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SUMMARY

Understanding lung immunity requires an unbiased profiling of tissue-resident
T cells at their precise anatomical locations within the lung, but such information
has not been characterized in the immunized mouse model. In this pilot study, us-
ing 10x Genomics Chromium and Visium platform, we performed an integrative
analysis of spatial transcriptome with single-cell RNA-seq and single-cell ATAC-
seq on lung cells from mice after immunization using a well-established Klebsiella
pneumoniae infection model. We built an optimized deconvolution pipeline to
accurately decipher specific cell-type compositions by anatomic location. We
discovered that combining scATAC-seq and scRNA-seq data may provide more
robust cell-type identification, especially for lineage-specific T helper cells.
Combining all three modalities, we observed a dynamic change in the location
of T helper cells as well as their corresponding chemokines. In summary, our
proof-of-principle study demonstrated the power and potential of single-cell
multi-omics analysis to uncover spatial- and cell-type-dependent mechanisms of
lung immunity.

INTRODUCTION

Immunological memory, consisting of B cell and T cell memory, is a key characteristic of adaptive immunity

upon encountering pathogen invasion. Tissue-resident memory T cells have more recently been defined as

a new subset, predominantly residing in mucosal tissues, barrier surfaces, and other non-lymphoid organs

but are also present in lymphoid sites (Turner and Farber, 2014). Tissue localization of these T cells has been

investigated thoroughly in the past, and comparisons betweenmouse and human have been characterized

extensively using the well-established flow cytometric and transcriptomic approaches (Szabo et al., 2019).

However, an unbiased, high throughput gene expression profiling of tissue-resident immune cells residing

in various anatomical locations within the lung, such as airway versus parenchyma, has not been possible

using conventional flow cytometry, transcriptomic approaches, and even the most recently developed sin-

gle-cell sequencing technology. These methodologies are limited as anatomic location-specific informa-

tion is lost after the single-cell suspension is acquired. As a consequence, this leads to missing key infor-

mation on location-specific downstream signaling events from structural cells targeted by cytokines and

chemokines produced by immune cells. Furthermore, depending on the enzymes used to digest the target

tissues, fragile cells like epithelial cells can be lost to a certain extent during single-cell suspension prep-

aration. To overcome this issue, researchers have to optimize their protocols to preserve specific cell types

and/or enrich them with cell-type specific markers by flow cytometry or magnetic beads, therefore missing

a global assessment on cell-cell interaction among all cell types.

Single-cell RNA-seq (scRNA-seq) has been gradually applied to study immune cells and immune responses

in mouse lungs (Ballesteros et al., 2020; Cohen et al., 2018; Kurihara et al., 2021; Wang et al., 2021). Few

recent studies utilize single-cell ATAC-seq (scATAC-seq) to measure the chromatin architecture of immune

cells in mouse lungs (Delacher et al., 2021). Although these technologies provide rich information in under-

standing cell heterogeneity and biological information of mouse lungs, spatial information of a single cell is

lost in the process. Spatial transcriptomics (ST) is a recently developed technology and has the ability to

map transcriptional signatures to distinct anatomical regions. To date, it has rarely been used in under-

standing lung tissues, and often time naive lungs without immunological perturbation such as vaccination
iScience 25, 104900, September 16, 2022 ª 2022 The Authors.
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and re-challenge. In this first-in-class study, we employed a commercially available ST platform to investi-

gate the spatial topography of gene expression of mouse lungs after immunization and re-challenge. To

overcome the resolution limitation of current ST technology, we also applied state-of-art single-cell tran-

scriptomics and single-cell epigenomics to jointly study the spatial localization, transcriptome, and epige-

nome of T cells induced by this immunization/re-challenge. The integrative analysis of three types of omics

data provides an unprecedented and comprehensive way to examine the dynamics of lung immunization

on a genomic scale, which will be valuable for hypothesis generation and the design of hypothesis-testing

experiments.

RESULTS

Cataloging 12 lung cell types using scRNA-seq data

In this study, we inoculated mice with heat-killed Klebsiella pneumoniae and assigned them into two

groups, the immunized and the re-challenged groups, based on our previous finding that heat-killed

K. pneumoniae is sufficient to induce antigen-specific Th17 responses in mouse lungs (Chen et al.,

2011). Because few Th17 cells exist in naive unimmunized mice, we did not include a blank control group

in this study. The immunized group was inoculated twice on day 0 and day 7, whereas the re-challenged

group was additionally inoculated on day 13. On day 14, both groups of mice were sacrificed for tissue har-

vesting. Slices A1 and A2 were sectioned at different regions from the fresh frozen lung of the immunized

mouse, whereas slices A3 and A4 were from the re-challengedmouse. In a separate cohort, lung tissue from

the re-challenged mouse was harvested, and two tubes of single-cell suspension were obtained after enzy-

matic digestion. The four lung slices were used for spatial transcriptomics, and the two tubes of single-cell

suspension from the re-challenged mouse were subjected to scRNA-seq and scATAC-seq analyses.

scRNA-seq data were integrated with scATAC-seq data via label transfer (Stuart et al., 2019) and were

used as a reference to deconvolute spatial transcriptomics data (Figure 1A).

We generated scRNA-seq data from 3,337 cells collected from the re-challenged mouse. Graph-based

clustering identified ten clusters (Figures S1A and S1C). Cluster 1, which has an extremely high percentage

of mitochondrial genes (Figure S1B), was excluded from downstream analyses. Cluster 6 consisted of

several sporadic sub-clusters and was re-clustered into four clusters (Figures S1D and S1E). 2,834 cells

with good quality were retained for the downstream analyses.

We carried out fine cluster annotation according to canonical markers and identified 12 lung cell types (Fig-

ure 1B), including alveolar epithelial cells, club cells, fibroblasts, endothelial cells, monocytes, macro-

phages, dendritic cells, neutrophils, B cells, T cells, NK cells, and erythrocytes. Selected canonical markers

for each cell type were shown in the dot plot (Figure 1C, e.g., Sftpb for alveolar epithelial cells, Scgb1a1 for

club cells, and Cd3d for T cells). The top three (by log2-Fold Change) markers for each cell type were visu-

alized using a heatmap (Figure 1D).

Robust cell type decomposition (RCTD) of spatial transcriptome using scRNA-seq data

Although spatial transcriptomics provides additional spatial information, its resolution has not reached sin-

gle-cell level. Therefore, the expression profile of each spot in spatial transcriptomics is from a mixture of a

few cells, typically one to ten. To better interpret spatial transcriptome data, it is vital to determine the pro-

portions of different cell types within each spot. Using our finely annotated scRNA-seq data as a reference,

we carried out deconvolution for each spot in the four slices using the robust cell-type decomposition

(RCTD) method (Cable et al., 2022), one of the top-performing methods for cell-type deconvolution

(Li et al., 2022). The deconvolution results for slice A3 were shown as proportions of 12 cell types across slice

A3 (Figure S2A).

To assess the robustness of this deconvolutionmethod, we inspected whether well-characterized cell types

were colocalized with the expression of their canonical markers, as well as corresponding histological struc-

tures. In slice A3, spots with a high proportion of club cells were around the histological airways and colo-

calized with spots with increased expression of Scgb1a1 (Figures 2Ai–iii).

To examine the robustness of the method and the impact of different reference panel on deconvolution,

another public scRNA-seq data (GEO: GSE119228) (Cohen et al., 2018), including 20 annotatedmouse lung

cell types (containing 20,931 cells) (Figure 2Bi), were also used as an independent reference to deconvolute

spatial transcriptome for the four slices. The deconvolution results for slice A3, using public scRNA-seq
2 iScience 25, 104900, September 16, 2022
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Figure 1. Generation of multi-omics datasets of mice lungs after immunization, see also Figure S1

(A) Overview of study design. scRNA-seq data work as a bridge to link scATAC-seq and spatial transcriptomics data. UMAP plots were shown as examples,

not for interpretation.

(B) UMAP plot of 12 lung cell types identified in scRNA-seq data, with manual annotation according to canonical markers.

(C) Dot plot showing selected canonical markers for each celltype.

(D) Heatmap showing top three (by log2-Fold Change) markers for each celltype.
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reference, were shown (Figure S2B). In slice A3, proportions of T cells deconvoluted using in-house or pub-

lic scRNA-seq references were quite similar (Figures 2Bii and 2Biii). Deconvolution results can also be rep-

resented using proportionmatrices, whose rows indicate spots and columns indicate cell types. To quantify
iScience 25, 104900, September 16, 2022 3
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Figure 2. Validation of the robustness of deconvolution method for spatial transcriptomics, see also Figure S2

(A) Proportion of club cells colocalizing with the expression of Scgb1a1 and the histological airways. (1) Histology of slice A3 showing the location of the

airways. (2) Proportion of club cells across slice A3, deconvoluted using in-house scRNA-seq data. (3) Expression of Scgb1a1, a canonical marker for club

cells, across slice A3.

