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Abstract
Background  Few studies have examined how short-term associations between air pollution and mortality have 
evolved over recent decades when air quality has improved. Public health policy can benefit from timely information.

Methods  We applied time-series models to estimate the mortality impacts of ambient nitrogen dioxide (NO2), 
ozone (warm season only), and fine particulate matter (PM2.5) in 5-year moving time windows between 1990 and 
2019 (2000–2019 for PM2.5) in New York City (NYC). We modeled full-year, warm (May through September) and 
cold (October through March) season NO2 and PM2.5, adjusting for temperature, temporal trends, day-of-week, and 
holidays. We also estimated Total Risk Index (TRI) to characterize changes in the combined risk from exposure to two 
and three pollutants.

Results  All three pollutants showed the strongest association at one lag day. Despite major declines in PM2.5 and 
NO2 levels over the study period, risk estimates showed no apparent trend, remaining generally positive, but became 
less precise over time as concentration variability also declined. The estimated overall 1-day lag percent excess risk 
for PM2.5 was 0.49% (95% confidence interval: 0.12, 0.86) per 10 µg/m3 24-hr average, and for NO2, 0.90% (0.30, 1.50) 
per 30 ppb daily 1-hr maximum for full year models. Ozone, which slightly increased over the period, had a 1-day 
lag risk estimate of 1.43% (0.56, 2.30) per 30 ppb daily 8-hr maximum. The TRI followed a similar pattern to individual 
pollutants’ estimates.

Conclusions  With no clear evidence of risk per unit increase changing over time, the reductions in PM2.5 and NO2 
concentrations imply declines in excess deaths. Notably, ozone levels and health burden persist. NO2, which was most 
robustly associated with mortality and represents two major combustion sources—traffic and fossil fuel combustion 
in buildings—may be the most relevant indicator of energy transition progress in urban areas like NYC in the coming 
decade.
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Background
An increasing number of public health institutions and 
researchers have been estimating mortality and morbid-
ity burdens of ambient air pollutants, such as fine par-
ticulate matter (PM2.5) [1, 2]. These studies—often called 
health impact assessments, or HIA—use available or 
estimated air pollution levels combined with concentra-
tion-response (CR) functions (i.e., relative mortality risk 
per unit increase in an air pollutant) from available epi-
demiological studies and baseline health outcomes for a 
given geographic boundary. To facilitate policy decisions 
on emission reduction options, HIA tools are available 
to assess the health burdens, including monetary values 
associated with loss of life and costs of medical care asso-
ciated with specific emission reduction scenarios [3, 4]. 
Researchers have used such tools, for example, to esti-
mate the benefits of avoided health impacts for specific 
policy scenarios in New York City (NYC) for PM2.5 [5–8]. 

Local governments need to make policy decisions that 
meet their greenhouse gas emission goals while also 
estimating public health benefits of improved air qual-
ity. HIA tools facilitate such benefit-to-cost analysis, 
but applying these tools requires assessing uncertain-
ties that may be relevant and specific to a given locality. 
First, the CR functions built into these tools come from 
past epidemiological studies typically conducted in other 
locations with different demographics at different time-
periods (e.g., ten years ago) and may not be applicable to 
the current setting or location. Second, the CR functions 
in these tools are typically for a single pollutant, most 
commonly PM2.5, and ignore the effects of other pollut-
ants present. In other words, current HIA tools do not 
address the possible impacts from air pollution mixes. 
This issue is important because reducing one source’s 
emissions typically results in reduction of multiple pol-
lutants [9]. Finally, while the accountability of emission 
reductions leading to reduced adverse health impacts 
was often tested in “natural experiments” in which the 
health impacts of a sudden change in emissions were 
assessed [10–12], most emission regulations start with 
a phase-in period and take several years to complete. 
Several time-series studies examined how CR functions 
changed over an extended period of time [13–18], but the 
policy relevance of such findings may be unique to those 
cities’ specific emission profiles, air pollution mixtures, 
and population demographics. Therefore, characteriza-
tion of these uncertainties would benefit future policy 
planning for NYC, which has focused on climate sustain-
ability goals and budgeting.

The objective of this study is to characterize changes in 
the short-term relationships between the currently pol-
icy-relevant air pollutants, PM2.5, nitrogen dioxide (NO2) 
and ozone (O3). and non-external mortality in NYC over 
three decades, 1990 through 2019 (PM2.5 data available 

only from 2000). Previous studies of the short-term 
effects of air pollution—mostly focused on particulate 
matter and/or O3—on mortality that reported risk esti-
mates for NYC are limited to those that analyzed data up 
to 2006 [19–23], after which the levels of NO2 and PM2.5 
in NYC declined due to a combination of multiple local 
emission control regulations, market-driven change in 
building fuel types, and a reduction in regional aerosols 
[9, 24–27]. NYC’s large population size allows for time-
series modeling in incremental intervals and provides an 
illustrative example of how estimated risks for the three 
regulated air pollutants—ubiquitous in most urban envi-
ronments—changed over decades.

