethoscope based data acquisition system as shown
in Figure 1 and described in [18]. The HS data are recorded
from different auscultation location over the body surface of
the patients in sitting position and under relaxed conditions
(Algorithm 1). The recordings are not associated with any
particular age group. The recorded data are arranged in
16-bit PCM, mono audio format and stored as ∗.wav files
at sampling frequency of 8 kHz. The pathological HS are
recorded from 16 female and 45 male subjects with various
valvular heart diseases. On the other hand, normal HS are
collected from 10 female and 15 male subjects. The lung
sound records are collected from various resources: Institute
of Pulmocare and Research, Kolkata, India, and the Maulana
Azad Medical Institute, Delhi, India. The abnormal heart
sounds include late systolic murmur, pulmonary stenosis,
early systolic murmur, ejection click, aortic insufficiency, and
pansystolic murmur.

The whole analysis is implemented on an ACER-PC with
2.39GHz Intel core 2 quad CPU and 4GB of RAM. The
MATLAB (R2008a, The Mathworks, Inc., Natick, MA) tool
is used for conducting all the experiments.
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Figure 1: Block diagram of the data acquisition system.

(1) Input: 𝑥(𝑡){Recoded HS signal,𝑁 = length of the signal}
(2) Output: 𝑥norm(𝑡){Normalized signal}
(3)𝑀 = max (|𝑥(𝑡)|)
(4) for 𝑡 = 1 to 𝑁 do
(5) 𝑥norm(𝑡) =

𝑥(𝑡)

𝑀

(6) end for

Algorithm 1: Calculation of normalized signal.

4. Methods

The proposed method comprises three stages: data acqui-
sition, feature extraction, and decision making. In the data
acquisition stage, heart sounds are recorded from the indi-
vidual normal and pathological subjects using a stethoscope
based system as shown in Figure 1. In the feature extraction
stage, robust feature is extracted from the signals by calcu-
lating the irregularity parameter of the signals and finally,
decision is taken by a machine learning based processing
system.The block diagram of the proposed system is depicted
in Figure 2.

4.1. Amplitude Normalization. The fundamental operation is
done to avoid the shortcomings associated with fluctuation in
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Figure 2: Block diagram of the individual stages involved in cardiac
status detection.

amplitude of the signals for different factors including subject
parameters such as age, thickness of the thorax, sex, and also
recording condition.The normalized process limits the upper
and lower values of amplitude of the signal in a specified range
of ±1.

4.2. Cardiac Cycle Calculation. A heart sound record con-
tains a series of cardiac cycles. A cardiac cycle consists of
four parts: S1, systole, S2, and diastole period. However, the
analysis of many cycles at a time increases the complexity
and execution time of the data processing system. Moreover,
it deteriorates the performance of the classifier system due
to the presence of redundant irrelevant information, that
is, noise. To resolve this problem a cycle extraction algo-
rithm is required. Researchers have developed various heart
sound segmentation algorithms based on auxiliary signal,
tempospectral analysis, and envelope representation of the
heart sound to localize the primary heart sound components
(S1 and S2) [19–24]. In this paper, a new cardiac cycle
detection algorithm is presented based on fractal dimension
(FD) property of heart sound signal. This executes two
operations: firstly, identification of heart sound peaks using
Katz algorithm [25] and secondly, calculation of cardiac cycle.

4.2.1. Identification of HS Peaks Using FD. The procedure for
identification of HS peaks includes the following steps.

Step 1. Choose a window of length 𝑀 which is an integer
value of 0.05 ∗ 𝑓s, where 𝑓s is the sampling frequency of the
recordings.
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Figure 3: FD signal estimation: waveform of the PCG signal and its
corresponding FD signal (upper one).

0 4000 8000 12000 16000
−0.8

−0.4

0

0.4

0.8

Sample number

A
m

pl
itu

de

S1 S2 S2S1 S1

Systole Diastole

Complete cardiac cycle

Figure 4: Fundamental components of the cardiac cycle (S1, systole,
S2, and diastole).

Step 2. Segregate the signal into segment of equal length
with a 99% of overlap in order to estimate the FD signal
corresponding to HS.

Step 3. Calculate FD value for each segment using the Katz
algorithm as shown in Figure 3.

