
*For correspondence:

sdebuyl@vub.be

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 13

Received: 31 January 2020

Accepted: 20 July 2020

Published: 20 July 2020

Reviewing editor: Sandeep

Krishna, National Centre for

Biological Sciences-Tata Institute

of Fundamental Research, India

Copyright Descheemaeker

and de Buyl. This article is

distributed under the terms of

the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Stochastic logistic models reproduce
experimental time series of microbial
communities
Lana Descheemaeker1,2, Sophie de Buyl1,2*

1Applied Physics Research Group, Physics Department, Vrije Universiteit Brussel,
Brussel, Belgium; 2Interuniversity Institute of Bioinformatics in Brussels, Vrije
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Abstract We analyze properties of experimental microbial time series, from plankton and the

human microbiome, and investigate whether stochastic generalized Lotka-Volterra models could

reproduce those properties. We show that this is the case when the noise term is large and a linear

function of the species abundance, while the strength of the self-interactions varies over multiple

orders of magnitude. We stress the fact that all the observed stochastic properties can be obtained

from a logistic model, that is, without interactions, even the niche character of the experimental

time series. Linear noise is associated with growth rate stochasticity, which is related to changes in

the environment. This suggests that fluctuations in the sparsely sampled experimental time series

may be caused by extrinsic sources.

Introduction
Microbial communities are found everywhere on earth, from oceans and soils to gastrointestinal

tracts of animals, and play a key role in shaping ecological systems. Because of their importance for

our health, human-associated microbial communities have recently received a lot of attention.

According to the latest estimates, for each human cell in our body, we count one microbe

(Sender et al., 2016). Dysbiosis in the gut microbiome is associated with many diseases from obe-

sity, chronic inflammatory diseases, some types of cancer to autism spectrum disorder

(Gilbert et al., 2016). It is therefore crucial to recognize what a healthy composition is, and if unbal-

anced, be able to shift the composition to a healthy state. This asks for an understanding of the eco-

logical processes shaping the community and dynamical modeling.

The dynamics of complex ecosystems can be studied by considering the number of individuals of

each species, referred to as abundances, at subsequent time points. There are several ways to char-

acterize experimental time series properties. Models typically focus on one specific aspect such as

the stability of the community (May, 1972; Coyte et al., 2015; Levine et al., 2017; Grilli et al.,

2017; Gavina et al., 2018; Gibbs et al., 2018), the neutrality (Fisher and Mehta, 2014;

Washburne et al., 2016), or mechanisms leading to long-tailed rank abundance distributions

(Solé et al., 2002; Brown et al., 2002; McGill et al., 2007; Matthews and Whittaker, 2015). Differ-

ent types of dynamical models have been proposed. A first distinction can be made between neutral

and non-neutral models. Neutral models assume that species are ecologically equivalent and that all

variation between species is caused by randomness. In such models, no competitive or other interac-

tions are included. A second distinction is made between population-level and individual-based

models. Generalized Lotka-Volterra (gLV) models describe the system at the population level and

assume that the interactions between species dictate the community’s time evolution. Both deter-

ministic and stochastic implementations exist for gLV models. Stochastic models include a noise

term. There are multiple origins of the noise: intrinsic noise captures the fluctuations due to small
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numbers, extrinsic noise models external factors such as changing immigration rates of species or

changing growth rates mediated by a varying flux of nutrients. Individual-based or agent-based

models include self-organized instability models (Solé et al., 2002) and the controversial neutral

model of Hubbell, 2001; Rosindell et al., 2011. A classification scheme that assesses the relative

importance of different ecological processes from time series has been proposed in Faust et al.,

2018. The scheme is based on a test for temporal structure in the time series via an analysis of the

noise color and neutrality. Applied to the time series of human stool microbiota, it tells us that sto-

chastic gLV or self-organized instability models are more realistic. Here, we will however only focus

on stochastic gLV models. The reason for this is twofold. First, one can encompass the whole spec-

trum of ecosystems from neutral to niche with gLV models (Fisher and Mehta, 2014). Second, we

aim at describing dense ecosystems and even though an individual-based model might be more

accurate, in the large number limit it will be captured by a Langevin approximation, that is, by the

stochastic gLV model.