(B) Proportions of T cells deconvoluted using the two independent scRNA-seq references were quite similar. (1) UMAP plot of 20 lung cell types identified in

Cohen et al.’s public scRNA-seq data (GEO: GSE119228). (2) Proportion of T cells across slice A3, deconvoluted using in-house scRNA-seq data. (3)

Proportion of T cells across slice A3, deconvoluted using Cohen et al.’s public scRNA-seq data.

(C) (i–iv) Correlation heatmap visualizing the proportions of cell types deconvoluted using in-house (in rows, 12 types) and public (in columns, 20 types)

scRNA-seq data were highly correlated in slice A1-A4. Pearson’s r values were indicated by the color bars. Red boxes with solid lines highlighted selected

adaptive immune cells, T cells and B cells. Red boxes with dashed lines highlighted selected innate immune cells, neutrophils and NK cells.
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the similarity between the deconvolution results using the two independent references, Pearson correla-

tion coefficients between the columns of the two proportion matrices were calculated and visualized using

correlation heatmaps (Figure 2Ci–iv). Although we cannot perfectly match all the 12 cell types from our in-

house data with the 20 cell types identified in this public dataset, we found the proportions of some adap-

tive immune cells (e.g., T cells and B cells) and innate immune cells (e.g., neutrophils and NK cells) were

highly correlated with those deconvoluted using the other reference in all four slices. Other cell types

were also highly correlated with their related cell types deconvoluted using the other reference (e.g.,

club cells in in-house data with ciliated cells in public data, alveolar epithelial cells in in-house data with

AT2 in public data). These analyses validated the robustness of the robust cell-type decomposition

(RCTD) method. They also supported the observation that the number of cells would not drastically impact

the performance of deconvolution as long as a signature matrix can be built for each celltype in the refer-

ence panel.
Integrative analysis of scRNA-seq and scATAC-seq data enabling the identification of Th17

and Th1 cells

In parallel with scRNA-seq, we also generated scATAC-seq data from 4,908 cells collected from the re-chal-

lenged mouse. After excluding cells with low quality, 4,794 cells were retained for downstream analyses.

Leveraging our finely annotated scRNA-seq data, we identified the 12 lung cell types in scATAC-seq

data via label transfer (Figure 3A). Proportions of the 12 cell types in scRNA-seq and scATAC-seq data

were quite similar (Figure 3B), showing a good biological agreement between the two types of data.

Because we are interested in T cells in this study, we carried out re-clustering for T cells in scATAC-seq data

and identified four subtypes of T cells (Figure 3C), including Th17 cells, Th1 cells, other T cells 1, and other

T cells 2. The top 10 (by log2-Fold Change) markers (gene activity scores) for each subtype of T cells were

visualized using a heatmap (Figure 3D). Canonical transcription factors for subtypes of T cells were shown

on the heatmap (e.g., Rorc and Rora for Th17 cells, Tbx21 for Th1 cells).Cd8b1was amarker for other T cells

1, suggesting they could be cytotoxic T cells.

To confirm the identity of Th17 and Th1 cells, further analyses were performed. For Th17 cells, there were

much more peaks in genomic regions around Il17a and Rorc, compared with other subtypes of T cells

(Figures 3Ei and 3Eii). In contrast, the peaks from Th1 cells dominated genomic regions around Ifng and

Tbx21 (Figures 3Eiii and 3Eiv). Motif footprinting analysis further confirmed that RORC was dominated

by Th17 cells, and TBX21 was dominated by Th1 cells (Figures S3Ai–ii and S3Bi–ii).

Although subtypes of lineage-specific T cells were not clearly distinguishable using scRNA-seq data alone

(e.g., the public scRNA-seq data mentioned above), we managed to identify the four subtypes of T cells via

label transfer from scATAC-seq data to scRNA-seq data (Figure 3F). To confirm the identity of Th17 and Th1

cells in scRNA-seq data, further analyses were performed. Selected canonical markers for Th17 and Th1

cells were shown in the dot plot (Figure 3G, e.g., Rora for Th17 cells, Tbx21 for Th1 cells). The top 10 (by

log2-Fold Change) markers for each subtype of T cells were visualized using a heatmap (Figure S3C). Ca-

nonical markers for subtypes of T cells can be seen in the heatmap (e.g., Rora for Th17 cells, Ifng for Th1

cells, and Cd8b1 for other T cells 1). We also conducted gene regulatory network analysis using SCENIC

(Aibar et al., 2017; Van deSande et al., 2020) and identified RORA as a cell-type specific regulator for

Th17 cells in scRNA-seq data (Figure S3D). By integrative analysis of scRNA-seq and scATAC-seq data,

15 lung cell types (including four subtypes of T cells) were identified in scRNA-seq data (Figure 3H), which

will facilitate the deconvolution analysis in spatial transcriptome.
iScience 25, 104900, September 16, 2022 5
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Figure 3. Identification of subtypes of T cells by integrating scRNA-seq and scATAC-seq data, see also Figure S3

(A) UMAP plot of 12 lung cell types in scATAC-seq data identified via label transfer.

(B) Bar plot showing proportions of 12 cell types in scRNA-seq and scATAC-seq data were quite similar.

(C) UMAP plot of four subtypes of T cells in scATAC-seq data.

(D) Heatmap showing top 10 (by log2-Fold Change) markers (gene activity scores calculated using peaks) for each subtype of T cells in scATAC-seq data.

(E) (i–iv) Peaks in genomic regions around Il17a, Rorc, Ifng, and Tbx21, canonical markers for Th17 and Th1 cells.

(F) UMAP plot of four subtypes of T cells in scRNA-seq data identified via label transfer.

(G) Dot plot showing selected canonical markers for Th17 and Th1 cells in scRNA-seq data.

(H) UMAP plot of 15 lung cell types (including four subtypes of T cells) in scRNA-seq data.
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Dynamic changes of cell locations upon K. pneumoniae Re-challenge

Using the updated scRNA-seq data with the final 15 cell types, we carried out deconvolution again for each

spot in the four slices (Figure S4). The proportions of 15 cell types across four slices were summarized by a

boxplot (Figure 4A). We performed t-tests (n = 14,244 spots) to compare the differences between the

immunized (slice A1 and A2) and the re-challenged mouse (slice A3 and A4), with significant differences

found for each celltype. Generally, there were more monocytes, macrophages, dendritic cells, neutrophils,

Th1 cells, and NK cells in the re-challenged mouse. In contrast, the immunized mouse had more B cells,

Th17 cells, and other T cells 1 (Figures 4A and S4).

After pooling spots from the slices for the immunized (slice A1 and A2) or the re-challengedmouse (slice A3

and A4), Pearson correlation coefficients between the columns of the proportion matrices were calculated.

Significant same-spot co-occurrence of different cell types was found in the immunized and the re-chal-

lenged mouse (Figure 4B). For the immunized mouse, Th17 cells, monocytes, and endothelial cells tended

to appear in the same spots. Dendritic cells, B cells, fibroblasts, and other T cells 1 were also close to one

another. For the re-challenged mouse, other T cells 1, B cells, Th17 cells, Th1 cells, and dendritic cells often

appeared in the same spots, whereas Th1 cells, NK cells, and myeloid cells were possibly close to one

another in vivo. These observations remained unchanged with each slice analyzed separately (Figure S5C).

Localization and segmentation of airway and blood vessels are important in our analysis. We defined air-

ways and blood vessels according to the proportion of club cells and the histological blood vessels

(Figures S5A and S5B). We thought T cells within the spot overlapping with blood vessels could be circu-

lating T cells, whereas T cells with no overlapping with blood vessels were more like tissue-resident T cells.

To minimize the impact of circulating T cells, we excluded spots within the blood vessels from downstream

analyses. After excluding spots within the blood vessels and spots whose distances to the airways are

longer than 1,000 mm, we calculated weighted distances to the airways for Th17 and Th1 cells in four slices,

according to the formula (Figure 4D). Th17 cells were found closer to the airways than Th1 cells in the re-

challenged mouse, whereas Th1 cells were closer to the airways in the immunized mouse (Figure 4C). This

conclusion was independent of the definition of airways and blood vessels, since it remained unchanged

even if a set of cut-offs were used to define these structures (Figure S5D).