4.2.2. Calculation of Cardiac Cycle. The cardiac cycle com-
prises four sequences such as S1 event, systole period, S2
event, and diastole period. Each sequence is bounded by a
start and an end point. However, the end point of S1 ismerged
with the beginning of systole and the end point of later one
is also merged with that of S2. Similarly the end point of S2
is merged with the starting point of diastole period. Hence,
a cardiac cycle consists of overall five points including three
start points and two end points as described in Figure 4.
The distance between beginning of S1 and ending of diastole
interval gives the cycle duration of the cardiac signal. Let us
consider that𝑑s1 is onset time for S1,𝑑s2 for S2,𝑑sys for systole,
and 𝑑dia for diastole, respectively. Therefore, the duration of
the cardiac cycle 𝐶HS

𝑑 is equal to (𝑑s1 + 𝑑sys + 𝑑s2 + 𝑑dia).
The procedures of cardiac cycle extraction algorithm

are provided in Algorithm ?? and the results are shown in
Figure 5.

4.3. Feature Extraction. This is an important intermediate
step of cardiac status detection system. In this stage, the
attributes which are useful for modeling the normal and
abnormal phonocardiogram signals are extracted. In this
study, a statistical parameter called sample entropy is used
as feature. The concept of sample entropy was derived
from approximate entropy (ApEn) that was first introduced
by Pincus. Later on Moorman and Richman modified the
approximate entropy by excluding the self-templatematching
score and defined the new parameter as sample entropy
(SampEn) [26]. The sample entropy (𝛼) can measure the
complexity or irregularity in a signal. This parameter value
increases with the irregularity property of the signals and
vice versa. The normal heart sound is more regular or less
complex in nature than that of the abnormal heart sound
signal. Hence, abnormal heart sound gives a higher sample
entropy value over the normal one. It is defined as the negative
logarithm of an estimate of the conditional probability of the
two states that match pointwise for a dimension 𝑚 within a
tolerance 𝑟 remain match in dimension 𝑚 + 1. The SampEnt
calculation algorithm consists of the several steps that are
described next.

Step 1. The templates of size m are formed from a given time
series 𝑠(𝑛), where 𝑛 is the number of data points (here 𝑠(𝑛)
represents the heart sound signal) as follows:

𝑇𝑚 (𝑗) = [𝑠 (𝑗) , 𝑠 (𝑗 + 1) , . . . , 𝑠 (𝑗 + 𝑚 − 1)] ,

1 ≦ 𝑗 ≦ 𝑁 − 𝑚 + 1.

(7)

Step 2. The distance between vectors 𝑇𝑚(𝑗) and 𝑇𝑚(𝑖), that
is, 𝑑[𝑇𝑚(𝑗), 𝑇𝑚(𝑖)] is given by the absolute magnitude of the
maximum difference of the corresponding scalar compo-
nents of these templates and is calculated by

𝑑 [𝑇𝑚 (𝑗) , 𝑇𝑚 (𝑖)] = max
𝑘=0,1,...,𝑚−1

(

󵄨

󵄨

󵄨

󵄨

𝑠 (𝑗 + 𝑘) − 𝑠 (𝑖 + 𝑘)

󵄨

󵄨

󵄨

󵄨

) . (8)

Step 3. Imposing the restriction, 𝑑[𝑇𝑚(𝑗), 𝑇𝑚(𝑖)] ≤ 𝑟, 𝑖 ̸= 𝑗,
where “𝑟” is the threshold that acts as noise filter and 𝑖 ̸= 𝑗,
the number of templates that matches a given vector 𝑇𝑚(𝑖) is
to be detected.

Step 4. For a signal having 𝑁𝑚(𝑖) number of templates
matching, the conditional probability for each template is
calculated as

𝐶

𝑚
(𝑟) =

1

𝑁 − 𝑚

𝑁−𝑚

∑

𝑖=1

𝑁

𝑚
(𝑖)

𝑁 − 𝑚 − 1

. (9)

Step 5. By changing the value of𝑚 to𝑚 + 1 and iterating the
above steps we get 𝐶𝑚+1(𝑟).