Our goal is to compare time series generated by stochastic gLV models with experimental time

series of microbial communities. We aim at capturing all observed properties mentioned above—the

rank abundance profile, the noise color, and the niche character—as well as the statistical properties

of the differences between abundances at successive time points with one model. As is shown in

Properties of experimental time series, the abundance distribution is heavy-tailed, which means that

few species are highly abundant and many species have low abundances. Despite the large differen-

ces in abundances, the ratios of abundances at successive time points and the noise color are inde-

pendent of these abundances and although the fluctuations are large, the results of the neutrality

tests indicate that the experimental time series are in the niche regime. To sum up, we seek growth

rates, interaction matrices, immigration rates, and an implementation of the noise in stochastic gLV

models to obtain the experimental characteristics.

We simulated time series using gLV equations. The interaction matrices are random as was intro-

duced by May, 1972. The growth rates are determined by the choice of the steady-state, which is

set to either equal abundances for all species or abundances according to the rank abundance pro-

files found for experimental data. For the noise, we consider different implementations correspond-

ing to different sources of intrinsic and extrinsic noise.

Our analysis constrains the type of stochastic gLV models able to grasp the properties of experi-

mental time series. First, we show that there is a correlation between the noise color and the prod-

uct of the mean abundance and the self-interaction of a species. The noise color profile for such

models will, therefore, depend on the steady-state. This implies that imposing equal self-interaction

strengths for all species, what can be done to ensure stability (Fisher and Mehta, 2014;

Gibson et al., 2016), is incompatible with the properties of experimental time series. Second, from

the differences between abundances at successive time points, we conclude that a model with

mostly extrinsic (linear) noise agrees best with the experimental time series. Third, neutrality tests

often result in the niche regime for time series generated by noninteracting species with noise. We,

therefore, conclude that all stochastic properties of experimental time series are captured by a logis-

tic model with large linear noise. However, interactions are not incompatible with those properties.

This suggests using stochastic logistic models as null models to test for interactions. Our results go

along the lines of the ones obtained by Grilli, 2019 which state that the stochastic logistic model

can be interpreted as an effective model capturing the statistics of individual species fluctuations.

All codes are available online (see Additional files: Code).

Results

Properties of experimental time series
We study time series from different microbial systems: the human gut microbiome (David et al.,

2014), marine plankton (Martin-Platero et al., 2018), and diverse body sites (hand palm, tongue,

fecal) (Caporaso et al., 2011; Figure 1A). A study of the different characteristics for a selection of

these data is represented in Figure 1. The complete study of all time series can be

found in Supplementary file 1: Analysis of experimental data. We propose a detailed description of

the properties of the experimental time series. They fall essentially into two categories. The stability

and rank abundance are tightly connected to the deterministic part of the equations while the
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differences between abundances at successive time points and noise color explain the stochastic

behavior. The neutrality is more subtle and depends on the complete system.

The time series show fluctuations over time
The experimental time series show large fluctuations over time. We can ask the question whether

the origin of this variation is biological or technical, and assume that most of the variation can be

Figure 1. Characteristics of experimental data. (A) Time series. (B) Rank abundance profile. The abundance distribution is heavy-tailed and the rank

abundance remains stable over time. (C) Noise color: No clear correlation between the slope of the power spectral density and the mean abundance of

the species can be seen. The noise colors corresponding to the slope of the power spectral density are shown in the colorbar (white, pink, brown,

black). (D) Absolute difference between abundances at successive time points: There is a linear correspondence (in log-log scale) between the mean

absolute difference between abundances at successive time points and the mean abundance of the species. Because the slope is almost one, this hints

at the linear nature of the noise. (E) Width of the distribution of the ratios of abundances at successive time points: The width of the distribution of

successive time points is large (order 1) and does not depend on the mean abundance of the species. Most of the species fit well a lognormal

distribution: the p-values of the Kolmogorov-Smirnov test are high. (F) Neutrality: The values of the Kullback-Leibler divergence (DKL) and the neutral

covariance test (pNCT ) are explicitly given. Additionally, we use color codes for both tests with the neutral regime represented by dark blue. White and

red indicate the niche regime for the KL test and NCT respectively. We conclude that most experimental time series are in the niche regime.
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contributed to biological processes. This hypothesis is supported by the results of Silverman et al.,

2018 for microbial communities of an artificial gut. Here, the biological variation becomes five to six

times more important than the technical variation for the sampling interval of a day. Also, Grilli, 2019

shows the time correlation of experimental time series which is non-zero. In the case where the varia-

tion is mostly due technical errors, we expect to see no correlation. Because no experimental error-

bars are available for most of the data and because we assume most variation has a biological

origin, we did not consider the errors on the species abundances.