Methods
Air pollution and weather data
We retrieved PM2.5 (available from 2000), NO2, and 
O3 data from U.S. Environmental Protection Agency’s 
(EPA’s) Air Quality System [28] for the five boroughs in 
NYC and counties in New Jersey adjacent to NYC. We 
limited monitors to those assigned a population exposure 
monitoring objective. Completeness criteria were applied 
so that hourly data from a given day were excluded if less 
than 75% of hourly measurements were collected, and 
any data were excluded if collected from a monitor that 
did not meet EPA criteria for annual completeness. We 
used metrics consistent with the National Ambient Air 
Quality Standard for each pollutant: NO2: daily 1-hr max; 
O3: daily 8-hr max; and PM2.5: 24-hr average. To obtain 
one daily value for epidemiologic modeling, we first com-
puted the citywide average concentrations from multiple 
monitors in NYC only, taking into consideration the dif-
ference in the mean and variance across monitors [29]. 
We assessed the extent of missing data and repeated the 
citywide average computation, now including the moni-
tors from the sites in New Jersey adjacent to NYC, and 
filled in any missing values in the NYC-only citywide 
average data. The remaining small number of missing 
values (< 3% for all the pollutants) were filled in with 
either the previous or following day’s values to produce a 
complete time-series for each pollutant.

Weather data for LaGuardia airport was retrieved from 
the National Oceanic and Atmospheric Administration 
global hourly database [30], and daily mean temperature 
values were calculated.

Mortality data
Mortality records of non-external deaths of NYC resi-
dents who died within the five boroughs of NYC from 
1990 to 2019 were obtained from NYC’s Office of Vital 
Statistics and aggregated by date. Non-external cause 
deaths were collected by excluding external causes– 
ICD-9 codes greater than or equal to 800 or ICD-10 
codes beginning with letters S through Y. Analyses were 
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limited to NYC residents with a known borough of 
residence.

Overview and rationale of the study design
Previous studies that characterized air quality trends 
in New York State (NYS) and NYC indicated that the 
declines in air pollution emissions in the past two 
decades were substantial but not abrupt, similar to the 
NO2 and PM2.5 concentration changes [9, 24–26]. Thus, 
we did not expect the short-term effects of these pollut-
ants on mortality to change abruptly. Therefore, our main 
research question considered if the short-term mortality 
risk of an air pollutant changed over time, expressed as a 
percent excess risk (PER) per a fixed incremental increase 
of each pollutant. Additionally, we sought to characterize 
any change in trends of the total excess risks from these 
pollutants. The emission sources in NYC vary by season 
(e.g., NO2 from building space heating increases in cold 
season), so we estimated PERs by season. Based on the 
range of effect size observed for PM2.5 and O3 from previ-
ous studies that included NYC [19, 20, 22, 31], we chose 
a 5-year moving time window to compute seasonal and 
full-year PERs of mortality for 1990–2019 for NO2 and 
O3 and 2000–2019 for PM2.5. This approach is descriptive 
and similar to those applied in other recent studies that 
investigated changes in the short-term effects of air pol-
lution over an extended period of time [14, 16, 18], except 
that the moving time windows, rather than fixed time 
windows, allows assessment of any individual year’s influ-
ence on estimated PERs. Note also that a set of every 5th 
point of these moving time window estimates (26 esti-
mates for 1990–2019 and 16 estimates for 2000–2019) is 
equivalent to non-overlapping time windows.

Descriptive analysis
We first conducted descriptive analysis of both air qual-
ity and mortality patterns over time to identify changes 
in average values, variability in the data, and cyclical 
seasonal patterns. These patterns aid in interpretation 
of changes in estimated risks. Air quality trends were 
examined by creating annual time series of mean val-
ues. We examined how the standard deviations of the 
air pollutants and mortality changed over time because 
the variability of both dependent and predictor variables 
influences the standard error of estimated risks (i.e., the 
lower the variability of x and y variables, the wider the 
confidence intervals for estimated risks) in the quasi-
Poisson regression models for daily mortality. For each 
of the 5-year moving time windows, we also computed 
Pearson correlation coefficients for each pair of the daily 
air pollutants as well as correlations between each pollut-
ant and the concurrent day temperature and the average 
of lag 1 through 3 days temperatures (i.e., the covariates 
for mortality models). We also characterized how age of 

decedents and proportion of major underlying causes 
have changed in NYC over time. To characterize how 
seasonality of air pollutants, temperature, and mortal-
ity changed over time, we fitted these time-series with a 
cyclical smooth function [32] of day-of-year with up to 5 
degrees of freedom per year in generalized additive mod-
els using the Gaussian family for air pollutants and tem-
perature and quasi-Poisson family for mortality by 5-year 
blocks of study days. Because the seasonality of mortality 
could be influenced by seasonal influenza, we included 
time series of influenza and pneumonia (ICD9: 480–488; 
ICD10: J09-J18) in the mortality model to adjust for their 
influence while estimating the cyclic seasonal pattern.