Step 6. The sample entropy can be computed as negative
logarithm of the ratio of the two conditional probabilities as
obtained in Steps 5 and 4, which is as follows:

SampEnt (𝑚, 𝑟,𝑁) = − ln[𝐶
𝑚+1
(𝑟)

𝐶

𝑚
(𝑟)

] . (10)

The irregularity index or sample entropy value for normal
and abnormal heart sounds signals is computed under clean
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Require: 𝑡𝑝 = [𝑥1, 𝑥2, . . . , 𝑥𝑁]{𝑥𝑘=1,2,...,𝑁 is the location of the start and end points of individual events}
(1) for 𝑖 = 1 to 𝑁 do
(2) for 𝑗 = 𝑡start𝑝 to 𝑡end𝑝 do
(3) 𝑑s1(𝑗) ← 1

(4) end for
(5) for 𝑚 = 𝑡end𝑝 to 𝑡start𝑝+1 do
(6) 𝑑sys(𝑚) ← 1

(7) end for
(8) for 𝑛 = 𝑡start𝑝+1 to 𝑡

end
𝑝+1 do

(9) 𝑑s2(𝑛) ← 1

(10) end for
(11) for 𝑙 = 𝑡end𝑝+1 to 𝑡

start
𝑝+2 do

(12) 𝑑dia(𝑙) ← 1

(13) end for
(14) 𝑖 ← 𝑖 + 5
(15) end for
(16) for 𝑏 = [1, 2, . . . ,𝑀] {𝑀 is the total number of events (S1, systole, S2 and diastole)} do
(17) for 𝑞 = S1(𝑏) to diastole(𝑏) do
(18) 𝐶

HS
𝑑 (𝑞) = 𝑑s1(𝑞) + 𝑑sys(𝑞) + 𝑑s2(𝑞) + 𝑑dia(𝑞)

(19) end for
(20) end for

Algorithm 2: Calculate 𝐶HS
𝑑 .
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Figure 5: Different steps of cardiac cycle detection: (a) noisy heart sound signal and its corresponding FD signal (above); (b) transition points
corresponding to individual events (S1 and S2); (c) estimation of cardiac cycle.

and noisy condition (10 dB to −5 dB). The result is given in
Table 1.We can observe from this table that irregularity index
value of abnormal heart sound signal is always greater than
that of the normal one for both conditions: clean and noisy.
As the abnormal HS signal was contaminated with auxiliary
murmur signal as a result it produces higher complex pattern
over normal signal.

4.4. Classification. This is the final stage of the decision
making task regarding the cardiac status. The support vector
machine classifier performs the decision making task by
executing two functions: training and testing. A suitable
structure of the SVMnetwork is formed in the training phase

using feature vectors of the known classes. In the subsequent
phase, the trained model is employed for recognition of
unknown classes. The various stages involved in the classi-
fication operation are shown as a block diagram in Figure 6.

5. Results

In this study, a composite data set of normal and pathological
PCG sounds was used. The decision regarding the cardiac
conditions, that is, normal versus abnormal, was made by
examining the sample entropy features through a support
vector machine classifier. The classifier works through two
phases: training and testing. A desired support vector net-
work is constructed by the training process and next this
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Table 1: Irregularity index value for both clean and corrupted database of Gaussian noise.

Pathology Irregularity index value (𝜇 ± 𝜎)
Clean 10 5 0 −5

Normal 0.15 ± 0.06 0.21 ± 0.04 0.27 ± 0.05 0.41 ± 0.07 0.66 ± 0.17
Abnormal 0.46 ± 0.23 0.70 ± 0.17 0.73 ± 0.16 0.77 ± 0.14 0.86 ± 0.12
𝜇: mean; 𝜎: standard deviation.

Feature
extraction

Signal specific
modeling

Normal HS model

Abnormal HS model

Feature extraction Matching algorithm Status
detection

Training phase

Testing phase

Training
PCG
data

Testing
PCG
data

Figure 6: Block diagram of the different stages involved in training and testing process for the assessing of the cardiac status.
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Figure 7: Visual representation of a clean normal signal: (a) waveform of the signal; (b) spectral characteristic of the signal; and (c)
spectrogram of the signal.

trained network is used to recognize the unknown data.
The effectiveness of the proposed method is validated by
performing a noise study at a range of SNR (−5 dB to
10 dB). The effectiveness is measured in terms of percentage
of classification accuracy (CA%), sensitivity (SEN%), and
specificity (SPE%). These measuring units are defined by the
following equations:

CA (%) = TP + TN
(TN + TP + FN + FP)

× 100,

SEN (%) = TP
(TP + FN)

× 100,

SPE (%) = TN
(TN + FP)

× 100.