The abundance distribution is heavy-tailed
The first aspect of community modeling that has been widely studied during the last years is the sta-

bility of the steady-states. Large random networks tend to be unstable (May, 1972). This problem is

often solved by considering only weak interactions, sparse interaction matrices (May, 2001) or by

introducing higher-order interactions (Grilli et al., 2017; Gavina et al., 2018; Sidhom and Galla,

2019). Although the stability of gLV models decreases with an increasing number of participating

species, the stability only depends on the interaction matrix and not on the abundances

(Gibbs et al., 2018). The abundance distribution of the experimental data is heavy-tailed. This

means that there are few common and many rare species. The distribution of the steady-state values

can also be represented by a rank abundance curve (see Box 1B). Although the abundances show

large fluctuations over time, the rank abundance remains stable (Figure 1B).

The differences between abundances at successive time points are large
and linear with respect to the species abundance
Time series can be described by the differences between abundances at successive time points. We

propose to focus on two specific representations of the information contained in those differences.

First, we consider the mean absolute difference between abundances at successive time points

h j xðt þ dtÞ � xðtÞ j i as a function of the mean abundance hxðtÞi (see Box 1D). For the experimental

data, the relation between these variables is a monomial—this means that it is linear on the log-log

scale (Figure 1D). The fact that the slope of this line is almost one hints at a linear nature of the

noise.

Second, we examine the distribution of the ratios of the abundances at two successive time

points xðt þ dtÞ=xðtÞ (see Box 1E). The width of this distribution tells how large the fluctuations are.

To measure this width, we fit the distribution with a lognormal curve for which the mean is fixed to

be one as the fluctuations occur around steady-state. For most of the species of experimental data

(except for the stool data), the fit of the distribution to a lognormal curve is good (Figure 1E). Fur-

thermore, we notice that the distribution is wide—in the order of 1—and that the width does not

depend on the mean abundance of the species (Figure 1E).

The noise color is independent of the mean abundance of the species
The noise of a time series can be studied by considering the distribution of the frequencies of the

fluctuations. This distribution can be defined by its slope, which is interpreted as the noise color (see

Box 1C). We notice that there is no correlation between the noise color and the mean abundance of

the species for experimental time series (Figure 1C).

Experimental time series are in the niche regime
In neutral theory, it is assumed that all species or individuals are functionally equivalent. It is chal-

lenging to test whether a given time series was generated by neutral or niche dynamics. We use two

definitions of neutrality measures: the Kullback-Leibler divergence as used in Fisher and Mehta,

2014 and the neutral covariance test as proposed by Washburne et al., 2016 (see Box 1F). Both

neutrality measures indicate that most experimental time series are in the niche regime (Figure 1F).

Reproducing properties of experimental time series from stochastic
generalized Lotka-Volterra models
We find that the aforementioned characteristics of experimental time series can be reproduced by

stochastic logistic equations. We first explain how to choose the growth rate to obtain the heavy-

tailed experimental abundance distribution. Next, we discuss how the noise color determines the
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self-interaction of a species given its abundance and how the implementation of the noise deter-

mines the slope of the mean absolute increment h j xðt þ dtÞ � xðtÞ j i and the mean abundance hxðtÞi
(such as in Figure 1D). In the end, by using the appropriate choice for the self-interactions, growth

rates, and noise implementation, we conclude that a stochastic logistic model can reproduce all the

stochastic properties, including the niche regime for the neutrality tests although the model does

not include any interactions.

The rank abundance distribution can be imposed by fixing the growth rate
Random matrix models do typically not give rise to heavy-tailed abundance distributions. Neither is

it known which properties of the interaction matrix and growth rates are required to obtain a realistic

rank abundance distribution. We can however enforce the desired rank abundance artificially by solv-

ing the steady-state of the gLV equations. Given the steady-state abundance vector ~x� and

Box 1. Definitions of the studied characteristics We study

multiple characteristics of the dynamics of microbial

communities.

