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Abstract

There are strong incentives for human populations to develop antiviral systems. Similarly,

genomes that encode antiviral systems have had strong selective advantages. Protein-

guided immune systems, which have been well studied in mammals, are necessary for sur-

vival in our virus-laden environments. Small RNA–directed antiviral immune systems sup-

press invasion of cells by non-self genetic material via complementary base pairing with

target sequences. These RNA silencing-dependent systems operate in diverse organisms.

In mammals, there is strong evidence that microRNAs (miRNAs) regulate endogenous

genes important for antiviral immunity, and emerging evidence that virus-derived nucleic

acids can be directly targeted by small interfering RNAs (siRNAs), PIWI-interacting RNAs

(piRNAs), and transfer RNAs (tRNAs) for protection in some contexts. In this review, we

summarize current knowledge of the antiviral functions of each of these small RNA types

and consider their conceptual and mechanistic overlap with innate and adaptive protein-

guided immunity, including mammalian antiviral cytokines, as well as the prokaryotic RNA-

guided immune system, CRISPR. In light of recent successes in delivery of RNA for antiviral

purposes, most notably for vaccination, we discuss the potential for development of small

noncoding RNA–directed antiviral therapeutics and prophylactics.

Author summary

Viruses are all around us and are likely inside some of the reader’s cells at this moment.

Organisms are accommodated to this reality and encode various immune systems to limit

virus replication. In mammals, the best studied immune systems are directed by proteins

that specifically recognize viruses. These include diverse antibodies and T cell receptors,

which recognize viral proteins, and pattern recognition receptors, some of which can rec-

ognize viral nucleic acids. In other organisms, including bacteria, immune systems

directed by small RNAs are also well known; spacer-derived guide RNAs in CRISPR/Cas

immune systems are one prominent example. The small RNAs directing these systems

derive their specificity via complementary base pairing with their targets, which include

both host and viral nucleic acids. Rather than having “traded in” these systems for more
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advanced protein-directed systems, increasing evidence supports the perspective that

small RNA–directed immune systems remain active in mammalian antiviral immunity in

some contexts. Here, we review what is known so far about the emerging roles of mamma-

lian siRNAs, miRNAs, piRNAs, and tRNAs in directing immunity to viruses.

Introduction

Viruses are the most abundant and genetically diverse entity in our biosphere and exist wherever

life is found [1]. Viruses are characterized by dependence on host genome-encoded protein

products and other materials (e.g., plasma membrane) for their replication, whereas host cellular

and organismal replication are in principle independent of the genetic material of viruses. Repli-

cation of some viruses is associated with cellular and organismal death. Virus replication has

thus often been interpreted to be detrimental to their hosts at evolutionary, organismal, and cel-

lular scales of analysis (although host-virus antagonism is not a comprehensive picture of virus–

host ecology, e.g., see [2]). Numerous systems that confer resistance to or otherwise mitigate

virus infection have been identified. Immune systems capable of distinguishing “self” from

“non-self” and eliminating “non-self” are inferred to have been established and refined through

antagonistic interactions between viruses and their hosts over long periods of time [3–5]; mam-

malian genomes encode various complex systems known to mediate antiviral functions.

Components of mammalian immune systems are often categorized as belonging to innate

or adaptive arms based on generalizably distinct functional and evolutionary features. When a

virus infects human cells, innate immunity is activated first, followed by adaptive immunity.

Innate immunity is activated by features common to invading pathogens, termed pathogen-

associated molecular patterns (PAMPs). PAMPs are recognized by sensor proteins such as

Toll-like receptors (TLRs) and RIG-I like receptors (RLRs) [6–9]. Upon activation, these

receptors induce production of various antiviral cytokines, such as type-I interferon (IFN).

Cytokines stimulate expression of antiviral genes, which repress viral replication and recruit or

activate specialized cells including phagocytes and antigen-presenting cells. Adaptive immune

lymphocytes generate vastly diverse receptors through gene recombination and then selec-

tively proliferate on the basis of their receptor’s specificity. This enables high specificity as well

as anamnestic properties dependent on long-lived “memory” cells. Conventional mammalian

adaptive immunity is targeted to presented protein antigens and is characterized by relative

evolutionary novelty; the critical genes are conserved only among jawed vertebrates, although

adaptive systems have evolved convergently in other lineages [10]. Loss-of-function mutation

of some immune genes has been associated with increased susceptibility to fatal virus infection

before reproductive maturity [11], arguing strongly that antiviral activity is among their

evolved functions [12].