Model specifications
To assess any change in the short-term effects of air pol-
lutants over a long study period (30 years for NO2 and O3 
and 20 years for PM2.5), we applied a time-series model 
in rolling five-year time windows. This approach assumes 
that the covariates’ (e.g., temperature) relationships with 
mortality also change over time and allows characteriza-
tion of gradual changes in the air pollution risks. In each 
of the five-year time windows, we ran generalized linear 
quasi-Poisson regression models of up to three lag days 
for each pollutant. When multiple lagged air pollution 
variables appeared associated with mortality, we also 
considered distributed lag non-linear models (DLNM) 
from the dlnm package [33]. These used a linear func-
tional form with an unconstrained lag function, and we 
compared the cumulative risk estimates with those from 
a single lag model. Models were adjusted for immediate 
(lag 0 day) and delayed (average of lag 1 through 3 days) 
temperature, year, holidays, day of week, and the natural 
spline of study days with 7 degrees of freedom per year 
for the full year models to adjust for long-term and sea-
sonal trends and influenza. Because air pollution mixture 
and exposure conditions can vary across seasons, we also 
ran separate models for warm months (May through Sep-
tember) and cold months (November through March) to 
estimate season-specific effects. O3 was analyzed for its 
association with mortality in warm months only because 
its concentrations are only relevant during the warm 
season and to be consistent with past studies of O3 and 
mortality [34]. For the seasonal models, we adjusted for 
within-season trends using the natural spline of study 
days with 3 degrees of freedom per season. The seasonal 
transition months, October and April, were excluded 
from the seasonal models to distinguish the pattern of 
associations between colder and warmer seasons. Cold 
months models adjusted for winter season period, as 
opposed to calendar year, to account for winter months 
spanning two calendar years. In computing PERs, we 
used the following fixed increments: NO2: 30 ppb daily 
1-hr max; O3: 30 ppb daily 8-hr max; and PM2.5: 10 µg/
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m3 24-hr average, which are often used in U.S. EPA’s Inte-
grated Science Assessment documents for these pollut-
ants [34–36]. 

The issue of confounding among air pollutants is 
typically addressed through multi-pollutant models. A 
review of multi-pollutant models by Davalos et al. identi-
fied five broad classes of statistical methods to estimate 
the short-term effects from multi-pollutant exposures 
and provided guidance on the selection of the optimum 
method based on study objectives and prior knowledge 
of the multi-pollutant exposures [37]. Based on our study 
goal of assessing the changes in the short-term air pol-
lution effects over time from the changes in emissions 
from major sources, we opted to use what Davalos et al. 
classified as the Additive Main Effects method—estima-
tion of individual and combined risks without dimension 
reduction or specifying effect modification—to estimate 
the short-term mortality risks from PM2.5, NO2, and O3. 
In implementing this method, we adopted the Total Risk 
Index (TRI) method that was originally developed for 
estimating the cumulative long-term effect from mul-
tiple pollutants [23]. The premise of TRI is that the linear 
combination of the risk coefficients from multiple cor-
related pollutants can be reliably estimated even when 
the individual pollutants’ risk coefficients are unstable 
due to multicollinearity. This method is analogous to dis-
tributed lag models where a cumulative risk is computed 
from multiple days’ (correlated) air pollution values. 
The standard error of the TRI risk coefficient takes into 
consideration the correlation of multiple pollutants’ risk 
coefficients to mitigate an inflated standard error from 
multicollinearity.

When emissions policies target multiple pollutants, 
modeling only one or two pollutants cannot give a full 
picture of the risk or benefit associated with reductions. 
The TRI value is more useful than individual pollutant 
estimates for policy development as each pollutant is 
modeled independently, but effects are combined into 
one estimate. Thus, in addition to single pollutant mod-
els, we ran two- and three-pollutant TRI models for 
2000–2019 when all pollutants were available to assess 
how much each pollutant contributes to the overall risk 
estimate, as well as to provide more useful estimates 
for future policy considerations. Two-pollutant mod-
els were compared to a three-pollutant model only in 
the warm season because we did not consider O3 in the 
cold months. Single-pollutant models were compared to 
two-pollutant TRI models in the cold season and for full 
years. In calculating PERs for single and TRI models, we 
used the same increments used in single-pollutants mod-
els mentioned above.