We here define these characteristics. The labels (A-F) denote the different figures of Figure 1

and Figure 4.
A. A time series represents the time evolution of the abundances of different species of the

community.

B. The rank abundance distribution describes the commonness and rarity of all species. It
can be represented by a rank abundance plot, in which the abundances of the species are
given as a function of the rank of the species, where the rank is determined by sorting the
species from high to low abundance. These curves can generally be fitted with power law,
lognormal, or logarithmic series functions (Limpert et al., 2001; McGill et al., 2007;
Brown et al., 2002).

C. The noise color describes the distribution of the frequencies of the fluctuations of a time
series of a species. It is defined by the slope of a linear fit through the power spectral den-
sity. White, pink, brown and black noise correspond to slopes around 0,–1, �2 and �3
respectively. The more negative the slope is—this corresponds to darker noise—the more
structure there is in the time series (Faust et al., 2018).

D. We study the mean absolute difference between abundances at successive time points
h j xðt þ dtÞ � xðtÞ j i as a function of the mean abundance hxðtÞi. These values represent
the jumps of the abundances from one time point to the next.

E. We measure the ratios of the abundances at two successive time points xðt þ dtÞ=xðtÞ.
The advantage of this method is that it captures the direction of a jump between two time
points: for ratios higher than one the jump is positive, for ratios lower than one the jump
is negative. The distribution of these ratios fits a lognormal curve with a mean at one as
the fluctuations occur around steady-state and the width of the distribution tells how large
the fluctuations of a time series are. The goodness of the fit is defined by the p-value of
the Kolmogorov-Smirnov test. Higher p-values denote a better fit. We use the width as a
characteristic and compare the widths of different species. Examples of the fitted lognor-
mal curve can be found in Supplementary file 1: Supporting results.

F. The Kullback-Leibler divergence measures how different the multivariate distribution of
species abundances is from a distribution constructed under the assumption of ecological
neutrality. The idea of the neutral covariance test is to compare the time series with a
Wright-Fisher process. A Wright-Fisher process is a continuous approximation of Hubbell’s
neutral model for a large and finite community. In particular, it tests the invariance with
respect to grouping. More about the validity of these neutrality measures can be found in
the Supplementary file 1: Supporting results.
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interaction matrix w, we impose the growth rate ĝ ¼ �!~x�. One model that results in heavy-tailed

distributions is the self-organized instability model proposed by Solé et al., 2002.

For logistic models, the growth rate is equal to the product of the self-interaction and mean

abundance. The noise color and the width of the distribution of ratios xðt þ dtÞ=xðtÞ depend on this

product. To obtain given characteristics—a predefined noise color and width of the distribution of

ratios xðt þ dtÞ=xðtÞ—the choice of the growth rate will dictate the choice of the remaining free

parameters, the sampling time step dt and the noise strength s.

The noise color is determined by the mean abundance and the self-
interaction of the species
To study the noise color, we first consider a model where the species are not interacting. The noise

color is independent of the implementation of the noise but depends on the product of the mean

abundance and the self-interaction of the species (Figure 2A). For noninteracting species, the

growth rate equals the product of the self-interaction and the steady-state abundance. Because we

consider fluctuations around steady-state, the mean and the steady-state abundance are nearly

equal and the x-axis of Figure 2A; Figure 2B; Figure 2C; can be interpreted as the growth rate.

Also, the strength of the noise does not change its color (Figure 2C). A parameter that is important

for the noise color is the sampling rate: the higher the sampling frequency the darker the noise

Figure 2. Noise color as a function of the mean abundance and self-interaction for stochastic logistic and gLV

equations. The noise colors corresponding to the slope of the power spectral density are shown in the colorbar

(white, pink, brown, black). The mean abundance determines the noise color when there is no interaction, the

implementation method (A) and the strength of the noise (C) have no influence. A smaller sampling time interval

dt, which is equivalent to a higher sampling rate, makes the noise darker (B). For gLV models with interactions,

larger interaction strengths make the noise colors darker for systems with equal abundances (D) as well as systems

with heavy-tailed abundance distributions (E).
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becomes (Figure 2B). This is in agreement with the results of Faust et al., 2018. Darker noise corre-

sponds to more structure in the time series. The more frequent the abundances are sampled the

more details are visible and the underlying interactions become more visible. We conclude that the

noise color is only dependent on the mean abundance, the self-interactions, and the sampling rate.