Recent studies have suggested that antiviral immune systems directed by small RNAs are

active in mammals (Table 1) [13–18]. Like proteinaceous innate immune receptors, some

RNA-based antiviral systems are broadly expressed, such as those directed by microRNAs

(miRNAs), whereas others, such as those reportedly mediated by siRNAs, are active in special-

ized cell types. Some small RNA–directed responses are amplified in a feedforward manner

reminiscent of the expansion of virus-specific lymphocyte clones in adaptive immunity. In

general, however, the reported small RNA–directed immune mechanisms defy categorization

as innate or adaptive; for example, some can respond immediately after viral infection, yet also

have high specificity mediated by complementary base pairing with their target sequences. The

evolutionary history of the RNAs guiding these systems also run the gamut from tightly con-

strained mature tRNAs, as ancient as cellular life [19], to piRNAs, notable for the remarkable
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plasticity of their targeting capacity even within a species [20]. Evidence of small RNA–

directed immunity has emerged in the postgenomic era; our understanding of how the constit-

uent components interact at scales larger than individual cells to produce organismal pheno-

types is more limited than for classical immunology [21]. Functional and evolutionary

categorizations are thus less useful to organize an overview of RNA-guided immunity than

they are for protein-guided systems; here, we will summarize the current knowledge regarding

antiviral immune functions directed by small noncoding RNAs grouped on the basis of their

biogenesis. Notably, biochemical definitions of these molecules and their cofactors preceded

recognition of their antiviral properties of the RNAs in each case.

Viral RNA elimination by siRNA-directed RNA interference

The best studied example of small RNA–directed immunity is that guided by viral siRNAs

(Fig 1). When RNA or DNA viruses infect cells, viral origin double-stranded RNAs

(dsRNAs) can be generated either as replication intermediates or as structured regions of

viral genetic material. These dsRNAs can be cleaved by the endoribonuclease Dicer, which

is well conserved in chordates [22], into siRNAs, which are characteristically 21 to 24 nucle-

otides (nt) in length with a 2-nt 30 overhang. One of the resulting strands, the guide strand,

is loaded onto an argonaute clade protein (AGO), also an endonuclease, and base pairs with

complementary viral RNA. AGOs are core components of the RNA-induced silencing com-

plex (RISC) and some trigger the cleavage of the viral RNA, resulting in the repression of

viral replication. Here, we refer to this system as antiviral RNAi, and it functions as a potent

defense system in plants and invertebrates [23,24]. In contrast, whether antiviral RNAi

functions as a meaningful aspect of mammalian defenses against viruses is controversial.

Recent reviews have cataloged the evidence in favor of this activity [25], and, since 2020,

experiments with knockout mouse challenge have shown that Ago4 is involved in mouse

defense against influenza virus [26] and Ago2 with defense against Nodamura virus (NoV)

lacking B2 (see below) [27]. The mechanisms proposed to limit the effectiveness of antiviral

siRNAs in mammals are potentially relevant to the antiviral activity of other small RNAs as

well, so here we will focus on them.

Two types of mechanisms, those enabled by viral suppressors of RNAi (VSRs) and IFN sig-

naling, reportedly limit the effectiveness of viral siRNAs in mammalian immunity. Several

viral genes are reported as VSRs. The deletion or mutation of VSRs such as B2 protein of NoV

[28] or nonstructural protein 1 (NS1) of influenza A virus (IAV) [29] leads to the production

Table 1. Classification of antiviral small RNAs.

Source Target RNA vs. Target Function

siRNA Exogenous viral RNA Exogenous viral RNA 1 vs 1 Cleavage of viral RNA

miRNA Endogenous mammalian

genome

Endogenous host RNA

Exogenous viral RNA

Network Regulation of gene expression (adaptation to antiviral

state)

piRNA Endogenous viral

elements

Endogenous or exogenous viral

RNA

1 vs 1; amplification possible via

“ping pong” cycling

Cleavage of viral RNA; transcriptional silencing of

integrated viruses

cDNAs of exogenous

viral RNAs

Direct processing of viral

RNAs

tRNA Endogenous mammalian

genome

Endogenous or exogenous viral

RNA

1 vs 1 Multiple proposed mechanisms of action, e.g., steric

hindrance of primer-binding site

cDNA, complementary DNA; miRNA, microRNA; piRNA, PIWI-interacting RNA; siRNA, small interfering RNA; tRNA, transfer RNA.

https://doi.org/10.1371/journal.ppat.1010091.t001
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of virus-derived siRNAs (vsiRNAs) in human or mouse somatic cells, whereas infection by the

intact viruses does not (Table 2) [28–46]. Several proteins, such as virion protein 35 (VP35) of