To find the spatial distribution patterns of immune cells, natural spline regression was performed to fit the

non-linear relationship between the proportions of immune cells and the distances to the airways. Gener-

ally, B cells and other T cells 1 were proximal to the airways in the immunized mouse, whereas neutrophils

were distal to the airways in the re-challenged mouse (Figures 4Ei–iv). The same analysis for all 15 cell types

was also performed (Figures S5Ei–iv). We also performed natural spline regression between the expression

of genes and the distances to the airways. 3,655 distance-associated genes (FDR-adjusted p-value < 0.05 in

both slices A1 and A2) were identified in the immunized mouse (Table S1), whereas 3,407 (FDR-adjusted

p-value < 0.05 in both slices A3 and A4) were identified in the re-challenged mouse (Table S2). Gene

Ontology (GO) enrichment analysis was performed for these distance-associated genes (Ashburner

et al., 2000; Mi et al., 2019; The Gene Ontology Consortium, 2021). 1,293 significantly (FDR-adjusted

p-value < 0.05) over-represented biological processes were identified for the immunized mouse, and

1,294 for the re-challenged mouse. The top 20 (hierarchically sorted by fold-enrichment) over-represented

biological processes for the re-challenged mouse included many immune responses (e.g., proliferation,

differentiation, activation, aggregation, adhesion, and chemotaxis of immune cells). In contrast, few im-

mune responses were over-represented in the immunized mouse (Table 1). Ccl20, a top distance-associ-

ated gene, was highly expressed around the airways in the re-challenged mouse, instead of the immunized

mouse (Figure 4F). Because CCL20 is capable of binding to CCR6, a chemokine receptor expressed on
iScience 25, 104900, September 16, 2022 7
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Figure 4. Spatial analyses of mice lungs after immunization, see also Figures S4 and S5

(A) Box plot showing proportions of 15 cell types across four slices were different. To compare the differences between

the immunized (slice A1 and A2) and the re-challenged mouse (slice A3 and A4), t-tests (n = 14,244 spots) were performed

for each cell type. **** p-value < 1x10�4.

(B) (i-ii) Correlation heatmap visualizing the same-spot co-occurrence of 15 cell types in the immunized and the re-

challenged mouse. ST spots from the slices for the immunized (slice A1 and A2) or the re-challenged mouse (slice A3 and

A4) were pooled together, respectively. Red boxes highlighted cell types tending to appear in the same spots, that is to

say, possibly close to one another in vivo.

(C) Weighted distances to the airways for Th17 and Th1 cells in four slices, after excluding spots within the blood vessels

and spots whose distances to the airways longer than 1,000 mm.

(D) Formula defining weighted distance, allowing for each spot’s distance to the nearest airway and the proportions of

Th17 and Th1 cells in each spot.

(E) (i-iv) Proportions of immune cells over distance to the airways showing the spatial distribution of immune cells in four

slices, after excluding spots within the blood vessels and spots whose distances to the airways longer than 1,000 mm. The

curves were obtained from natural spline (with three degrees of freedom) regression.

(F) Expression of Ccl20, a top distance-associated gene, across four slices.

(G) UMAP plot of 8 lung cell types identified in a scRNA-seq dataset of epithelial cells (CD45-CD31-Epcam+), harvested

from K. pneumoniae-infectedmouse lung. Mice were infected with 10^3 CFU/mouse and sacrificed at 48 h after infection.

Lungs were homogenized with collagenase and DNase. CD45-cells were enriched by magnetic beads, followed by CD45-

CD31-Epcam+ cell sorting by FACS.

(H) UMAP plots showing the distribution of selected markers.

(I) Violin plots demonstrating Ccl20 was elevated in inflammatory type II cells.
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Th17 cells, this finding possibly explains why Th17 cells were closer to the airways than Th1 cells in the re-

challenged mouse.

In a validation cohort, we enriched and profiled epithelial cells from K. pneumoniae-infected mouse lungs

(Figure 4G). The enrichment of epithelial cells complemented the in-house scRNA-seq data utilized above

and helped us to trace back the source of Ccl20 around the airways—alveolar epithelial type II cells, spe-

cifically, inflammatory type II cells (Figures 4H and 4I).
Biological differences upon K. pneumoniae Re-challenge

Upon K. pneumoniae re-challenge, the spatial transcriptome was tremendously changed (Figure S6A),

whereas little batch effects were found between the two slices from the samemouse. The spots we defined

as airways according to the proportion of club cells were also shown in a Uniform Manifold Approximation

and Projection (UMAP) plot (Figures S6B and S5A), with significant transcriptomic changes found between

the immunized and the re-challenged mouse.

Differential expression (DE) analysis was performed to compare the airways in the re-challenged mouse

versus the immunizedmouse, with 2,071 significantly (FDR-adjusted p-value < 0.05) differentially expressed

genes (DEGs) identified (Table S3). To overcome the limitations of the analysis based on different thresh-

olds of selected DEGs, we performed Gene Set Enrichment Analysis (GSEA) using the unfiltered, ranked

gene list (including 16,937 genes), and found 379 significantly (FDR-adjusted p-value < 0.05) enriched

GO biological processes. The top 30 (by normalized enrichment score) up-regulated and down-regulated

pathways were shown by a lollipop plot (Figure 5A). Compared with the immunized mouse, most up-regu-

lated pathways in the airways of the re-challenged mouse were related to immune responses (e.g., migra-

tion and chemotaxis of immune cells, and response to stimuli), whereas most down-regulated pathways

were related to catabolic and metabolic processes, as well as ciliary functions. AW112010, a top DE

gene up-regulated in the airways upon re-challenge, was highly expressed in the airways of the re-chal-

lenged mouse (Figure 5B). AW112010 has also been reported capable of promoting the differentiation

of inflammatory T cells (Yang et al., 2020).Cbr2, a top DE gene down-regulated in the airways upon re-chal-

lenge, was highly expressed in the airways of the immunized mouse (Figure 5C), and may function in the

metabolism of endogenous carbonyl compounds (Nakanishi et al., 1995) and alveolar epithelial cell plas-

ticity (Mutze et al., 2015).
Spatial transcriptomics showing the potential to analyze cell-cell communication

To perform cell-cell communication networks analysis, cell-type enriched spots were identified according

to their ranks of proportions of cell types (Figure S6D), with little difference found between the two slices
iScience 25, 104900, September 16, 2022 9



Table 1. Top 20 (hierarchically sorted by fold-enrichment) over-represented biological processes for both mice

Immunized Mouse Re-challenged Mouse

GO Biological Process

Fold

Enrichment

p-

value

FDR-

adjusted

p-value

GO Biological

Process

Fold

Enrichment p-value

FDR-

adjusted

p-value

protein localization to bicellular

tight junction

6.22 1.36E-03 2.04E-02 protein localization

to ciliary transition zone

6.64 4.12E-04 7.33E-03

inner dynein arm assembly 6.22 2.60E-05 6.53E-04 intraciliary retrograde

transport

6.2 4.72E-06 1.36E-04

cranial ganglion development 6.22 3.06E-03 3.94E-02 inner dynein arm

assembly

6.09 5.62E-05 1.23E-03

positive regulation of cell

migration by vascular endothelial

growth factor signaling pathway

5.53 1.01E-03 1.60E-02 hemoglobin

biosynthetic process

5.81 1.61E-03 2.33E-02

peripheral nervous system myelin

maintenance

5.53 1.01E-03 1.60E-02 protein localization

to bicellular tight junction

5.69 3.77E-03 4.65E-02

intraciliary retrograde transport 5.39 3.27E-05 8.07E-04 negative regulation of skeletal

muscle tissue development

5.69 3.77E-03 4.65E-02

outer dynein arm assembly 5.29 2.42E-06 7.67E-05 positive regulation of homotypic

cell-celladhesion

5.17 2.53E-03 3.37E-02

cerebrospinal fluid circulation 5.26 1.54E-04 3.18E-03 epithelial cilium movement involved in

determination of left/right asymmetry

5.17 2.53E-03 3.37E-02

establishment of blood-brain barrier 5.18 3.35E-04 6.17E-03 positive regulation of integrin-mediated

signaling pathway

5.17 2.53E-03 3.36E-02

endothelial tube morphogenesis 5.18 3.35E-04 6.17E-03 negative regulation of CD4-positive,

alpha-beta T cell proliferationa
5.17 2.53E-03 3.36E-02

glomerulus morphogenesis 5.09 7.32E-04 1.21E-02 negative regulation of actin nucleation 5.17 2.53E-03 3.36E-02

dichotomous subdivision of an

epithelial terminal unit

5.09 7.32E-04 1.21E-02 antigen processing and presentation

of exogenous peptide antigen via MHC class Ia
5.17 2.53E-03 3.36E-02

defense response to tumor cella 4.98 1.60E-03 2.34E-02 cerebrospinal fluid circulation 5.11 3.27E-04 6.00E-03