Figures of the dependence on the mean abundance and self-interaction separately can be found in

Supplementary file 1: Supporting results.

For interacting species, increasing the strength of the interactions makes the color of the noise

darker in the high mean abundance range (Figure 2D; Figure 2E). Importantly, for interacting spe-

cies with a lognormal rank abundance, the correlation between the noise color and mean abundance

is preserved (Figure 2E). The data can be fit to obtain a bijective function between the product of

the mean abundance and the self-interaction, and the noise color. Assuming this model is correct,

we can obtain an estimate for the self-interaction coefficients given the mean abundance and noise

color by fixing the sampling rate and the interaction strength. The uncertainty on the estimates is

larger where the fitted curve is more flat (slopes of the power spectral density around �1.7 and 0),

but many experimental values of the stool microbiome data lie in the pink region where the self-

interaction can be estimated for this model.

The implementation of the noise determines the correlation between the
mean absolute increment h j xðt þ dtÞ � xðtÞ j i and the mean abundance
hxðtÞi
Next, we study the differences between abundances at successive time points (see Figure 1D).

From the results of the noise color, we can estimate the self-interaction for the dynamics of the

experimental data. We use the rank abundance and the self-interaction inferred from noise color of

the microbiome data of the human stool to perform simulations and calculate the characteristics of

the distribution of differences between abundances at successive time points. We here assume that

there are no interactions. More results for dynamics with interactions are in Supplementary file 1:

Supporting results. We first study the correlation between the mean absolute difference between

abundances at successive time points h j xðt þ dtÞ � xðtÞ j i and the mean abundance hxðtÞi. For linear
multiplicative noise, the slope of the curve of the logarithm of the mean absolute difference between

abundances at successive time points log10 h j xðt þ dtÞ � xðtÞ j ið Þ as a function of the logarithm of the

mean abundance log10 hxðtÞið Þ is one. For multiplicative noise that scales with the square root of the

abundance, the slope is around 0.66 and for additive noise, the slope is zero. By combining both lin-

ear noise and noise that scales with the square root of the abundance, slopes with values between

0.6 and 1 can be obtained (Figure 3A). The slopes of experimental data range between 0.84 and

0.99, we therefore conclude that linear noise is a relatively good approximation to perform stochas-

tic modeling of microbial communities.

The strength of the noise determines the width of the distribution of ratios
xðt þ dtÞ=xðtÞ
Next, we examine the distribution of the ratios of abundances at successive time points (see

Box 1E). As expected, for significant noise, this distribution can be approximated by a lognormal

curve and the width of the distribution becomes larger for increasing noise strength (Figure 3B). In

order to have widths that are of the same order of magnitude as the ones of the experimental data,

the noise must be sufficiently strong. Another way of increasing the width is through interactions,

this effect is only moderate. These results are presented in Supplementary file 1: Supporting

results.

Stochastic logistic models capture the properties of experimental time
series
By using all previous results and imposing the steady-state of experimental data, we find that it is

possible to generate time series with identical characteristics to the ones seen in the experimental

time series (Figure 4). Furthermore, these time series can be generated without introducing any

interaction between the different species, but their neutrality measures can still be in the niche

regime (Figure 4F). Out of 100 simulations, 62 had a p-value smaller than 0.05 for the neutral

Descheemaeker and de Buyl. eLife 2020;9:e55650. DOI: https://doi.org/10.7554/eLife.55650 7 of 15

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.55650


covariance test which means they are in the niche regime. The colors of the noise fix the self-interac-

tion values (Figure 4C), next the rank abundance distribution is imposed by calculating the growth

vector ĝ (Figure 4B). The slope of the curve of the mean absolute difference between abundances

at successive time points as a function of the mean abundance is one by using linear multiplicative

noise (Figure 4D) and the width of the fluctuations is tuned by choosing a large noise size s

(Figure 4E). In most experimental time series, only the fractional abundances of species can be mea-

sured per time point and not the absolute ones. Because the total abundance of all species remains

nearly constant in time series generated by a stochastic logistic equation, our results still hold for

time series with fractional abundances (see Supporting results). Similar results can be obtained for

models with interactions (see Supporting results), but we want to stress that interactions are not

needed to reproduce the properties of experimental time series.