Ebola or Marburg virus, can prevent vsiRNA accumulation in cells infected by viruses lacking

their native VSR, e.g., IAV lacking NS1 [31]. Furthermore, the deletion of these VSRs can

repress viral replication, and the repression is recovered by Dicer or AGO2 deficiency. In addi-

tion, inhibitory peptides VSRs can induce the production of vsiRNAs [47], suggesting that the

VSRs increase viral replication by inhibiting vsiRNA processing [41]. Human Dicer, however,

also regulates the maturation of endogenous miRNAs, so Dicer deficiency may be assumed to

affect posttranscriptional gene regulation by endogenous miRNAs as well, while AGO2 defi-

ciency has little effect on the overall miRNA population. In other words, even in settings in

which human Dicer has an antiviral effect, it is difficult to interpret whether this antiviral effect

is derived from viral RNA cleavage by vsiRNAs or the regulation of antiviral gene expression

by endogenous miRNAs. VSRs have been shown to act at various steps in antiviral RNAi path-

ways, including sequestration of dsRNA and inhibition of RNA silencing factors by RNA/pro-

tein or protein/protein interaction [30,45,46].

Fig 1. Overview of antiviral siRNA/miRNA pathways and inhibitory factors. Endogenous miRNAs are transcribed from the genome as pri-miRNAs and are

processed into pre-miRNAs by the Drosha/DGCR8 complex. Pre-miRNAs are exported to the cytoplasm and are processed into miRNA duplexes by Dicer and its

partner protein complex. Viral RNAs are capable of being processed by the same ribonucleases; however, some VSRs or ISGs are reported to inhibit the processing of

small RNAs in mammalian cells. Mature miRNAs or siRNAs silence both endogenous and exogenous RNAs loaded on AGO proteins in collaboration with various

RNA silencing regulators for the antiviral functions. Endogenous nucleic acids and proteins: blue; viral nucleic acids and proteins: red. AGO, argonaute; dsRNA,

double-stranded RNA; ISG, IFN-stimulated gene; miRNA, microRNA; pre-miRNA, precursor miRNA; pri-miRNA, primary transcript; siRNA, small interfering RNA;

VSR, viral suppressor of RNAi.

https://doi.org/10.1371/journal.ppat.1010091.g001
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Antagonism between IFN and RNAi pathways may also limit the effectiveness of the latter.

Deletion of either MAVS (also as known as IPS-1), an essential adaptor protein in IFN signal-

ing triggered by RIG-I or MDA5, or IFNAR1, an IFN receptor on the cell surface, enables

dsRNA-induced RNAi in MEF [48]. dsRNA-induced RNAi uncovered in MAVS-depleted

MEF is again lost upon AGO2 depletion, indicating that IFN signaling masks AGO2-depen-

dent, dsRNA-induced RNAi in mammalian somatic cells [48]. Some IFN-stimulated genes

(ISGs) encoded in mammalian genomes might function as endogenous RNAi suppressors, as

IFN treatment represses small RNA processing by Dicer in noninfected cells [48,49]. At least

one ISG, LGP2, has been shown to repress Dicer activity [49–51]. IFN stimulates hundreds of

ISGs, and additional ISGs may also be involved in the suppression of RNAi. While IFN-elicited

effects may block vsiRNA production in some settings, antagonism by IFN may not be the

only explanation for restricted antiviral RNAi activity in mammals. For example, deletion of

RIG-I or MDA5 abrogated IFN production but did not uncover vsiRNA production during

HeLa cell infection by positive-sense RNA viruses Sindbis virus (SINV), yellow fever virus 17D

vaccine strain (YFV17D), and coxsackievirus B3 (CBV3) [52], arguing that the suppressive

activity of ISGs cannot be evoked as the reason vsiRNA are not produced under those condi-

tions. Notably, infection by these viruses did not limit the ability of lentivirus-expressed

shRNAs to decrease luciferase expression, arguing that these viruses do not encode a VSR

effective under these conditions.

Several observations may harmonize the apparently discordant observations in this field.

Whereas in general differentiated cells produce IFN upon viral infection or poly(I:C) treat-

ment, some pluripotent or multipotent stem cells do not [53] and show attenuated response to

Table 2. List of representative VSRs in mammalian cells.