Sensitivity analysis
We applied several alternative model specifications to 
check the sensitivity of results from our main model: 
alternative degrees of freedom (6 and 8 degrees of free-
dom per year for full year models and 2 and 4 degrees of 
freedom per season for warm and cold season models) 
for trend adjustment with natural spline of study days; 
individual lag vs. cumulative risk using DLNM with a lin-
ear functional form of air pollutants at lag 0 and 1 days; 
and differences in reported risk using the pollutant inter-
quartile range (IQR) vs. EPA’s Integrated Science Assess-
ment (ISA) value as the increment. To consider potential 
changes to estimates from inclusion of a second pollut-
ant, we also ran two-pollutant models with combinations 
of NO2, O3, and PM2.5.

This study was approved by the Institutional Review 
Board of NYC Department of Health and Mental 
Hygiene.

Results
The annual average of daily 1-hour max NO2 declined by 
58% from 1990 (63 ppb) to 2019 (26 ppb) and 43% from 
2000 (46 ppb), as shown in Fig.  1. NO2 warm season 
annual average concentrations declined at a faster rate 
than cold season average concentrations. Accordingly, 
the seasonality of NO2 changed during the study period: 
peaking in summer in the 1990s; becoming comparable 
in both seasons by 2009; then peaking in cold season by 
2019 (Fig.  2). NO2’s 5-year window standard deviations 
for warm season declined from 18 ppb during 1990–1994 
to 11 ppb during 2015–2019; however, for cold season, 
NO2 standard deviations slightly increased since early 
2000s after a sharp decline in the 1990s (Fig. S1). 

The annual average of daily 24-hr PM2.5 declined by 
57% from 2000 (14.9 µg/m3) to 2019 (6.5 µg/m3). As with 
NO2, warm season average PM2.5 concentrations declined 
at a faster rate than in the cold season (Fig.  1). Unlike 
NO2, whose seasonality reversed in the 30 years, PM2.5 
seasonality qualitatively remained the same between 
2000 and 2019, with bimodal peaks, one in summer and 
the other in winter, both declining but with the winter 
peak now higher (Fig. 2). PM2.5’s 5-year window standard 
deviations for warm season declined from ~ 9 µg/m3 dur-
ing 2000–2004 to 4 µg/m3 during 2015–2019. The corre-
sponding values for cold season were ~ 7 µg/m3 to 4 µg/
m3, respectively, indicating that the rate of decline was 
steeper for warm season (Fig. S1).

The warm season annual average of daily 8-hr maxi-
mum O3 levels fluctuated over time, generally following 
the year-to-year variation in summer temperature (i.e., 
lower O3 in cooler summers), as shown in Fig. 1. While 
the overall trend of annual average of daily O3 values was 
essentially flat during the study period, the amplitude 
of O3’s annual cycle shrunk slightly (Fig.  2) because the 
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upper range values of its distribution decreased, and the 
lower range increased (e.g., O3 levels in May are higher 
in more recent years). These changes are also reflected in 
O3’s 5-year standard deviations, which declined from 19 
ppb for 1990–1994 to 13 ppb for 2015–2019. Daily aver-
age warm season temperature increased by ~ 2  °F dur-
ing the study period (Fig. 1), but its seasonality remained 
the same (Fig. 2). Temperature’s 5-year window standard 
deviations have been generally steady for both warm and 
cold seasons (Fig. S1).

Temporal correlations in the 5-year time windows 
between NO2 and PM2.5 for warm months fluctuated 
between 0.45 and 0.60 during the study period with lower 
values in more recent years. Their correlations in cold 
months were more stable at approximately 0.6 (Fig. S2). 
NO2’s correlation with O3 in warm months declined from 
approximately 0.6 in the 1990s to 0.35 in 2010s, as did 
its correlations with both the year-round same-day and 

average of 1- through 3-days temperature. The tempera-
ture and NO2 correlation changed from weakly positive 
(r: 0.05 to 0.10) in the earlier period to negative (r ≈ -0.20) 
in the later period, likely reflecting the larger contribu-
tion from building fossil fuel burning compared to traf-
fic sources in more recent years. Correlations between 
the temperature variables with PM2.5 and O3 generally 
remained consistent across the study period.