Discussion
Recent research has focused on different aspects of experimental time series of microbial dynamics,

in particular the rank abundance distribution, the noise color, the stability, and neutrality. Within the

framework of stochastic generalized Lotka-Volterra models, we studied the influence of growth

rates, interactions between species, and the different sources of stochasticity on the observed char-

acteristics of the noise and on neutrality. Our observations are:

. Even when we consider the case without interactions between species, the result of the neu-
trality test on the time series is often niche. We should, therefore, be careful in the interpreta-
tion of the results of neutrality tests.

. For a given sampling step dt, the noise color depends on the product of the self-interaction
and the mean abundance, which for noninteracting species reduces to a dependence on the
growth rate. Assuming the model can be used for microbial communities, the self-interaction
coefficients can be estimated given the mean abundance, noise color, and sampling rate. Low
sampling rates result in larger errors (Figure 2B). For sparsely sampled experimental data, the

Figure 3. Differences between time points as a function of the noise. (A) Correlation between the mean absolute

differences between abundances at successive time points and the mean abundance for different strengths of the

linear noise (slin) and multiplicative noise that scales with the square root of the abundances (ssqrt). More

specifically, the parameter represents the slope of the logarithm of the mean absolute difference between

abundances at successive time points as a function of the logarithm of the mean abundance. Examples of such

slopes are given by Figure 1D. Here, the slope ranges from 0.66 for noise that scales with the square root to one

for linear noise. (B) The width of the distribution of the ratios of abundances at successive time points increases for

increasing strength of the noise. For sufficiently strong noise the distribution is well fitted by a lognormal function

(high p-values for the Kolmogorov-Smirnov test).
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standard deviation of the self-interaction inferred using the noise color will be larger. For the
experimental time series (plankton, gut, and human microbiome) the self-interaction strengths
range over several orders of magnitude. The convention of equalling all self-interactions to �1
used in several studies (Fisher and Mehta, 2014; Gibson et al., 2016), cannot be adopted for
stochastic models of communities with a heavy-tailed abundance distribution.

. The exponent of the mean absolute differences between abundances at successive time points
with respect to the mean abundances is slightly smaller than one for experimental time series.
Linear multiplicative noise results in a value of one, square root noise results in lower values
(0.6). A mix of linear and square root noise can result in slopes with intermediate values.

. A large multiplicative linear noise is in agreement with both the distribution of the ratios of
abundances at successive time points and the relation between the differences between abun-
dances at successive time points and mean values.

To conclude, characteristics of experimental time series, from plankton to gut microbiota, can be

reproduced by stochastic logistic models with a dominant linear noise. We expect, however, that for

higher sampling rates, modeling the interactions between microbes would be necessary to explain

the properties of the time series. For gut microbial time series, the system is sampled only once a

day and therefore dominated by the noise in the growth terms corresponding to a linear noise.

Predictive models for the dynamics of microbial communities will certainly require a more in-

depth description of the system. Nutrients and spatial distribution of microbes should play a role to

dictate the evolution of the community, as well as the interaction with the environment. Synthetic

microbial communities are currently being developed and will hopefully provide a more comprehen-

sive view on the complexity of microbial communities (Vrancken et al., 2019).

Figure 4. A stochastic logistic model is able to reproduce the different characteristics of the noise. (A) Time

series. (B) A rank abundance that remains stable over time. (C) Results of the neutrality test in the niche regime. (D)

Noise color in the white-pink region with no dependence on the mean abundance. (E) The slope of the mean

absolute difference between abundances at successive time points is around 1. (F) The width of the distribution of

the ratios of abundances at successive time points is in the order of 1 and independent of the mean abundance.
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Materials and methods

Modeling generalized Lotka-Volterra equations
In a microbial community different species interact because they compete for the same resources.