Virus VSR Mechanism Reference

IAV NS1 dsRNA binding Li and colleagues [29]

NoV B2 dsRNA binding Sullivan and colleagues [28]

HIV-1 Tat dsRNA binding Bennasser and colleagues [32]

HBV HBx dsRNA binding Chinnappan and colleagues [33]

HCV Capsid Interaction with Dicer Wang and colleagues [34]

NS2 dsRNA binding Zhou and colleagues [35]

SFV Capsid dsRNA binding Qian and colleagues [36]

Ebola virus VP30, VP35, VP40 Interaction with Dicer, TRBP, or PACT/dsRNA binding Haasnoot and colleagues [30]

Fabozzi and colleagues [37]

Marburg virus VP35 dsRNA binding Li and colleagues [31]

Dengue virus NS4B dsRNA nonbinding Kakumani and colleagues [38]

NS3 Interaction with HSC70 Kakumari and colleagues [39]

NS2A dsRNA binding Qiu and colleagues [40]

HEV71 3A dsRNA binding Qiu and colleagues [41]

CoV N dsRNA binding Cui and colleagues [42]

SARS-CoV 7A - Karjee and colleagues [43]

SARS-CoV-2 N - Mu and colleagues [44]

Adenovirus VA1 RNA, VA2 RNA Binding to Dicer Lu and Cullen [45]

Andersson and colleagues [46]

Note that we list only the first report, to our knowledge, that each of these proteins has VSR activity.

CoV, coronavirus; dsRNA, double-stranded RNA; HBV, hepatitis B virus; HCV, hepatitis C virus; HEV71, human enterovirus 71; HIV-1, human immunodeficiency

virus 1; IAV, influenza A virus; NoV, Nodamura virus; NS1, nonstructural protein 1; SARS-CoV, severe acute respiratory syndrome–associated coronavirus;

SARS-CoV-2, severe acute respiratory syndrome–associated coronavirus-2; SFV, Semliki forest virus; VP30, virion protein 30; VSR, viral suppressor of RNAi.

https://doi.org/10.1371/journal.ppat.1010091.t002
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exogenous IFN [54]. Pluripotent stem cells are able to process viral dsRNA into vsiRNA during

EMCV or NoV infection [55], and the vsiRNA production is inhibited by B2 protein of NoV

[56]. Mouse embryonic stem cells (mESCs) have an attenuated IFN response but show

dsRNA-induced RNAi, whereas this activity is not detected after differentiation [48]. Mouse

neural progenitor cells infected with Zika virus (ZIKV) or SINV showed production of vsiR-

NAs [57,58]. The recent discovery of alternative Dicer isoforms with antiviral activity in

mouse and human stem cells extends this concept [59]. Notably, some ISGs are constitutively

expressed in pluripotent or multipotent human stem cells, although these show different

expression patterns in different tissue’s stem cells [60]. It is possible that some stem cells have

antiviral RNAi activity, but others do not. In addition, when interpreting the inhibitory effect

of IFN or ISGs for antiviral RNAi, it is important to consider whether global translational

repression has been induced by protein kinase R (PKR) under the conditions used. PKR is acti-

vated by viral dsRNA and induces global translational repression [61,62], and activation of

PKR can occur upstream and potentially independently of IFN signaling via RLRs [63]. It is

reported that PKR is constitutively activated in Dicer-deficient mESCs and IFN production is

elevated in Dicer-deficient mESCs compared to WT mESCs [59,64,65], suggesting that differ-

ential viral replication in Dicer-deficient mESCs results from the combination of viral RNA

elimination by antiviral RNAi and PKR-induced translational repression of viral proteins used

in viral replication. In the setting of PKR activation, IFN production may not necessarily corre-

spond to high protein expression of ISGs. Intriguingly, several VSRs have also been reported

to act as repressors of IFN production and repressors of PKR activation by interfering with its

dsRNA-binding activity [29,66]. In summary, accumulation of dsRNA has various conse-

quences that limit cellular permissiveness to virus replication. Interactions between dsRNA-

responsive pathways preclude simple statements of the physiological relevance of mammalian

vsiRNAs, especially those that would characterize vsiRNAs as standing apart from simulta-

neously induced pathways long recognized as antiviral, such as IFN.