(Continued on next page)
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Table 1. Continued

Immunized Mouse Re-challenged Mouse

GO Biological Process

Fold

Enrichment

p-

value

FDR-

adjusted

p-value

GO Biological

Process

Fold

Enrichment p-value

FDR-

adjusted

p-value

axoneme assembly 4.92 6.34E-19 8.26E-17 neutrophil activation involved in immune responsea 4.83 1.68E-03 2.41E-02

epithelial cilium movement involved in

determination of left/right asymmetry

4.84 3.52E-03 4.43E-02 branching involved in labyrinthine layer

morphogenesis

4.74 4.95E-04 8.50E-03

positive regulation of aspartic-type

peptidase activity

4.84 3.52E-03 4.43E-02 defense response to tumor cella 4.65 3.83E-03 4.70E-02

surfactant homeostasis 4.84 3.73E-05 9.05E-04 outer dynein arm assembly 4.65 4.46E-05 1.00E-03

regulation of cilium beat frequency 4.56 3.65E-04 6.65E-03 positive regulation of superoxide anion generationa 4.62 1.36E-05 3.51E-04

negative regulation of endothelial cell

differentiation

4.52 2.43E-03 3.27E-02 regulation of Fc receptor mediated stimulatory

signaling pathwaya
4.43 2.48E-03 3.34E-02

regulation of aspartic-type endopeptidase

activity involved in amyloid precursor

protein catabolic process

4.52 2.43E-03 3.27E-02 collagen-activated tyrosine kinase receptor

signaling pathway

4.43 2.48E-03 3.33E-02

aBiological processes related to immune responses.
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Figure 5. Differential expression analysis of spots annotated as airways in the immunized and the re-challenged mouse, see also Figure S6

(A) Gene Set Enrichment Analysis (GSEA) of all the 16,937 genes available in the DE analysis of the airways.

(B) Expression of AW112010, a top DE gene up-regulated in the airways upon re-challenge, across four slices.

(C) Expression of Cbr2, a top DE gene down-regulated in the airways upon re-challenge, across four slices.
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from the samemouse (Figure S6C). Fibroblasts, endothelial cells, and erythrocytes were not included in the

analysis due to the difficulty of interpreting the interactions with these cells.

Cell-cell communication networks among the cell-type enriched spots were inferred in each slice using

CellChat (Figure S6E) (Jin et al., 2021). To compare the differences in communication patterns between

the re-challenged and the immunized mouse, differential interaction strength between cell-type enriched

spots was shown by a heatmap (Figure 6A). The communication among myeloid cells, Th1 cells, and Th17

cells was increased in the re-challengedmouse, also revealed by our same-spot co-occurrence analysis. For

the immunized mouse, dendritic cells could be the major sender of communication signals, whereas B cells

and other T cells 1 were essential receivers of the signals.

The conserved and context-specific signaling pathways were identified and visualized by bar plots (Fig-

ure 6B). TNF pathway was only turned on in the re-challenged mouse, whereas CXCL and CCL pathways

were increased. We also confirmed some well-known signaling pathways in the cell-cell communication

analysis of spatial transcriptome, outperforming the cell-cell communication analysis of scRNA-seq data,

which could not identify these signaling pathways, possibly due to dropouts (Qiu, 2020). The performance

of this analysis could be improved as the resolution of spatial transcriptomics evolves. We found Th17 en-

riched spots in the re-challenged mouse were the receivers of the IL6 signaling pathway (Figure 6Ci), given

the receptor gene Il6ra was highly expressed in Th17 enriched spots from slice A3 and slice A4 (Figure 6Cii).

Leveraging scATAC-seq data, we confirmed macrophages and dendritic cells were the sources of the IL6

signaling (Figure 6Ciii), and Th17 cells were the targets (Figure 6Civ). For the TGF-b signaling pathway, we

also found Th17 enriched spots in the re-challengedmouse were its receivers (Figure 6Di), with the receptor

genes Tgfbr1, Tgfbr2, and Acvr1b found highly expressed in Th17 enriched spots from slice A3 and slice A4

(Figure 6Dii). By checking peaks in genomic regions around these receptor genes, Th17 cells were

confirmed to have the capacity to express the receptors for the TGF-b signaling (Figures 6Diii–v). These

data suggested that spatial transcriptomics data can be extrapolated and utilized to perform cell-cell

communication network analysis.
DISCUSSION

With the development of single-cell sequencing technologies, scRNA-seq has been gradually now widely

applied to study immune cells and immune responses in mouse lungs (Ballesteros et al., 2020; Cohen et al.,

2018; Kurihara et al., 2021; Wang et al., 2021). In many cases, T helper cells and cytotoxic T cells can be iden-

tified in these scRNA-seq studies, but not their subtypes. Few studies additionally utilize scATAC-seq to

measure the chromatin architecture of immune cells in mouse lungs (Delacher et al., 2021), which allows

the identification of subtypes of T helper cells. With the birth of spatial transcriptomics, this cutting-

edge technology is also adopted by this field to study mouse lungs infected by influenza (Boyd et al.,

2020). The influenza study, containing four slices from infected mice, visualized genes of interest across

the slices but did not try to decipher specific cell-type compositions across the slices. Our analytical pipe-

line could be applied to similar studies in the lung field and facilitate unraveling the spatial dynamics of lung

immunization.

To our knowledge, this is the first study to integrate spatial transcriptome with single-cell transcriptome

and single-cell epigenome in mouse lungs. A key advantage of our study lies in the capture of intact

anatomical structures of mouse lungs, providing location-specific information and preserving information

from cells prone to damage. Integrating with single-cell multi-omics profiled frommatched tissue, sub-sin-

gle-cell resolution was further achieved in our spatial analysis of cells residing in lung, especially TRM. In our

study, we first identified 12 lung cell types in scRNA-seq data, covering major epithelial, mesenchymal, and

immune cells. Using our finely annotated scRNA-seq data as a reference, we deconvoluted spatial tran-

scriptome of the four slices and inferred proportions of cell types for each spot. We established an opti-

mized deconvolution pipeline to accurately decipher specific cell-type compositions at sub-single-cell res-

olution, by checking the correlation of deconvolution results using two independent references and the

colocalization of canonical markers and histological structures. Integrating scATAC-seq data from the
iScience 25, 104900, September 16, 2022 13
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Figure 6. Cell-cell communication among cell-type enriched spots, see also Figure S6

(A) Heatmap showing differential interaction strength between cell-type enriched spots. Outgoing signals were shown in rows, while incoming signals were

shown in columns. Increased (or decreased) signals in the re-challenged mouse compared to the immunized mouse were represented using red (or blue) in

the color bar. The sum of values within the same column was summarized using the colored bar plot on the top. The sum of values within the same row was

summarized using the colored bar plot on the right.

(B) Bar plots showing overall information flow of each signaling pathway. Relative information flow was shown in the stacked bar plot, while raw information

flow was shown in the regular bar plot. Enriched signaling pathways were colored in red or cyan.

(C) Th17 enriched spots in the re-challenged mouse were the receivers of the IL6 signaling pathway. (i) Circle plot visualizing the inferred communication

network of the IL6 signaling pathway in the re-challenged mouse. The network of the IL6 signaling pathway in the immunized mouse was not significant.

Circle sizes represented the number of spots in each group. Edge colors were consistent with the senders of the signal (sources), and edge weights

represented the interaction strength. (ii) Violin plot visualizing the expression of genes related to IL6 signaling pathway in cell-type enriched spots from the

re-challenged mouse. Gene expression from slice A3 was colored in red, and that from slice A4 was colored in cyan. (iii-iv) Peaks in genomic regions around

Il6 and Il6ra in scATAC-seq data.