The deaths for underlying causes of diabetes and can-
cer slowly increased during the study period (Fig. S3). 
On average, there were 52,410 non-external deaths 
per year from 1990 to 2019, ranging from 64,054 in 
1990 to 46,699 in 2019. There were 30,228 cardiovas-
cular deaths and 5,721 respiratory deaths in 1990 com-
pared to 20,358 and 3,897 in 2019, respectively. Daily 
mortality counts declined between 1990 and 2010 and 
have been steady since then (Fig.  1). The population in 
NYC during the study period increased—7.3, 8.0, 8.2, 

Fig. 1  Annual average for full year, warm season (May– September) and cold season (November– April), 1990–2019. The lines are smoothed spline fits 
with 10 degrees of freedom over the data period

 



Page 6 of 13Goldberg et al. Environmental Health           (2025) 24:37 

and 8.8  million people for 1990, 2000, 2010, and 2020, 
respectively—indicating the declining number of deaths 
reflects decreasing death rates, particularly age-adjusted 
premature death (death at age < 65), which declined by 
20% between 2006 and 2015 alone [38]. The seasonal-
ity of deaths, after accounting for influenza epidemics, 
did not meaningfully change (Fig. 2). The 5-year window 
standard deviations for mortality declined steeply before 
mid-2000s especially for cold season, but they are stable 
in the last decade of the study period (Fig. S1). The pro-
portion of deaths for older adults (ages 85+) increased 
from 21 to 34% between 1990 and 2019, while those for 
younger age groups declined (Fig. S3). The deaths with 
underlying causes declined between 2008 (42%) and 2012 
(34%), which is consistent with the reported decline that 
may be, in part, due to policy initiatives and the effort to 
reduce coding bias [39, 40]. 

Of the lags analyzed (0–3 days), 1-day lagged variables 
showed the most consistent associations with mortality 
for all three pollutants in the main model over the entire 
period (results for the other lags are shown in Fig. S5). 
We therefore focused on the 1-day lag pollutant results 
to depict PER trends. Figure 3 shows PERs from five-year 
moving time windows over the study period by season 
and for all year (warm season only for O3). While most 
models showed positive associations, especially for warm 
season, there was no indication of a monotonic change 

in the trend of the risk estimates. A consistent widening 
of confidence bands over time was observed, however. 
The widening confidence bands of PERs were most pro-
nounced for PM2.5. These widening confidence bands are 
consistent with, and in part explained by, the pattern of 
decline in IQRs of these pollutants over the study period 
mentioned above: the standard error of the regression 
coefficient to estimate excess risk in a quasi-Poisson 
model is inversely proportional to the variance of the pol-
lutant, and the variance, as reflected in the IQR, declined 
as the pollutant levels declined. In the cold season, NO2 
and PM2.5 (which are consistently correlated with r ≈ 0.6, 
as shown in Fig. S2) showed the same fluctuation pattern 
of PERs, becoming negative during the period that cen-
ters around 2008 to 2009. The warm season PERs gener-
ally followed the same pattern as the corresponding PERs 
in the cold season but were more positive. Fluctuations in 
PERs for O3 only partly correspond to other pollutants’ 
trends. These fluctuation patterns did not follow those of 
standard deviation of the variables (Fig. S1) nor the inter-
correlations among the pollutants and temperature vari-
ables (Fig. S2).

PER estimates from the TRI models (from year 2000 on 
for PM2.5) also showed variability over time without any 
trend, regardless of using two- or three-pollutant mod-
els (Fig. 4). The TRI model with NO2 and PM2.5 resulted 
in the same pattern as those for their single-pollutant 

Fig. 2  Change in seasonality of non-external deaths, PM2.5 (2000–2019), NO2, O3, and temperature. Fitted curves from cyclic smoothing in 5-year intervals 
are shown
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counterparts. The TRI model with NO2 and O3 resulted 
in generally larger PERs than those from correspond-
ing single pollutant models. Adding PM2.5 to the TRI 
model with NO2 and O3 hardly changed PERs but slightly 
increased their confidence bands, implying that PM2.5 
does not uniquely contribute to PERs once NO2 and O3 
are in the model in warm season.

Because the PERs for individual pollutants or TRI mod-
els did not show any monotonic change during the study 
period, we computed PERs for individual pollutants and 
TRI models for the entire 2000–2019 period (Fig.  5). 
The PERs for the warm months were generally larger 
than those for the cold months. The PERs from two- and 
three-pollutant TRI models were larger than those from 
single-pollutant but with wider confidence intervals. 
Overall, PM2.5 showed weaker associations with mortal-
ity than NO2 (warm and cold seasons, and full year) and 
O3 (warm season).