Posttranscriptional gene regulation by miRNA-directed RNA silencing

miRNAs direct posttranscriptional gene regulation and, in so doing, often regulate antiviral

responses in a manner consistent with this being among their evolved functions (Fig 1). miR-

NAs are approximately 22-nt endogenous noncoding RNAs [67]. In contrast to the roughly

equivalent number of protein-coding genes [68], the human and mouse genomes encode

1,917 and 1,234 miRNA precursors (pre-miRNAs), respectively, which are processed into

2,656 or 1,978 mature miRNAs [69]. miRNAs exhibit expression patterns specific to each tis-

sue [70], suggesting that miRNAs are involved in the complex gene regulatory networks char-

acteristic of each tissue. miRNAs are transcribed from the genome as primary transcripts (pri-

miRNAs) and are processed into pre-miRNAs by a Drosha/DGCR8 complex named micro-

processor [71]. Pre-miRNAs are exported by Exportin-5/Ran-GTP to the cytoplasm and are

processed into miRNA duplexes by Dicer [72–74]. The miRNA biogenesis machinery is some-

times directly involved in antiviral defense; Dicer regulates both vsiRNA and miRNA produc-

tion in virus-infected cells, and Drosha is reportedly able to cleave pri-miRNA-like structures

in viral RNAs [75,76]. miRNAs do not induce RNA cleavage even if incorporated into AGO2

but instead selectively regulate RNAs by destabilizing them or repressing their translation.

miRNAs recognize target RNAs by complementary base pairing at the position 2 to 7 or 2 to 8

from the 50 end, called the seed region [77]. As the seed region is only 6 or 7 nt long, a single

miRNA may repress hundreds of genes simultaneously [78].

Some miRNAs target endogenous mRNAs in a manner that promotes antiviral responses,

while the others target viral RNAs directly (Table 3) [79–87]. As examples of the former,
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miR-221/-222 increases after macrophage stimulation by tumor necrosis factor-α (TNF-α)

and inhibits human immunodeficiency virus-1 (HIV-1) entry by down-regulating CD4

mRNA [79], and miR-3614, expressed in macrophages, increases after DENV infection and

represses infection by targeting ADAR1 mRNA [80]. As an example of the latter, miR-323

increases after IAV infection and represses infection by targeting viral PB1 RNA [85].

As for siRNA, mutual regulation with the IFN system has also been reported for miRNA.

IFN stimulation leads to distinct regulation of miRNA pools, with some increased and some

decreased [84,87]. For example, IFN-induced miR-1/-30/-128/-196/-296/-351/-431/-448 dis-

play antiviral activity against hepatitis C virus (HCV), whereas miR-122, which is essential for

HCV replication, is reduced by IFN [86,87]. miR-378 and -30e are repressed by IFN leading to

activation of natural killer (NK) cells, enhancing their cytotoxicity [84]. In addition to chang-

ing abundance, epi-transcriptional modification of miRNAs can influence their antiviral activ-

ities. For example, human cytomegalovirus (HCMV) infection induces the expression of

ADAR1 p110, which edits an adenosine in the seed of miR-376a to inosine [88]. This modifies

the miRNA’s targeting and influences the susceptibility of infected cells to elimination by NK

cells.

Both global regulation of miRNAs and regulation of specific populations of miRNAs may

enhance virus elimination or link the innate and adaptive immune systems. Global decrease of

miRNAs induces proinflammatory cytokine production [89]. Specific decrease in the group of

miRNAs bound by TRBP up-regulates apoptosis regulatory genes and results in increased apo-

ptosis of virus-infected cells [83]. For example, miR-106b targets several caspase mRNAs,

including both initiator and executioner caspases, and its decrease causes relative up-regula-

tion of these transcripts and enhances apoptosis of virus-infected cells [83]. miRNAs can also

be released from infected cells and transported in extracellular vesicles (EVs), suggesting the

possibility that miRNAs function like cytokines to transmit signals and modify gene expres-

sion of other cells in both a paracrine and autocrine manner [90]. Indeed, miRNAs have been

shown to function as paracrine agonists by activating TLRs to promote IFN secretion [91,92],

Table 3. Examples of antiviral immunity directed by endogenous miRNAs.

Expression Target Function Virus Cells tested Reference

miR-221/-222 Increased by

TNFα
Host CD4 Inhibition of virus entry HIV-1 Human primary

macrophages

Lodge and

colleagues [79]

miR-3614 Increased by viral

infection

Host ADAR1 Reduction of virus infectivity DENV Human primary

macrophages

Diosa-Taro and

colleagues [80]

miR-183 cluster - Host negative regulators of

IRF3 and STAT1

Promotion of IFN production VSV HepG2 cells Singaravelu and

colleagues [81]

miR-340 Decreased by viral

infection

Host RIG-I, OAS2 Reinforcement of antiviral

immunity

IAV A549 cells Zhao and colleagues

[82]

miR-106b Decreased by viral

infection

Host initiator and

executioner caspases

Enhancement of cell death of

virus-infected cells

SeV HeLa cells Takahashi and

colleagues [83]

miR-378/-30e Decreased by IFN Host Granzyme B and

perforin

Reinforcement of NK cell

cytotoxicity

- Human NK cells Wang and colleagues

[84]

miR-323 Increased by IAV

infection

Viral PB1 Repression of viral replication IAV HEK293T cells, MDCK

cells

Song and colleagues

[85]

miR-1/-30/-128/-196-

296/-351/-431/-448

Increased by IFN Viral RNA genome Repression of viral replication HCV Huh7 cells, murine

primary hepatocytes

Jopling and

colleagues [86]