(D) Th17 enriched spots in the re-challenged mouse were the receivers of the TGF-b signaling pathway. (i) Circle plot visualizing the inferred communication

network of the TGF-b signaling pathway in the re-challenged mouse. The network of the TGF-b signaling pathway in the immunized mouse was also

significant but not shown. Circle sizes represented the number of spots in each group. Edge colors were consistent with the senders of the signal (sources),

and edge weights represented the interaction strength. (ii) Violin plot visualizing the expression of genes related to TGF-b signaling pathway in cell-type

enriched spots from the re-challenged mouse. Gene expression from slice A3 was colored in red, and that from slice A4 was colored in cyan. (iii-v) Peaks in

genomic regions around Tgfbr1, Tgfbr2, and Acvr1b in scATAC-seq data.
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same cells processed side by side with scRNA-seq, we found epigenomic profiles facilitate robust cell-type

identification, especially for lineage-specific T helper cells, and in current study, we identified four subtypes

of T cells. Combining all three data modalities, we mapped the 15 lung cell types to histological structures

for the four slices at sub-single-cell resolution.

Our study as a proof of concept suggests that spatial transcriptomics study can provide further insights into

dynamic changes of cell locations upon K. pneumoniae re-challenge. We found Th17 cells were closer to

the airways than Th1 cells in the re-challenged mouse, whereas Th1 cells were closer to the airways in the

immunized mouse without re-challenge. This could be explained by the increased expression of Ccl20

around the airways in the re-challenged mouse. Ccl20, a top distance-associated gene identified by our

spatial analysis, has the ability to attract Ccr6 expressing cells. The CCL20/CCR6 axis has been shown to

play crucial roles in recruiting Th17 cells in many organs as well as various disease settings (Turner et al.,

2010; Wang et al., 2009). We discovered different spatial distribution patterns of immune cells in the lungs

of the two mice, finding B cells were proximal to the airways in the immunized mouse, whereas neutrophils

were distal to the airways in the re-challenged mouse. We also identified thousands of distance-associated

genes for the two mice by natural spline regression, confirming immune responses related genes were

over-represented in the re-challenged mouse. These spatial analyses were only possible when location-

specific information was captured by spatial transcriptomics, highlighting the value of our study compared

with conventional flow cytometric and transcriptomic approaches.

Comparing the biological differences in the airways upon K. pneumoniae re-challenge is also feasible using our

established analytical pipeline, we found pathways related to migration and chemotaxis of immune cells, and

response to stimuli were up-regulated in the re-challenged mouse, whereas pathways related to catabolic

and metabolic processes, and ciliary functions were up-regulated in the immunized mouse, further warrant hy-

pothesis-driven experiments. We also performed cell-cell communication analysis of spatial transcriptome,

providingevidenceof lineage-specificThelper cells receivingdesignatedcytokine signaling.Weacknowledged

that cell-type enriched spots still contain several cell types at current resolution. We did not intend to interpret

autocrine signaling for these cell-type enriched spots, since it could be real autocrine signaling or short-range

communication between neighbor cell types. We thought cell-cell communications between different types

of cell-type enriched spots could still be informative, which represents long-range communications between

different cell types.Ahigher resolutionof spatial transcriptomics could resolveour current challenges.Our study

shows thepotential toperformDEanalysis between specific cellsor regions across theslicesandanalyzecell-cell

communication using spatial transcriptomics. The performance of these analyses could be improved as spatial

transcriptomics advances toward single-cell resolution.

Limitations of the study

Several limitations were recognized in our study. First, we had a small sample size for our scRNA-seq and

scATAC-seq data as the purpose of generating these data was to provide a reference for deconvolution,

instead of carrying out a census of lung cell types. Still, we also observed that the cell number of scRNA-seq
iScience 25, 104900, September 16, 2022 15
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data would not drastically impact the performance of deconvolution as long as a signature matrix can be

built for each celltype. Second, there is no ground truth to evaluate deconvolution results, although we

optimized our deconvolution pipeline by assessing its robustness. This issue could eventually be resolved

as the resolution of the spatial transcriptomics technology improves. Third, our method to define airways

and blood vessels may not be fully accurate and can be further improved by both high-resolution histolog-

ical images and enhanced resolution of spatial transcriptome. Finally, more biological replicates and

experimental validations may be needed to make definitive biological conclusions. For example, the

cellular source of CCL20 around the airways in the re-challenged mouse could be further determined by

immunofluorescence. Follow-up studies like this are needed to sufficiently confirm the conclusion.

In summary, as a proof of concept, we presented a comprehensive single-cell multi-omics study on immu-

nized mouse lungs and generated hypotheses for understanding underlying biological mechanisms.

Recently, spatial analysis has been made compatible with Formalin-fixed paraffin-embedded (FFPE) tissue

specimens. It is foreseeable that a massive amount of data will be generated from historically preserved

samples. Our spatial transcriptomics data processing pipeline provides a timely solution to these analyses

and contributes to advancing the field of lung biology and respiratory medicine.
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Núñez-Santana, F.L., Akbarpour, M., Liu, X., Ren,
Z., Li, W., Querrey, M., et al. (2021). Crosstalk
between nonclassical monocytes and alveolar
macrophages mediates transplant ischemia-
reperfusion injury through classical monocyte
recruitment. JCI Insight 6, e147282.

Li, B., Zhang, W., Guo, C., Xu, H., Li, L., Fang, M.,
Hu, Y., Zhang, X., Yao, X., Tang, M., et al. (2022).
Benchmarking spatial and single-cell
transcriptomics integration methods for
transcript distribution prediction and cell type
deconvolution. Nat. Methods 19, 662–670.

McInnes, L., Healy, J., and Melville, J. (2018).
UMAP: Uniform Manifold approximation and
projection for dimension reduction. Preprint at
arXiv. https://doi.org/10.48550/arXiv.1802.03426.

Mi, H., Muruganujan, A., Ebert, D., Huang, X., and
Thomas, P.D. (2019). Panther version 14: more
genomes, a new PANTHER GO-slim and im-
provements in enrichment analysis tools. Nucleic
Acids Res. 47, D419–D426.

Mutze, K., Vierkotten, S., Milosevic, J., Eickelberg,
O., and Königshoff, M. (2015). Enolase 1 (ENO1)
and protein disulfide-isomerase associated 3
(PDIA3) regulate Wnt/b-catenin-driven trans-dif-
ferentiation of murine alveolar epithelial cells.
Dis. Model. Mech. 8, 877–890.

Nakanishi, M., Deyashiki, Y., Ohshima, K., and
Hara, A. (1995). Cloning, expression and tissue
distribution of mouse tetrameric carbonyl
reductase. Identity with an adipocyte 27-kDa
protein. Eur. J. Biochem. 228, 381–387.

Qiu, P. (2020). Embracing the dropouts in single-
cell RNA-seq analysis. Nat. Commun. 11, 1169.

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law,
C.W., Shi, W., and Smyth, G.K. (2015). Limma
powers differential expression analyses for
iScience 25, 104900, September 16, 2022 17

http://refhub.elsevier.com/S2589-0042(22)01172-5/sref1
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref1
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref1
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref1
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref2
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref2
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref2
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref2
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref2
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref2
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref3
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref3
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref3
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref3
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref3
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref4
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref4
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref4
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref4
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref4
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref4
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref5
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref5
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref5
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref5
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref5
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref5
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref6
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref6
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref6
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref6
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref6
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref7
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref7
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref7
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref7
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref7
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref8
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref8
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref8
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref8
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref8
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref9
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref9
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref9
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref9
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref9
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref9
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref10
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref10
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref10
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref10
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref10
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref10
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref11
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref11
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref11
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref11
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref11
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref11
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref11
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref12
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref12
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref12
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref12
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref12
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref12
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref12
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref13
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref13
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref13
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref13
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref13
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref14
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref14
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref14
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref14
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref14
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref15
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref15
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref15
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref15
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref15
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref16
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref16
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref16
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref16
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref16
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref16
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref16
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref17
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref17
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref17
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref17
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref17
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref17
https://doi.org/10.48550/arXiv.1802.03426
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref19
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref19
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref19
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref19
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref19
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref20
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref20
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref20
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref20
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref20
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref20
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref21
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref21
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref21
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref21
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref21
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref22
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref22
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref23
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref23
http://refhub.elsevier.com/S2589-0042(22)01172-5/sref23


ll
OPEN ACCESS

iScience
Article
RNA-sequencing and microarray studies.
Nucleic Acids Res. 43, e47.

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C.,
Papalexi, E., Mauck, W.M., Hao, Y., Stoeckius, M.,
Smibert, P., and Satija, R. (2019). Comprehensive
integration of single-cell data. Cell 177, 1888–
1902.e21.