Moreover, they produce byproducts that can affect the growth of other species. Depending on the

nature of the byproducts, harmful, beneficial, or even essential, the interaction strength will be either

negative or positive. To describe the dynamics of interacting species, one can use the generalized

Lotka-Volterra equations:

_xi ¼ li þ gixi þ
X

j

!ijxixj; (1)

where xi, li and gi are the abundance, the immigration rate, and the growth rate of species i

respectively, and !ij is the interaction coefficient that represents the effect of species j on spe-

cies i. The diagonal elements of the interaction matrix !ii, the so-called self-interactions, are

negative to ensure stable steady-states. The off-diagonal elements of the interaction matrix !ij

are drawn from a normal distribution with standard deviation a (!ij ~Nð0;a2Þ). The gLV equations

only consider pairwise effects and no saturation terms, or other higher-order terms. Due to this

drawback, these models sometimes fail to predict microbial dynamics (Momeni et al., 2017;

Levine et al., 2017). However, they are among the most simple models for interacting species

and therefore widely studied and used. Noninteracting species can be described by the logistic

model, which is a special case of the gLV model obtained by setting all off-diagonal elements

of the interaction matrix to zero.

Implementations of the noise
There exist two principal types of noise: intrinsic and extrinsic noise. Extrinsic noise arises due

to external sources that can alter the values of the different variables: the immigration rate and

growth rate fluctuate in time through colonization of species or a changing flux of nutrients.

These processes give rise to additive and linear multiplicative noise respectively. The remaining

parameters, inter- and intra-specific interactions can also, change depending on the environment.

The formulation of this noise is more subtle (used in Zhu and Yin, 2009). Intrinsic noise is due

to the discrete nature of individual microbial cells. Thermal fluctuations at the molecular level

determine the fitness of the individual cells. Therefore, cell growth, cell division, and cell death

can be considered as stochastic Poisson processes. For large numbers of microbes, these fluctu-

ations will be averaged out.

We first consider the extrinsic noise. If the time series is calculated by xiðt þ dtÞ ¼ xiðtÞ þ dxiðtÞ, the
implementation of the linear multiplicative noise is as follows,

dxiðtÞ ¼ lidtþ gixiðtÞdtþ
X

j

!ijxiðtÞxjðtÞdtþ xiðtÞsidWðtÞ; (2)

where dW is an infinitesimal element of a Brownian motion defined by a variance of dt

(dW ~
ffiffiffiffi

dt
p

Nð0;1Þ). Changes in immigration rates of microbial species can be modeled with additive

noise,

dxi ¼ lidtþ gixidtþ
X

j

!ijxixjdtþsi;constdWconst; (3)

with dWconst ~
ffiffiffiffi

dt
p

Nð0;1Þ. Our main motivation is to model the gut microbiome in the colon. Here, we

ignore the immigration of species for two reasons. First, the number of microbes in the colon is

orders of magnitude larger than the number of microbes in the other parts of the gut

(Marteau et al., 2001; Gorbach et al., 1967)—therefore, the flux of incoming microbes in the colon

is small. Second, we only consider systems around steady-state, for which we assume immigration

does not play an important role. For perturbed systems, which are far from equilibrium, immigration

rates cannot be ignored. Ignoring immigration may be too restrictive for some microbial systems

such as the skin microbiome or plankton.
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To derive the form of intrinsic noise in generalized Lotka-Volterra equations, we can consider

every species abundance making a random walk in one dimension. The average displacement is zero

and the variance of displacement is the sum of the rate of growth (jumping to the right) and the rate

of death (jumping to the left). For the generalized Lotka-Volterra equations, this results in a noise

term

hniðtÞniðt0Þi ¼ ðgrowth rateiþdeath rateiÞxi ¼ ðf ðgiÞþ hð!;~xÞÞxidðt� t0Þ; (4)

with w the interaction matrix and where functions f and h each decouple the growth and death

terms. In the generalized Lotka-Volterra model no difference is made between negative interactions

as a result of slowing down the growth rate or increasing the death rate, only the resulting net rates

are used. This distinction must however be made to implement the intrinsic noise for gLV. In our

analysis, we use the simpler logistic models where the resulting variance of the noise is proportional

to the square root of the abundance
ffiffiffi

x
p

. One must be careful not to use this noise for values that

are smaller than one because this derivation relies on Poisson statistics which is defined for integer

numbers.