Pedersen and

colleagues [87]
miR-122 Decreased by IFN 50 noncoding region of

viral genome

DENV, dengue virus; HCV, hepatitis C virus; HIV-1, human immunodeficiency virus 1; IAV, influenza A virus; IFN, interferon; miRNA, microRNA; NK, natural killer;

SeV, Sendai virus; TNFα, tumor necrosis factor-α; VSV, vesicular stomatitis virus.

https://doi.org/10.1371/journal.ppat.1010091.t003
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indicating that miRNA dynamics influence both intracellular and intercellular networks rele-

vant to antiviral states. Like cytokine levels or antibody titers, tracking EV-packaged miRNAs

has been proposed as a biomarker for prediction of antiviral efficacy [93]; for example, serum

levels of miR-122 in patients infected with HCV reflects the success of IFN/ribavirin therapy

[94]. Lastly, some viruses encode miRNAs; these are understood to counteract antiviral immu-

nity and promote virus replication and are outside our scope but have been reviewed elsewhere

[95].

CRISPR-like adaptive immunity directed by piRNAs

piRNAs are small RNAs that have been experimentally demonstrated to interact with Piwi

proteins. piRNAs are often 24 to 31 nt, and most are transcribed from regions known as

piRNA clusters. The biogenesis, nucleotide composition, and modification pattern of many

piRNAs is distinct from other small RNAs (Fig 2). piRNAs can be generated in at least 2 differ-

ent ways: phased pathways, in which piRNAs are sequentially produced from the same RNA

strand, and ping-pong amplification, in which a pair of piRNAs are produced from dsRNA

formed by the hybridization of a piRNA with its target [96]. Mature piRNAs form piRNA-

Fig 2. Overview of antiviral piRNA pathway and antiviral tRFs. piRNAs with antiviral potential can be generated via several mechanisms: primary processing of

piRNA cluster transcripts that contain an EVE, direct non-piRNA guided cleavage of viral RNA via a Piwi protein (vpiRNA), EVE-derived piRNA- or vpiRNA-guided

cleavage of viral RNAs via a ping-pong amplification loop, or PIWI interactions with virus-homologous noncanonical piRNAs such as tRFs. EVE, endogenous viral

element; piRNA, PIWI-interacting RNA; tRF, tRNA fragment; vpiRNA, virus-specific PIWI-interacting RNA.

https://doi.org/10.1371/journal.ppat.1010091.g002
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induced silencing complexes (piRISCs) with Piwi proteins, and these complexes can induce het-

erochromatin formation or directly cleave their target RNA. As piRISC targets are often transcripts

of transposable elements (TEs) and defects in the piRNA system often lead to gametogenesis fail-

ure, the canonical function of piRNAs is considered to be maintenance of the genome integrity of

germ cells. So far, bona fide mammalian piRNAs have been found in the gonads, although Piwi

proteins and/or small RNAs sharing features of piRNAs have been associated with functions in

some somatic tissues, such as regulation of innate immunity in the lungs [97].

The evolutionary origins and replication strategies of some viruses and TEs overlap; viruses

and TEs can be considered together as mobile genetic elements, and recent reports in non-

mammalian organisms suggest that both can be repressed by the piRNA system [98,99].

Sources for antiviral piRNAs include direct processing of exogenous viral RNAs [100], RNA

fragments (e.g., tRNA; see below), or transcripts from endogenous viral elements (EVEs),

including those within piRNA clusters. About 9% of a human’s genome is accounted for by

EVEs, which are virus-derived sequences having undergone horizontal gene transfer (HGT)

into the germline of our ancestors. EVEs, such as endogenous retroviruses (ERVs), may give

rise to antiviral piRNAs. Koala retrovirus-A (KoRV-A) is found as both an infectious virus and

as ERV provirus copies in some Koala germline genomes. Similarly, ecotropic murine leuke-

mia viruses (MuLVs) recently entered some laboratory mouse germlines as ERVs and, in

some cases, still encode particles capable of infecting mouse cells. Sense-stranded 24 to 31 nt

testes-expressed small RNAs are derived from unspliced KoRV-A transcripts and may

suppress this virus in the gonad, and sense-biased piRNAs made from ecotropic MuLV are

similarly detected in the testes of mice whose genomes contain such proviruses [18]. Not all