Stuart, T., Srivastava, A., Lareau, C., and Satija, R.
(2020). Multimodal single-cell chromatin analysis
with Signac. Preprint at bioRxiv. https://doi.org/
10.1101/2020.11.09.373613.

Subramanian, A., Tamayo, P., Mootha, V.K.,
Mukherjee, S., Ebert, B.L., Gillette, M.A.,
Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander,
E.S., et al. (2005). Gene set enrichment analysis: a
knowledge-based approach for interpreting
genome-wide expression profiles. Proc. Natl.
Acad. Sci. USA 102, 15545–15550.

Szabo, P.A., Miron, M., and Farber, D.L. (2019).
Location, location, location: tissue resident
memory T cells in mice and humans. Sci.
Immunol. 4, eaas9673.
18 iScience 25, 104900, September 16, 2022
Gene Ontology Consortium (2021). The Gene
Ontology resource: enriching a GOld mine.
Nucleic Acids Res. 49, D325–D334.

Turner, D.L., and Farber, D.L. (2014). Mucosal
resident memory CD4 T cells in protection and
immunopathology. Front. Immunol. 5, 331.

Turner, J.-E., Paust, H.-J., Steinmetz, O.M.,
Peters, A., Riedel, J.-H., Erhardt, A., Wegscheid,
C., Velden, J., Fehr, S., Mittrücker, H.W., et al.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Chromium Single Cell 3ʹ GEM, Library & Gel Bead Kit v3 10x Genomics PN-1000075

Chromium Chip B Single Cell Kit 10x Genomics PN-1000073

Chromium i7 Multiplex Kit 10x Genomics PN-120262

Chromium Single Cell ATAC Library & Gel Bead Kit 10x Genomics PN-1000110

Chromium Chip E Single Cell ATAC Kit 10x Genomics PN-1000155

Chromium i7 Multiplex Kit N, Set A 10x Genomics PN-1000084

Visium Spatial Gene Expression Slide & Reagent Kit 10x Genomics PN-1000187

Visium Accessory Kit 10x Genomics PN-1000194

Dual index Kit TT set A 10x Genomics PN-1000215

Deposited data

Raw and processed scRNA-seq data This paper GSE190225

Raw and processed scATAC-seq data This paper GSE190225

Raw and processed ST data This paper; Mendeley Data GSE190225;

https://doi.org/10.17632/

2yr6y6wnc5.1

Cohen et al.’s raw and processed scRNA-seq data Cohen et al., 2018 GSE119228

Experimental models: Organisms/strains

C57BL/6J, mus musculus The Jackson Laboratory IMSR_JAX:000664

Software and algorithms

Cell Ranger 10x Genomics Version 3.1.0

Cell Ranger ATAC 10x Genomics Version 1.1.0

Space Ranger 10x Genomics Version 1.2.2

Seurat https://satijalab.org/seurat/index.html Version 4.0.1

RCTD https://github.com/dmcable/RCTD Version 1.2.0

Signac https://satijalab.org/signac/index.html Version 1.1.1

SCENIC https://github.com/aertslab/SCENIC Version 1.2.4

AUCell https://github.com/aertslab/AUCell Version 1.12.0

QuPath https://qupath.github.io Version 0.2.3

limma https://bioconductor.org/packages/

release/bioc/html/limma.html

Version 3.46.0

PANTHER Classification System http://www.pantherdb.org Version 16.0

MAST https://www.bioconductor.org/packages/

release/bioc/html/MAST.html

Version 1.16.0

clusterProfiler https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

Version 3.18.1

CellChat https://github.com/sqjin/CellChat Version 1.1.0

Other

Eclipse 90i Motorized Upright Microscope Nikon Eclipse 90i
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RESOURCE AVAILABILITY

Lead contact

Additional information and requests for resources and reagents should be directed to and will be

completed by the lead contact, Kong Chen (koc5@pitt.edu).

Materials availability

This study did not generate any unique reagents.

Data and code availability

Data reported in this paper will be shared by the lead contact upon request. Raw and processed data of

scRNA-seq, scATAC-seq, and ST are deposited in Gene Expression Omnibus (GEO) (GSE190225). Pro-

cessed ST data with deconvolution results are deposited in Mendeley Data: https://doi.org/10.17632/

2yr6y6wnc5.2 (Xu et al., 2022). Code and scripts necessary to repeat analyses in this paper are available

at GitHub (https://github.com/xzlandy/Spatial_immunized_mouse_lungs). Any additional information

required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse models

All mice used in this study were wild-type and purchased from Jackson Lab (Cat# 000664). Animals were

maintained in pathogen-free conditions in the animal facility at the University of PittsburghMedical Center.

All experiments were approved by the University of Pittsburgh Institutional Animal Care and Use

Committee.

In vivo inflammation induction

6–8 weeksold C57BL/6 mice were immunized with heat-killed K. Pneumoniae (ATCC-43816) as previously

described (Chen et al., 2011). Briefly, mice were injected with heat-killed K. Pneumoniae twice (Day 0 and

Day 7) or three times (Day 0, Day 7, and Day 13) intranasally and sacrificed on Day 14. Lungs were removed

and digested by Collagenase/DNase to obtain a single-cell suspension. Mononuclear cells, after red blood

cell lysis and filtration with a 40 mM cell strainer, were subjected to single-cell RNA-seq (scRNA-seq) and

single-cell ATAC-seq (scATAC-seq) library prep following the protocols by 10x Genomics using the Chro-

mium controller (10x Genomics). To yield sufficient IL-17A producing cells and reduce doublets formation,

we targeted 3,000–5,000 cells/nuclei for recovery. Libraries were QC’ed on an Agilent TapeStation and

sequenced on an Illumina Novaseq.

METHOD DETAILS

Spatial transcriptomics experiment

We conducted ST experiment using 10X Genomics Visium platform.

Tissue harvesting

Mouse lungs were harvested, and the left lobes were inflated with 1 mL mixture of 50% sterile PBS/50% Tis-

sue-Tek OCT Compound (SAKURA FINETEK) followed by freezing in alcohol bath on dry ice. OCT blocks

were stored at �80�C until further processing.

ST library prep

OCT blocks were sectioned at 10 mm in thickness, 6.5 mm 3 6.5 mm in size, attached to the Visium slides,

then stained with hematoxylin and eosin following 10x Genomics Visium fresh frozen tissue processing pro-

tocol. H&E images were taken by a fluorescence and tile scanning microscope (Olympus FluoView 1000)

then the slides underwent tissue removal and library generation per 10x Genomics demonstrated protocol.

Raw sequencing data processing

The sequenced scRNA-seq library was processed and aligned to mm10 mouse reference genome using

Cell Ranger software (version 3.1.0) from 10x Genomics, with unique molecular identifier (UMI) counts sum-

marized for each barcode. To distinguish cells from the background, cell calling was performed on the full

raw UMI count matrix, with the filtered UMI count matrix generated (31,053 genes x 3,337 cells).
20 iScience 25, 104900, September 16, 2022
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The sequenced scATAC-seq library was processed and aligned to mm10 mouse reference genome using

Cell Ranger ATAC software (version 1.1.0) from 10x Genomics, with fragments and peak counts summa-

rized for each barcode. To distinguish cells from the background, cell calling was performed on the full

raw peak count matrix, with the filtered peak count matrix generated (84,317 peaks x 4,908 cells).

Each sequenced spatial transcriptomics library was processed and aligned to mm10 mouse reference

genome using Space Ranger software (version 1.2.2) from 10x Genomics, with UMI counts summarized

for each spot. To distinguish tissue overlaying spots from the background, tissue overlaying spots were de-

tected according to the images. And only barcodes associated with these tissue overlaying spots were re-

tained, with the filtered UMI count matrices generated. We also manually excluded spots not covered by

tissue but not detected by Space Ranger and further filter the UMI count matrices (slice A1: 32,285 genes x

3,689 spots; slice A2: 32,285 genes x 2,840 spots; slice A3: 32,285 genes x 3,950 spots; slice A2: 32,285 genes

x 3,765 spots).
QUANTIFICATION AND STATISTICAL ANALYSIS

scRNA-seq data analysis

After imported into R, the filtered UMI count matrix was analyzed using the R package Seurat (version 4.0.1)

(Hao et al., 2021). The percentage of mitochondrial genes per cell was calculated for further check of the

quality of cells. Regularized negative binomial regression (SCTransform) (Hafemeister and Satija, 2019)

was used to normalize UMI count data, with the removal of confounding effects from mitochondrial map-

ping percentage. To improve the speed of the normalization, glmGamPoi (Ahlmann-Eltze and Huber, 2021)

was invoked in the procedure. 3,000 highly variable genes were identified and used in principal component

analysis to reduce dimensionality. We determined to use the first 50 principal components in clustering

analysis according to the elbow plot. UMAP dimensionality reduction (McInnes et al., 2018) was performed

with the first 50 principal components as input to visualize cells. Using the shared nearest-neighbor (SNN)

graph as input, cells were then clustered using the original Louvain algorithm with resolution = 0.2.