Results from sensitivity analysis with alternative model 
specifications for warm and cold seasons and full year 
models for lags 0 through 3 days are shown in Fig. S5. For 
lag 1 day pollution models (the main model), the results 
with two-pollutant models are also shown. Using one less 
degree of freedom than is used for the cold season lagged 
main model (i.e., 2 rather than 3 degrees of freedom per 

season) to adjust for within-season and seasonal trends 
generally had the largest influence in cold season PERs, 
increasing their value. Using one more degree of freedom 
per season or year for seasonal adjustment did not yield 
PERs that were meaningfully different from those of the 
main models. Using IQRs of the entire available period 
by season, rather than the fixed increment, to compute 
PERs yielded slightly smaller estimates for all the pol-
lutants. Note that using IQRs, especially in the context 
of our study design, is not useful because the variability 
of most pollutants declined over the study period. Add-
ing a co-pollutant reduced PERs for all pollutant/season 
combinations. The confidence bands for PERs in the co-
pollutant models were all wider than those for single-
pollutant models, as expected. PERs for the cumulative 
lag 0 and 1 days using distributed lag models were either 
comparable or smaller than those from the main lag 1 day 
model, with wider confidence bands.

Discussion
The ambient concentrations of PM2.5 and NO2 in New 
York City declined substantially between 2000 and 
2019—by ~ 60% and ~ 40%, respectively—due to multiple 
federal and local emission regulations, combined with a 
market-driven switch in fuel types in the power sector. 

Fig. 3  Change in percent excess risk for non-external deaths for PM2.5, NO2, and O3 at lag 1-day by season, 1990–2019 (2000–2019 for PM2.5) using rolling 
5-year data. The increments used to compute percent excess risks: 10 µg/m3, 30 ppb, and 30 ppb, for PM2.5, NO2, and O3, respectively
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In contrast, warm season O3 concentrations over the 
same 20 years have remained approximately the same. 
Our analysis of the short-term associations of these 
three pollutants with non-external cause mortality in a 
series of 5-year moving time windows showed that the 
estimated PERs per fixed increments remained approxi-
mately the same, though they varied over time. Conse-
quently, the excess deaths attributable to PM2.5 and NO2 

also declined, while those for O3 remained the same. Our 
multi-pollutant assessment found that the TRI fluctuated 
in parallel to the risk estimates for the individual pol-
lutants and that the total (two- or three-pollutant) risks 
are only incrementally larger than those of individual 
pollutants’ risk estimates. We did identify the declining 
precision of risk estimates, most pronounced for PM2.5, 
as a potential challenge for future monitoring of the 

Fig. 5  Estimated percent excess risk of mortality in single-, two-, and three-pollutant models by season, 2000–2019. The increments used to compute 
percent excess risks: 10 µg/m3, 30 ppb, and 30 ppb, for PM2.5, NO2, and O3, respectively. Multi-pollutant models use the Total Risk Index for combined risk 
estimates

 

Fig. 4  Change in percent excess risk for non-external deaths for Total Risk Index by season, 2000–2019 using rolling 5-year data. The increments used to 
compute percent excess risks: 10 µg/m3, 30 ppb, and 30 ppb, for PM2.5, NO2, and O3, respectively
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short-term effects of these pollutants, if their concentra-
tions continue to decline, though this is not an issue in 
the larger public health context.

Several studies have investigated emission sources 
responsible for the decline in PM2.5 concentrations over 
the past two decades in NYS and NYC using EPA’s PM2.5 
chemical constituent data [9, 24, 26]. These studies gen-
erally suggested that the regional decline in transported 
secondary sulfate—due to the emission reduction from 
coal-fired power plants in the Ohio Valley region—
contributed the most to the overall decline in PM2.5 
mass concentrations in NYS and NYC. Also for NYC, 
decreased emissions from residual oil burning from 
buildings, traffic, and ships contributed to a local decline 
in PM2.5 [9]. 

Researchers from the University of Rochester and Uni-
versity at Albany hypothesized that the changes in PM2.5’s 
chemical constituents associated with specific emis-
sion policies could modify PM2.5 toxicity and, in turn, its 
short-term risk per unit mass. These studies categorized 
a range of years into specific periods associated with pol-
icy and/or economic changes that were used as an indica-
tor of effect modification of PM2.5 risk for cardiovascular 
hospitalizations [41], triggering of myocardial infarction 
[42], respiratory infection emergency department vis-
its and hospitalizations [43], and asthma and COPD ED 
visits and hospitalizations [44]. The same research team 
also analyzed source-apportioned PM2.5—eleven sources 
identified including spark ignition emission, diesel, road 
dust, etc.—for their associations with specific causes of 
cardiovascular hospitalizations [45]. These studies found 
associations between specific periods or source-appor-
tioned PM2.5 (generally combustion-related) and specific 
health outcomes. We are currently collaborating with 
these NYS researchers to analyze their source-appor-
tioned PM2.5 for its association with mortality in NYC. 
If PM2.5 levels continue to decrease, analyzing the role of 
specific chemical components will become increasingly 
challenging because of the declining precision of esti-
mates we identified, along with levels proportional to this 
change.