EVEs are derived from retroviruses; endogenous bornavirus-like nucleoprotein elements

(EBLNs) are derived from an ancient relative of bornaviruses, which are negative-strand RNA

viruses [101]. EBLNs entered rodent and primate lineages independently, yet EBLN-derived

piRNAs are detected in gonads of both mouse and marmoset. This is remarkable given both

the limited number of EBLNs and the small fraction of the genome that encodes piRNAs and

likely indicates that EBLN integrations into piRNA clusters have been selectively retained [17].

Production of antiviral piRNAs from EVEs is reminiscent of an adaptive immune strategy in

prokaryotes, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-

associated (Cas) system [102]. In both cases, sequences from “non-self” mobile elements are

incorporated into the genome by HGT to function in immune memory [103].

In many somatic or cancer cells, epigenetic manipulations that result in ERV expression

also induce IFN signaling in an RLR-dependent manner [104,105]. In piRNA-deficient germ

cells, ERV and other TE up-regulation is associated with meiotic arrest and apoptosis [106],

though the precise signals triggering these defects remain unclear. Mouse germ cells express

TLR3 and MDA5 and produce IFN and up-regulate ISGs upon poly(I:C) stimulation

[107,108]. IFN overproduction in transgenic mice leads to male-specific sterility and increased

apoptosis of spermatocytes [109]. An intact piRNA pathway may be necessary to prevent

ERVs, inevitably expressed during the epigenetic erasures inherent to germ cell development,

from triggering innate immune pathways incompatible with germ cell survival. Notably, in

neural progenitor cells, TE expression upon DNA demethylation is met with a dramatic up-

regulation of piRNA biogenesis genes [110], suggesting that some somatic cells may remain

poised to generate piRNAs upon perturbation.

tRNAs and tRNA fragments (tRFs) as antiviral molecules

tRNAs regulate virus infections and TEs in addition to, or connected with, their canonical role

in protein synthesis. Viruses generally do not encode tRNAs, while in humans, tRNAs are
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among the most abundant RNAs [111]. There are 10 times as many tRNA genes as codon–

anticodon pairs, and considerable diversity exists in tRNA sequences besides the anticodon

loop. Most tRNA genes cluster in discrete loci, the largest of which is adjacent to the major

histocompatibility complex class I (MHC-I) coding region on chromosome 6 and encodes

nearly all major tRNAs [112]. tRNAs are 70 to 90 nt in length and can be processed into tRFs

(usually ranging from 14 to 32 nt) by ribonucleases including angiogenin and Dicer in a stimu-

lus-dependent manner [111,113–115]. tRFs derive from various points along the tRNA clover-

leaf structure; 50 and 30 end-derived tRF halves (tRF-5 and tRF-3, respectively) have most often

been reported to regulate viral infection.

Endogenous and exogenous retroviruses, as well as the TEs derived from them, use tRNAs

as primers to initiate reverse transcription. IAP is an active mouse TE in the family of lysine

tRNA-primed ERVs, and at least one IAP locus encodes functional membrane fusion machin-

ery and can produce infectious particles [116]. tRFs were shown to inhibit IAP, as well as other

TEs dependent on reverse transcription (MusD/ETn), by two mechanisms: posttranscriptional

silencing and blocking interaction with tRNAs necessary for priming reverse transcription

[117]. tRFs may indirectly influence replication of non-retroviruses; respiratory syncytial virus

(RSV) infection increases tRF production in infected cells, and while one of the resulting tRFs

can increase virus replication, the net effect of these changes on RSV infection outcome in cells

remains unknown [118]. A tRF derived from the pre-tRNA-Ser 30 trailer sequesters host RNA

chaperone La/SSB and represses La/SSB-dependent viral gene expression during HCV infec-

tion [119]. While these reports suggest specific tRFs’ involvement in virus infection, global

changes to tRNAs and tRFs are also linked to antiviral immunity; protecting tRNAs from

stress-induced cleavage by angiogenin in T cells was recently shown to be an activity of schla-

fen 2, deletion of which results in greater susceptibility to viral infection [120]. This activity is

reminiscent of the anti-HIV activity of schlafen 11, which is also dependent on regulation of

the tRNA pool [121].