Cluster 1 was marked as low-quality cells and excluded from downstream analysis (2,834 cells retained)

because its median percentage of mitochondrial genes was 87.7%, whereas those of all other clusters

were lower than 10.5%. Markers for each cluster were identified using a Wilcoxon rank sum test with only.-

pos = TRUE, min.pct = 0.25, and logfc.threshold = 0.25. According to the UMAP plot, cluster 6 was found to

consist of several sporadic sub-clusters. We isolated cells within cluster 6 and repeated the procedures

from normalization to dimensionality reduction. These cells were then clustered using the original Louvain

algorithm with resolution = 0.6. Markers were also identified as described above.
Characterization of 12 lung cell types in scRNA-seq data

Fine cluster annotationwas performed for the retained 12 clusters in scRNA-seqdata according to canonical

markers: alveolar epithelial cells (Sftpa1, Sftpb, Sftpc, and Sftpd), club cells (Scgb1a1,Muc5b, Scgb3a1, and

Scgb3a2), fibroblasts (Col3a1, Col1a2, Col1a1, and Mfap4), endothelial cells (Cdh5, Mcam, Vcam1, and Pe

cam1), monocytes (Cd14 and Itgam), macrophages (Itgax,Cd68,Mrc1, andMarco), dendritic cells (Aif1,H2-

DMb1, H2-Eb1, and H2-Aa), neutrophils (Gsr, Pglyrp1, S100a8, and Ly6g), B cells (Ms4a1, Cd79a, Igkc, and

Cd19), T cells (Cd3d, Cd3e, and Cd3g), NK cells (Ncr1 and Nkg7), and erythrocytes (Hbb-bt and Hba-a2).
Spatial transcriptomics data analysis

After imported into R, the filtered UMI count matrix was analyzed using the R package Seurat (version 4.0.1)

(Hao et al., 2021). Regularized negative binomial regression (SCTransform) (Hafemeister and Satija, 2019)

was used to normalize UMI count matrices, and glmGamPoi (Ahlmann-Eltze and Huber, 2021) was invoked

in the procedure to improve the speed of the normalization. Fourmatrices from the four slices weremerged

to analyze them together. 3,000 highly variable genes were identified in each matrix, and the union set of

them was set as highly variable genes for the merged data and used in principal component analysis to

reduce dimensionality. We determined to use the first 30 principal components in clustering analysis ac-

cording to the elbow plot. UMAP dimensionality reduction (McInnes et al., 2018) was performed with the

first 30 principal components as input to visualize spots.
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Deconvolution of spatial transcriptome

Deconvolution for each spot in the four slices was performed using the robust cell-type decomposition

(RCTD) method (Cable et al., 2022). Before running the R package RCTD (version 1.2.0), scRNA-seq data

used as a reference were processed, with gene expressionmatrix, the annotation for each cell, and the total

UMI count for each cell extracted and saved in the RDS object. Spatial transcriptome for the four slices was

also processed, with spot location matrices, gene expression matrices, and the total UMI count for each

spot extracted and saved in the RDS object.

RCTDobjects were created for each slice from the processed RDS objects, withmax_cores = 24, test_mode= F,

andCELL_MIN_INSTANCE= 6. RCTDpipeline was run on the RCTDobjects, with doublet_mode= full. The de-

convolution results were matrices of celltype weights for each spot. The celltype weights were normalized to

make the sum of celltype weights in each spot equal to 1. Proportion matrices, whose rows indicate spots and

columns indicate cell types, were then created and stored in the analyzed spatial transcriptome for loading.

In total, three scRNA-seq references were used in deconvolution, which were in-house scRNA-seq data with

12 cell types, in-house scRNA-seq data with 15 cell types (including four subtypes of T cells), and public

scRNA-seq data with 20 cell types.

Pearson correlation coefficients between the columns (indicating different cell types) of the two proportion

matrices deconvoluted using in-house (12 cell types) and public (20 cell types) references were calculated in

each slice. Correlation r matrices were hierarchically clustered and visualized in heatmaps.
scATAC-seq data analysis

After imported into R, the filtered peak count matrix was analyzed using the R package Signac (version

1.1.1) (Stuart et al., 2020). Gene annotations were extracted from Ensembl release 79 of the mm10 mouse

reference genome. Nucleosome signal score and Transcriptional Start Site (TSS) enrichment score per cell

were calculated for further check of the quality of cells. Cells whose fraction of fragments in peaks > 15, ratio

of reads in genomic blacklist regions < 0.05, nucleosome signal score < 4, and TSS enrichment score > 2

were retained for downstream analysis. Latent Semantic Indexing (LSI) (Cusanovich et al., 2015), which is a

combined step of Term Frequency–Inverse Document Frequency (TF-IDF) followed by Singular Value

Decomposition (SVD), was used to normalize and reduce the dimensionality of peak count data, with all

the peaks selected as variable features. We found the first LSI component was highly correlated with

sequencing depth and determined to use the second to the fortieth LSI components in non-linear dimen-

sionality reduction. UMAP dimensionality reduction (McInnes et al., 2018) was performed with the second

to the fortieth LSI components as input to visualize cells.
Label transferring from scRNA-seq data to scATAC-seq data

A gene activity matrix was created in scATAC-seq data by counting the number of fragments mapping to

promoter or gene body regions of all protein-coding genes for each cell. Regularized negative binomial

regression (SCTransform) (Hafemeister and Satija, 2019) was used to normalize the gene activity matrix.

Transfer anchors were identified by canonical correlation analysis between the normalized gene activity

matrix in scATAC-seq data and the normalized gene expression matrix in scRNA-seq data (Stuart et al.,

2019). Annotations were then transferred from scRNA-seq to scATAC-seq data with the second to the

fortieth LSI components in scATAC-seq data used for weighting anchors. Canonical markers were checked

in the gene activity matrix for each predicted celltype. The proportions of 12 cell types were also compared

between scRNA-seq and scATAC-seq data.
Characterization of four subtypes of T cells in scATAC-seq data

We isolated predicted T cells in scATAC-seq data and repeated the procedures from normalization to non-

linear dimensionality reduction. Using the SNN graph leveraging the second to the fortieth LSI compo-

nents as input, T cells were then clustered into four subtypes using the Smart Local Moving (SLM) algorithm

with resolution = 0.2.

Markers for each subtype were identified in the gene activity matrix using a Wilcoxon rank sum test with

only.pos = TRUE, min.pct = 0.25, and logfc.threshold = 0.25. Differential accessible analysis was performed

between the possible Th17 and Th1 cells using logistic regression, with fraction of fragments in peaks set as
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latent variable and min.pct = 0.1. Peaks in genomic regions around (including all the differentially acces-

sible regions or 10,000 bps apart from the gene bodies) canonical markers for Th17 and Th1 cells were visu-

alized. Motif footprinting analysis was also performed to provide supportive evidence. Taken together, four

subtypes of T cells were annotated according to canonical markers: Th17 cells (Il17a, Rorc, and Rora), Th1

cells (Ifng and Tbx21), other T cells 1, and other T cells 2.
Label transferring from scATAC-seq data to scRNA-seq data

We isolated annotated T cells in scRNA-seq data and repeated the procedures from normalization to non-

linear dimensionality reduction. Transfer anchors were identified by canonical correlation analysis between

the normalized gene activity matrix of T cells in scATAC-seq data and the normalized gene expression ma-

trix of T cells in scRNA-seq data (Stuart et al., 2019). Annotations were then transferred from T cells in scA-

TAC-seq to T cells in scRNA-seq data with the first 50 principal components in T cells from scRNA-seq data

used for weighting anchors.
Characterization of four subtypes of T cells in scATAC-seq data

Canonical markers were checked for the predicted subtypes of T cells in scRNA-seq data (Rorc, Rora, Ccr6,

and Ccr4 for Th17 cells; Ifng, Tbx21, Cxcr3, Ccr5, and Il12rb2 for Th1 cells). Markers for each predicted sub-

type of T cells were identified using a Wilcoxon rank sum test with only.pos = TRUE, min.pct = 0.25, and

logfc.threshold = 0.25.