We implement the intrinsic noise by a term that scales with the square root of the species abun-

dance (Walczak et al., 2012; Fisher and Mehta, 2014),

dxiðtÞ ¼ lidtþ gixiðtÞdtþ
X

j

!ijxiðtÞxjðtÞdtþ%
ffiffiffiffiffiffiffiffiffi

xiðtÞ
p

si;sqrtdWsqrt; (5)

with dWsqrt again an infinitesimal element of a Brownian motion defined by a variance of dt

(dWsqrt ~
ffiffiffiffi

dt
p

Nð0;1Þ). The size of this noise si;sqrt is determined by the cell division (g+) and death

rates (g-) separately, which are in our model combined to one growth vector (g¼ gþ � g�,

si;sqrt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gþ þ g�
p

), for large division and death rates the intrinsic noise will be larger.

To sum up, we focus on linear multiplicative noise because: (a) extrinsic noise is dominant as

microbial communities contain a very large number of individuals and (b) we ignore the immigration

of individuals in our analysis.

We verified that our analysis is robust with respect to the multiple possibilities for the discre-

tization of these models. We also compare our population-level approach with individual-based

modeling approaches. Details can be found in the Supplementary file 1: Supporting results.

Neutrality measures
There is no consensus on the definition of neutrality. In general, ecosystems are considered neutral if

the dominating cause of fluctuations is random birth and death processes and not fitness advantages

of species.

Different neutrality measures focus on different aspects of neutrality. The Kullback-Leibler diver-

gence verifies whether all species are equal (equal abundances and equal covariances). The neutral-

ity covariance test studies the grouping invariance of species in time series.

Given two distributions P and Q, the Kullback-Leibler divergence is defined as

DKLðPjQÞ ¼ EP ln
P

Q

� �

(6)

where EP is the expectation value using the probabilities of distribution P. The density function of a

multivariate Gaussian distribution is

PðxÞ ¼ 1

ð2pÞN=2
ffiffiffiffiffiffiffiffiffiffiffi

detK
p exp �1

2
ðx��ÞTK�1ðx��Þ

� �

(7)

where � and K are the mean and covariance matrix of the distribution respectively. The Kullback-Lei-

bler divergence for two multivariate Gaussian distributions in Rn is (Duchi, 2007)

DKLðPjQÞ ¼
1

2
ln
detKQ

detKP

� nþTr K�1

Q KP

� �

þð�Q��PÞTK�1

Q ð�Q��PÞ
� �

: (8)

For every time series, we can calculate the mean � and covariance matrix K, and define values �N

and KN for a corresponding neutral time series in which all species are equal (Fisher and Mehta,
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2014). The distance to neutrality DKLðPjPNÞ can thus be calculated by computing the probability dis-

tribution of the original time series P and the associated neutral distribution PN with mean values

�N ¼ S�1
PS

i¼1
�i and KP;ii ¼ S�1

PS
i¼1

Kii and KP;ij ¼ S�1ðS� 1Þ�1
PS

i¼1

PS
j¼1;i 6¼jKij with S the number of

species.

The neutral covariance test was designed by Washburne et al., 2016. We used a python transla-

tion of the code developed by this author.

Noise color
The color of the noise in a time series is determined by the slope of the power spectral density

in a log-log scale. This slope can be determined by a linear fit through the spectrum. A differ-

ent technique to estimate this slope has been put forward by Faust et al., 2018. There, it is

argued that the power spectral density does not have a constant slope and that, therefore, a

nonlinear curve must be fitted. They choose a spline fit and consider the minimal value of its

derivative to be the value of the noise color. Because the minimal value of the slope of the fit

is taken, the noise color tends to be darker when using this technique. For our time series, how-

ever, we see that the spline fit only deviates from the linear fit for low frequencies (Figure 5).

We ignore the low frequencies for fitting because of the windowing effect. Therefore, we opt

for a linear fit after omitting the values for low frequencies (one order of magnitude of the low-

est frequencies).

The correspondence between the colors and slopes is here:

Slope Color

0 white

-1 pink

-2 brown

-3 black

Figure 5. The noise color of time series (A) is determined by the slope of the power spectral density (B). This

slope can be measured through a linear fit of all values (dashed), a linear fit through the higher frequency range

(solid line) or by performing a spline fit (dotted). A linear fit through all frequencies can be influenced by the

windowing effect for low frequencies and the spline fit can make the slope steeper at the low frequencies and

result in a darker noise as can be seen for the purple curves. The values of the noise color determined by the

different techniques are given in the legend. Therefore, in our work, we opt for the linear fit with a cutoff for low

frequencies.
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