Some tRFs are reported to be loaded into Ago or Piwi proteins. tRF-5s and tRF-3s associate

with all Ago paralogues in humans as tRNA-derived miRNAs (td-miRNA) [122]. Several have

additionally been shown to guide sequence-specific silencing of cellular [123] and viral [124]

transcripts. tRF halves serve as a major source of tRNA-derived piRNA (td-piRNA) in silk-

worm [125], but the biogenesis of td-piRNAs in mammals remains to be fully clarified. Gtsf1,

the murine homologue of drosophila Asterix, is a piRNA biogenesis factor that preferentially

binds tRNA over piRNA and may suppress tRNA-primed retroelements [126], although the

mechanism remains incompletely defined. Several tRFs are reported to bind Piwil4 (Hiwi2) in

both normal and transformed human cells [127]. PIWIL2 (HILI) has been reported to interact

with intact tRNAs and induce translational repression of HIV-1 via this activity [128], though

HILI may also interact with tRFs that were undetected using the methods applied [129].

Current and future applications of small RNAs as nucleic acid medicine

Small RNAs have favorable characteristics as antiviral therapeutics. Various types of 18 to 30

nt length RNAs have been approved by the FDA as nucleic acid medicines as of April 2021: 9

antisense oligonucleotides (ASOs), 1 aptamer, 4 siRNAs, and 1 CpG oligonucleotide. The spe-

cific sequences and modifications of these nucleic acid medicines are not present in nature,

but each harnesses an endogenous system directed by small RNAs. As powerfully demon-

strated in development of mRNA vaccines against COVID-19, which took only 45 days from

the publication of the SARS-CoV-2 draft genome sequence to shipment of a product for clini-

cal trials, nucleic acid medicines can be chemically synthesized in large amounts quickly. Tar-

get and off-target recognition of small RNAs can be rationally designed and screened in silico
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against databases of nucleic acids present in uninfected human cells. This stands as an advan-

tage over existing platforms for designing protein-based therapeutics, notably monoclonal

antibodies, despite advances in structure prediction and molecular dynamic simulations.

Among the approved small RNA medicines, ASO and siRNA were rationally designed based

on predicted complementarity to the target RNA, whereas the sequence of the approved apta-

mer was experimentally screened using SELEX [130]. Among the small RNAs reviewed in pre-

vious sections, only siRNAs have been approved as medicines; miRNA, piRNA, and tRNA-

based medicines remain a therapeutic frontier. Delivery of nucleic acid medicines to their tar-

get tissues was a major early hurdle; small RNAs are quickly degraded in the serum by RNases

or subject to glomerular filtration. However, recent advances in drug delivery systems such as

lipid nanoparticles or nucleic acid glycosylation have addressed these challenges, as mRNA

vaccination has again demonstrated. Understanding how small RNAs, such as EV-packaged

miRNAs, act as paracrine regulators in physiological mammalian immunity holds promise for

additional improvements. The personalizability of nucleic acids is another promising feature

for individualized medicine. For example, a personalized ASO, Milasen, was designed and

used for a patient with Batten disease. This required less than a year from sequencing the

patient’s genome, which enabled rational design, to symptom improvement [131]. Similar to

human genome sequencing, which is transitioning to routine clinical use, virus sequencing

infrastructure will substantially increase as a consequence of the current pandemic, so design-

ing small RNAs based on the viral genotypes circulating in an individual or population is

becoming more realistic. Similar to those in development for cancer, small RNAs targeting

known pathogenic mutations might be used to anticipate and limit viral evolution [132]. Har-

nessing the piRNA pathway for antiviral therapy would be complicated by the limited expres-

sion of Piwi proteins in somatic cells, yet the possibility of “looped” production between the

delivered nucleic acid medicine and a target viral quasispecies is also notable with respect to

evolution of resistance. Compared to delivery of Cas9 ribonucleoproteins, which is now clini-

cally applicable [133], delivery of human Piwi ribonucleoproteins would carry the theoretical

advantage of immune tolerance to the endonuclease component and could potentially be cou-

pled to “endogenous-inspired” delivery systems [134].

Conclusions

Uncovering the mechanisms that enable human immunity to viruses has led to many success

stories in development of antiviral therapies, from plant-derived compounds to IFN therapy to

CCR5 antagonists to monoclonal antibodies. Clarifying the role of small RNA–directed antivi-

ral immune systems in mammals will likely provide additional successes; the recently

described antiviral actions of miRNAs, piRNAs, and tRNAs are especially promising. In paral-

lel to advances in the basic science, mRNA-based therapies and prophylactics have seen accel-

erated development since the SARS-CoV-2 pandemic, seemingly overcoming previous

barriers to nucleic acid medicines. Small RNAs have big potential for the future therapeutic

applications.
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