To detect active transcription factor (TF) modules, the R package SCENIC (version 1.2.4) (Aibar et al., 2017; Van

deSande et al., 2020) was used to analyze the annotated scRNA-seq data, including 15 cell types. We down-

loaded theRcisTargetdatabase containing transcription factormotif scores for genepromoter andaroundTran-

scription Start Site (TSS) for mm10 mouse reference genome from (https://resources.aertslab.org/cistarget/

databases/mus_musculus/mm10/refseq_r80/mc9nr/gene_based/). The gene expressionmatrix was filtered ac-

cording todefault settings, and 9392 geneswere retained and used to compute a gene-gene correlationmatrix.

Co-expression module detection was performed using the GENIE3 algorithm based on random forest. Tran-

scription factor network analysis was performed to detect co-expression modules enriched for target genes of

each candidate TF from the RcisTarget database, with regulons identified. The R package AUCell (version

1.12.0) was used to compute a score for each TF module in each cell.

Regulon Specificity Score (RSS) was calculated for regulons in each celltype according to area under the

curve (AUC) of regulons. Cell-type specific regulators were then identified, and those for the four subtypes

of T cells were visualized to provide supportive evidence (Rora_extended (15g) for Th17 cells).
Same-spot co-occurrence analysis

Pearson correlation coefficients between the columns (indicating different cell types) of the proportion

matrices were calculated in each slice to broadly assess spatial celltype co-occurrence in the same spot.

Spots from the slices for the immunized (slice A1 and A2) or the re-challenged mouse (slice A3 and A4)

were pooled together, respectively, and Pearson correlation coefficients were also calculated for them.

Correlation r matrices were hierarchically clustered and visualized in heatmaps.
Defining airways and blood vessels in four slices

Airways were defined according to the proportion of club cells in four slices. Wemanually set the thresholds

in each slice to match the selected spots with the histological airways. Spots whose proportion of club cells

is higher than the thresholds were defined as airways (20% for slice A1, 20% for slice A2, 10% for slice A3,

and 10% for slice A4).

Blood vessels were defined according to the histological blood vessels. We created a training set using

manual annotation of histological structures in the image of slice A1 and trained a random trees pixel clas-

sifier using QuPath (version 0.2.3) (Bankhead et al., 2017) with downsample = 16. The probability of blood

vessels was predicted for each pixel in the image of four slices using the trained classifier. If the probability

of blood vessels in the spot corresponding pixel was higher than 0.5, the spot would be defined as blood

vessels.
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Alternatively, the proportion of club cells and the expression ofMgpwere used to define airways and blood

vessels with different cut-offs, from 90th quantile to 95th quantile. Spots whose proportion or expression is

higher than the selected quantile were defined as airways or blood vessels.

Spatial transcriptomics spot distance-based analyses

For all distance-based analyses, spots defined as blood vessels and spots whose distances to the airways

are longer than 1,000 mmwere excluded. Because cells within the blood vessels were different from those in

the lung parenchyma, and the analyses including cells extremely distal to the airways were not stable, given

the capture area of each slice was only 6.53 6.5mm2. Only a few spots’ distances to the airways were longer

than 1,000 mm (5.89% for slice A1, 5.75% for slice A2, 15.00% for slice A3, and 11.43% for slice A4).

Weighted distances to the airways for Th17 and Th1 cells were calculated in four slices according to the

formula, allowing for each spot’s distance to the nearest airway and the proportions of Th17 and Th1 cells

in each spot.

To find the spatial distribution patterns of cell types, natural spline regression (with three degrees of

freedom) was performed to fit the non-linear relationship between the proportions of cell types and the

distances to the airways.

To identify distance-associated genes, we constructed natural splines (with three degrees of freedom) for

the distances to the airways in each slice and created design matrices. We then fitted linear models for each

gene in normalized gene expressionmatrices, with the R package limma (version 3.46.0) (Ritchie et al., 2015)

invoked to speed up the procedure. p-values for each spline in each slice were corrected for multiple

testing using Benjamini-Hochberg correction. Genes with FDR-adjusted p-values < 0.05 for at least one

spline were considered significant in that slice. And genes significant in both slices for the immunized (slice

A1 and A2) or the re-challenged mouse (slice A3 and A4) were defined as distance-associated genes.

Gene ontology (GO) enrichment analysis

Gene ontology enrichment analysis was performed on the distance-associated genes identified in the

immunized and re-challenged mouse using PANTHER Classification System (version 16.0) (Ashburner

et al., 2000; Mi et al., 2019; The Gene Ontology Consortium, 2021). GO biological process complete was

used as annotation dataset, and the analysis was performed using Fisher’s exact test, with FDR adjustment

for multiple testing. Over-represented pathways were then hierarchically clustered.

Differential expression analysis

Differential expression analysis was performed to compare the airways in the re-challenged mouse versus

the immunized mouse using the R package MAST (version 1.16.0) (Finak et al., 2015). MAST procedure was

invoked in Seurat FindMarkers function (test.use = MAST) with logfc.threshold = 0, min.pct = 0, in order to

obtain an unfiltered gene list. The gene list was then ranked by log2-fold change (L2FC). Genes whose L2FC

is equal to 0 were excluded because their ranks were not available.

Gene Set Enrichment Analysis (GSEA)

To overcome the limitations of the analysis based on manually selected DEGs, Gene Set Enrichment Anal-

ysis (GSEA) (Subramanian et al., 2005) was performed on the unfiltered, ranked gene list (including 16,937

genes) using the R package clusterProfiler (version 3.18.1) (Yu et al., 2012). The parameters for the cluster-

Profiler gseGO function were set as ont = BP, keyType = SYMBOL, nPerm = 10,000, minGSSize = 3, maxGS-

Size = 800, pvalueCutoff = 0.05, OrgDb = org.Mm.eg.db, pAdjustMethod = fdr. The top 30 (by normalized

enrichment score) up-regulated and down-regulated pathways were then visualized by a lollipop plot.

Defining cell-type enriched spot in spatial transcriptomics data

The expression profile of each spot in spatial transcriptomics is a mixture of a few cells, and it is irrational to

annotate a spot with a cell type directly. To perform cell-cell communication analysis of spatial transcrip-

tome, we annotated spots as cell-type enriched spots according to their proportions of cell types.

The mean proportions of cell types were available for each slice, as well as the number of spots for each

slice. The mean proportions could be interpreted as the expected proportions of cell types in each
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spot. The product of the mean proportions and the number of spots could be interpreted as the average

spots representing each cell type. The spots with the highest proportions were selected according to the

product and defined as cell-type enriched spots. Spots defined as cell-type enriched spots for multiple cell

types were then excluded.

For example, the mean proportion of club cells was 6.39% in slice A1, and the number of spots was 3,689 in

slice A1. Thus, the top 236 spots with the highest proportion of club cells were defined as club cell enriched

spots. A spot would be excluded if the spot was defined as a club cell enriched spot and a Th17 enriched

spot simultaneously.
Cell-cell communication analysis of spatial transcriptome

Cell-cell communication analysis was performed using CellChat (Jin et al., 2021). Before running the R

package CellChat (version 1.1.0), spatial transcriptome for the four slices was processed, with normalized

gene expression matrices, the annotations for cell-type enriched spots extracted and saved in the

CellChat object. The processed data from both slices for the immunized (slice A1 and A2) or the re-chal-

lenged mouse were also pooled together and saved in the CellChat objects to compare the differences

between the two mice.

A manually curated database of literature-supported ligand-receptor interactions in mouse was loaded for

the analysis. And all ligand-receptor interactions, including paracrine/autocrine signaling interactions,

extracellular matrix (ECM)-receptor interactions, and cell-cell contact interactions, were included in the

analysis.

Over-expressed ligands or receptors were first identified for each type of cell-type enriched spots in each

CellChat object. Over-expressed ligand-receptor interactions were also identified if either ligand or recep-

tor was over-expressed. Then, we computed the communication probability and inferred the cellular

communication network according to default settings. The communication probability at signaling

pathway level was computed by summarizing the communication probabilities of all ligand-receptor inter-

actions associated with each signaling pathway. The aggregated cell-cell communication network was

calculated by counting the number of links or summarizing the communication probability and visualized

in four slices using heatmaps.

To figure out in which type of cell-type enriched spots interactions significantly changed in the re-chal-

lenged mouse versus the immunized mouse, differential interaction strength was identified and visual-

ized using a heatmap. The conserved and context-specific signaling pathways were identified by

comparing the information flow for each signaling pathway, which was defined by the total weights in

the network. Selected signaling pathways were visualized by circle plots using CellChat netVisual_aggre-

gate function.
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