(11)

The experimental results for clean and noisy database includ-
ing normal and abnormal subjects are shown in Table 2.

The sample entropy based feature extraction technique gives
quite better results up to 0 dB SNR. However, visualization
tests become unreliable for SNR value lower than 10 dB. It is
quite difficult for a doctor to interpret regarding the diseases
by listening to and visualizing the noisy recordings of HS.
Figures 7–12 show the temporal domain, spectral domain,
and spectrogram representations of clean and corrupted HS
for both normal and abnormal cases at 10 dB SNR. The
abnormal signal data base includes various type of diseases
sounds such as early systolic murmur, late systolic murmur,
pansystolic murmur, aortic stenosis, pulmonary stenosis,
mitral stenosis, andmitral regurgitation.The graphical repre-
sentations illustrate that external disturbance or noise masks
the primary (S1) and secondary (S2) components of cardiac
sound signal. The noise contaminated HS signal for normal
or different types of abnormal signals produces similar
distribution pattern and makes it difficult to distinguish the
individual parts of cardiac cycle. The principle of sample
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Figure 8: Visual representation of a clean pathological signal (early systolic murmur): (a) waveform of the signal; (b) spectral characteristic
of the signal; and (c) spectrogram of the signal.
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Figure 9: Visual representation of a clean pathological signal (late systolic murmur): (a) waveform of the signal; (b) spectral characteristic of
the signal; and (c) spectrogram of the signal.

entropy feature based classification technique is to categorize
the signal into normal and abnormal class based on their
irregularity property. The irregularity distribution of the
PCG signal is measured by sample entropy. The irregularity
distribution signifies the abnormal condition of the heart and
regularity distribution highlights the normal condition of the
heart.The problem associated with visualization tests may be
resolved by the proposed technique because the irregularity
property of the signal is less affected by noise. The developed
technique performs better for abnormal cases for any SNR
levels but its performance degrades for normal cases at high
noise level because irregularity distribution of normal signal
increases with noise and as a result it shows an abnormal
property of signal.

6. Conclusion

A new technique based on statistical theorem has been
proposed to detect heart status: normal versus abnormal
in noisy environment. A decision regarding the different
cardiac states is made automatically based on a matching
algorithm between known (training) and unknown (test)

Table 2: Performance of the proposed method for both clean and
corrupted database of Gaussian noise.

SNR (dB) TP TN FP FN SEN (%) SPE (%) ACC (%)
Clean 28 30 0 2 93.33 100 96.67
10 27 28 2 3 90.00 93.32 91.66
5 25 27 3 5 83.33 90.00 88.33
0 24 28 2 6 80.00 93.34 86.68
−5 18 22 8 12 60.00 73.33 66.65
TP: true positive; TN: true negative; FP: false positive; FN: false negative;
SEN: sensitivity; SPE: specificity; ACC: accuracy.

features variation with the help of a classifier. The developed
algorithm can track the structural changes of the signals, if
it transits from normal condition to abnormal condition at
the initial stage of the diseases. It also removes the difficulties
of conventional stethoscope based auscultation tool that
makes misinterpretation of the diseases due to corrupted
signal. Therefore, the developed technique can be imple-
mented to derive a computer-aided system for enhancing
the performance of stethoscope based tool. Furthermore, a
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Figure 10: Visual representation of a noisy normal signal: (a) waveform of the signal; (b) spectral characteristic of the signal; and (c)
spectrogram of the signal.
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Figure 11: Visual representation of a noisy pathological signal (early systolic murmur): (a) waveform of the signal; (b) spectral characteristic
of the signal; and (c) spectrogram of the signal.
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Figure 12: Visual representation of a noisy pathological signal (late systolic murmur): (a) waveform of the signal; (b) spectral characteristic
of the signal; and (c) spectrogram of the signal.

detailed analysis is required for a large database of various
pathological heart sounds in order to utilize the algorithm for
real-time application.
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