Several studies have examined changes in the short-
term mortality effects of air pollution, including: NO2 
in 24 Canadian cities (1984–2004); [13] PM10 in Ath-
ens, Greece (2001–2012); [16] PM10 in Seoul, Korea 
(2001–2015); [14] NO2, SO2, oxidizing substances (“Ox”, 
considered equivalent to O3), and suspended particulate 
matter (equivalent to approximately 7 micrometer diam-
eter cut-off) in 10 Japanese cities (1977–2015); [18] and, 
NO2, PM10, and PM2.5 (1995–2016) in 380 cities from 24 
countries [46]. These cities were mostly in mid- to high-
income countries that observed some extent of declines 
in these pollutants, except for Ox in the Japanese study, 
the only study that examined this pollutant. While the 

results from the studies in Seoul and Athens suggested 
some changes in effect size over the period, a decline 
in PM10 risk estimate in the former and a suggestive 
increase in the latter, the three large multi-city studies 
indicated that the effect sizes per unit increase generally 
have not changed. Widening confidence intervals in later 
years can be observed in the figures in the Seoul and Ath-
ens studies (though not specifically mentioned), but none 
of these studies experienced the extent of concentrations 
reductions we observed in NYC.

The relatively unchanged PERs for PM2.5 and NO2, 
despite substantially lower levels, may appear counter-
intuitive, but are consistent with the lack of evidence 
of a threshold in the short-term relationships between 
these pollutants and all-cause deaths. If there is no 
threshold and the underlying concentration-response 
relationship is approximately linear for the observed 
concentration range, then the observed slope at lower 
concentration ranges would remain the same until con-
centrations become so low—to the point where an 
elongated ellipse of air pollution (x-axis) and mortal-
ity (y-axis) data points from the earlier period becomes 
more of a circle—for a given study period that the risk 
estimate becomes too imprecise (i.e., wide confidence 
intervals) for interpretation. This happens because, in 
the log-linear (quasi-Poisson) regression model, the stan-
dard error of the regression coefficient for a pollutant is 
inversely related to the square-root of the pollutant’s (and 
mortality’s) variance, so that a pollutant with declining 
mean levels (and declining standard deviations, as shown 
in this analysis) would have a wide confidence band in the 
later years. This phenomenon is most prominent in the 
PM2.5 result, which shows that the 95% confidence band 
in the most recent period (2015–2019) is at least twice 
that of the earliest period (2000–2004). Further reduc-
tions in PM2.5 levels would make the excess risk estimate 
too imprecise, at least for a 5-year study period, even if 
the underlying relationship remained positive.

U.S. EPA publishes ISA documents for each of the cri-
teria pollutants—for which National Ambient Air Quality 
Standards are established—every five years and provides 
a causal determination of the relationship between each 
pollutant and a specific health outcome based on the 
most recent evidence available from epidemiological 
and toxicological studies. For the short-term associa-
tion with non-accidental mortality, the PM2.5 determina-
tion in the 2019 PM ISA concluded that “there is a causal 
relationship” [36], and the 2022 supplement to the 2019 
PM ISA supported this conclusion based on a review of 
more recent studies [47]. In contrast, the 2016 ISA for 
Oxides of Nitrogen concluded that the short-term asso-
ciation between NO2 and non-accidental mortality is 
“suggestive of, but not sufficient to infer, a causal relation-
ship” [35]. The 2016 NOx ISA also noted, regarding the 
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NO2-mortality associations, “A limitation of this collec-
tion of studies was that the majority focused specifically 
on PM and did not conduct extensive analyses to exam-
ine the relationship between short-term NO2 exposure 
and mortality” [35]. Likewise, the 2020 O3 ISA concluded 
estimates were “suggestive of, but not sufficient to infer, 
a causal relationship” regarding the short-term mortal-
ity association [34], denoting a downward change from 
the 2013 O3 ISA’s causal determination, “suggestive of a 
causal relationship” [48]. 

In contrast to the 2016 EPA assessment of NO2, in a 
2020 systematic review of 196 studies of the short-term 
exposure to PM (PM10 and PM2.5), NO2, and O3 and all-
cause and cause-specific mortality, the authors found 
positive associations for short-term exposure to all these 
pollutants with all-cause mortality, with the level of evi-
dence noted as “high” [49]. In a 2020 analysis of an open 
cohort constructed from Medicare data for Massachu-
setts, 2000–2012, with estimated PM2.5, NO2, and O3 
exposure levels assigned at residential zip-code level, the 
authors applied a generalized propensity score adjust-
ment approach to assess causal associations and con-
cluded that “long- and short-term exposures to PM2.5, 
O3, and NO2 were all causally associated with increased 
risk of mortality.” [50] Two systematic reviews (2015 
and 2021) of NO2-mortality short-term associations 
both found that NO2 was associated with all-cause, car-
diovascular, and respiratory mortality [51, 52]. Another 
systematic review (2016) of NO2-mortality short-term 
associations specifically attempted to distinguish NO2 
associations from those from PM mass and found that 
the NO2-mortality short-term association is “largely 
independent of PM mass.” [53] Also, a 2021 time-series 
analysis of 398 cities from 22 countries found short-term 
associations between NO2 and all-cause, cardiovascular, 
and respiratory mortality and reported that these associ-
ations “remained robust after adjusting for co-pollutants.” 
[54] Thus, our findings provide additional evidence of 
NO2-mortality associations established in recent system-
atic reviews and a large multi-city time-series study.

In our analysis NO2 exhibited the most robust associa-
tions with daily mortality. To date, however, most health 
impact assessment studies of mortality conducted in the 
world and U.S. cities, including NYC, have focused on 
PM only [1, 5–8], or PM and O3 [55, 56]. For NYC, our 
results demonstrate that NO2 is increasingly the most 
policy-relevant indicator of air pollution for several rea-
sons: (1) its short-term association with mortality in both 
warm and cold seasons; (2) NO2 contributions to the 
formation of nitrate, a significant fraction of PM2.5 espe-
cially in winter, and the formation of O3 in summer, both 
of which are also associated with mortality; (3) its value 
as an indicator of two major combustion sources, build-
ings and traffic; and (4) its having the highest precision 

in excess mortality risk estimates among the three pollut-
ants examined in this analysis. Both NYS and NYC have 
climate change mitigation plans to reduce greenhouse 
gas emissions drastically with goals set for 2030 and 
2050 [57, 58], and NO2 will be the most robust indicator 
of reducing combustion and associated health benefits, 
especially in NYC.

Although the large population size of NYC allowed this 
time-series analysis to estimate the short-term risk esti-
mates in segments of the long study period, the analysis 
had several limitations. First, this analysis was limited in 
scope to overall non-external cause mortality, excluding 
investigation of specific individual causes of death. The 
primary objective of this analysis was to address uncer-
tainties associated with the concentration-response 
functions being used in health impact assessment for 
future policy planning, which generally focuses on non-
external cause mortality. An expanded analysis of major 
specific underlying causes of deaths (e.g., cardiovascu-
lar, respiratory, etc.) would be useful for understanding 
causal mechanisms, which we are conducting separately. 
Second, we did not consider the chemical constituents 
of PM2.5, as some other studies have done. The every-
3rd-day sampling frequency of PM2.5 and its late start 
year (2003) would further weaken statistical power to 
characterize any changes in the short-term air pollution 
effects. We are studying PM2.5 constituents separately 
for other research questions. Third, changes in the dis-
tribution of age of death and underlying demographics 
of the city’s population during the study period could 
have also impacted the short-term relationship between 
air pollution and mortality over the 30-year period. We 
characterized the breakdown of deaths by age group and 
major cause in the supplemental material, but we did not 
conduct time-series analysis by age group nor by cause 
because the size and precision of the estimated risks for 
all deaths in the five-year time windows did not support 
further stratification with sufficient statistical power. This 
lack of stratification limits the interpretation of our find-
ings. However, we are conducting a separate analysis by 
race/ethnicity, which is often found to be an important 
effect modifier of air pollution effects. Finally, the appli-
cability of our findings may be limited to other cities that 
have similar emission sources and compositions (traffic 
and buildings). However, in the context of climate change 
mitigation, most major U.S. and European cities face the 
same challenge of reducing fossil fuel combustion, and 
our approach and findings, if not the numerical results, 
will be useful in both prioritizing and evaluating efforts.

Conclusions
Our analysis of changes in the short-term effects of three 
regulated air pollutants over extended periods (30 years 
for NO2 and O3 and 20 years for PM2.5) in New York City 
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found that estimated risks fluctuated but did not show 
increasing or decreasing trends. Substantial declines 
in the levels of NO2 and PM2.5 during the study period 
with unchanged PER for NO2 and PM2.5 imply a decline 
in attributable excess deaths. Therefore, our findings also 
demonstrate the benefits of emission regulation policies. 
Further reductions in NO2 and PM2.5 levels will lead to 
imprecision in assessment of risk estimates, particularly 
for PM2.5, for a typical length of time-series studies (e.g., 
five years). However, given the relatively unchanged risk 
estimates, the average estimates over the study period 
should suffice as input to health impact assessment tools 
for future policy planning. Given the relatively robust risk 
estimates for NO2 and NO2 contributions to the forma-
tion of O3 and PM2.5 constituents, NO2 will be a good 
progress indicator of greenhouse gas reduction pol-
icy goals set by New York City and State in the coming 
decade.
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