
RESEARCH ARTICLE

Integrated experimental-computational

analysis of a HepaRG liver-islet

microphysiological system for human-centric

diabetes research

Belén CasasID
1,2, Liisa Vilén1, Sophie Bauer3, Kajsa P. Kanebratt1, Charlotte Wennberg

Huldt4, Lisa Magnusson4, Uwe Marx3, Tommy B. Andersson1, Peter GennemarkID
1,2‡,

Gunnar CedersundID
2,5‡*

1 Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and

Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden, 2 Department of
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Abstract

Microphysiological systems (MPS) are powerful tools for emulating human physiology and

replicating disease progression in vitro. MPS could be better predictors of human outcome

than current animal models, but mechanistic interpretation and in vivo extrapolation of the

experimental results remain significant challenges. Here, we address these challenges

using an integrated experimental-computational approach. This approach allows for in silico

representation and predictions of glucose metabolism in a previously reported MPS with two

organ compartments (liver and pancreas) connected in a closed loop with circulating

medium. We developed a computational model describing glucose metabolism over 15

days of culture in the MPS. The model was calibrated on an experiment-specific basis using

data from seven experiments, where HepaRG single-liver or liver-islet cultures were

exposed to both normal and hyperglycemic conditions resembling high blood glucose levels

in diabetes. The calibrated models reproduced the fast (i.e. hourly) variations in glucose and

insulin observed in the MPS experiments, as well as the long-term (i.e. over weeks) decline

in both glucose tolerance and insulin secretion. We also investigated the behaviour of the

system under hypoglycemia by simulating this condition in silico, and the model could cor-

rectly predict the glucose and insulin responses measured in new MPS experiments. Last,

we used the computational model to translate the experimental results to humans, showing

good agreement with published data of the glucose response to a meal in healthy subjects.

The integrated experimental-computational framework opens new avenues for future inves-

tigations toward disease mechanisms and the development of new therapies for metabolic

disorders.
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Author summary

Microphysiological systems (MPS) are powerful tools to unravel biological knowledge

underlying disease. MPS provide a physiologically relevant, human-based in vitro setting,

which can potentially yield better translatability to humans than current animal models

and traditional cell cultures. However, mechanistic interpretation and extrapolation of the

experimental results to human outcome remain significant challenges. In this study, we

confront these challenges using an integrated experimental-computational approach. We

present a computational model describing glucose metabolism in a previously reported

MPS integrating liver and pancreas. This MPS supports a homeostatic feedback loop

between HepaRG/HHSteC spheroids and pancreatic islets, and allows for detailed investi-

gations of mechanisms underlying type 2 diabetes in humans. We show that the computa-

tional model captures the complex dynamics of glucose-insulin regulation observed in the

system, and can provide mechanistic insight into disease progression features, such as

insulin resistance and β-cell dynamics. Furthermore, the computational model can

explain key differences in temporal dynamics between MPS and human responses, and

thus provides a tool for translating experimental insights into human outcome. The inte-

grated experimental-computational framework opens new avenues for future investiga-

tions toward disease mechanisms and the development of new therapies for metabolic

disorders.

1 Introduction

Type 2 diabetes mellitus (T2DM) is a complex multifactorial disease characterized by impaired

glucose homeostasis. In healthy individuals, plasma glucose levels are maintained within a nar-

row range (3–9 mM) [1] via a negative feedback between glucose and insulin. Insulin is

secreted in response to elevated glucose levels, increasing glucose uptake in target tissues (adi-

pose, muscle and liver) to restore normoglycemia [2]. In early stages of the development into

T2DM, target tissues become insulin resistant and require higher insulin concentrations to

maintain normal glucose levels [3]. Initially, β cells compensate for insulin resistance through

upregulation of insulin secretion (β-cell adaptation), but over time they may be unable to meet

the increased insulin demand and overt T2DM manifests [4]. While these general steps in the

disease etiology are well established, more detailed knowledge of the interplay between insulin

resistance, pancreatic β-cell adaptation, and the progression of T2DM is still missing.

Currently, research on the pathogenesis and potential therapeutic agents in T2DM is primar-

ily based on in vivo animal models [5]. However, the translatability of these animal-based stud-

ies to human outcome is often limited. One fundamental obstacle for this translation is the

naturally existing phylogenetic difference between the animals typically used in preclinical test-

ing and humans. Some mouse strains commonly used in T2DM research, such as C57BL/6J,

develop insulin resistance on a high-fat diet [6] and a subsequent upregulation of insulin secre-

tion [7]. However, unlike in humans, this increase in insulin secretion is not followed by β-cell

failure, which is one of the hallmark features of human T2DM [8]. Lean rodent models have

also been applied in T2DM research [9], but the development of impaired glucose homeostasis

in these models seems to be a consequence of aberrant β-cell mass [10] and/or β-cell function

[11] rather than insulin resistance. While these models can still be valuable for mechanistic and

mode of action studies, the majority of drug candidates that show promise in preclinical animal

studies ultimately fail to result in functional and safe drugs in humans [12–14]
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Because of aforementioned limitations in using animal studies, there is a critical need for

novel preclinical models that can better represent human physiology and predict in vivo out-

comes. This need has fueled the development of microphysiological systems (MPS), which are

microscale devices capable of replicating human physiology in vitro. By integrating cultures of

human organ-specific cells in a microfluidic platform, these in vitro systems aim to recreate key

microenvironmental aspects of in vivo tissues (flow, multicellular architectures, and tissue-tissue

interfaces), thereby being more physiologically relevant than standard cell cultures [15–17].

We have previously presented a two-organ MPS integrating liver and pancreas, which offers

an advantage over single-organ MPS for studying glucose homeostasis [18]. Recent advances

in MPS technology have led to the development of single organ-MPS for both liver [19–23]

and pancreas [24], which are two major organs involved in the maintenance of glucose homeo-

stasis. However, single organ-MPS have limited relevance for studying metabolic diseases like

T2DM, as the underlying pathophysiology involves disruption in the homeostatic cross-talk

between several organs. Therefore, multi-organ platforms capable of capturing interactions

between two or more organs are best suited for investigating these diseases in vitro. Our previ-

ously developed HepaRG liver-islet MPS supports a homeostatic feedback loop between co-

cultured HepaRG/HHSteC spheroids and pancreatic islets [18]. This MPS allows detailed

investigations of mechanisms underlying T2DM through enabling changes in both the operat-

ing and co-culture conditions in a controlled and systematic manner. For instance, one could

perform changes in the glycemic levels or the composition of the co-culture medium, as well

as in the number and metabolic functions of the co-cultured cells. Moreover, unlike other in
vivo and in vitro models, this experimental setup offers great flexibility to study interactions

between specific subsets of organs. Therefore, assays based on this system could become supe-

rior to animal experiments for studying disease progression and drug metabolism.

However, to improve the applicability of our HepaRG liver-islet MPS, two major challenges

should be addressed. First, there is still limited mechanistic understanding of the physiological

processes in the MPS. Elucidating these mechanisms using a purely experimental approach

would be challenging, as the biological processes underlying glucose-insulin regulation in the

MPS are complex, non-linear, and involve numerous feedback loops. Because of these com-

plexities, relying on qualitative analysis and statistics of the experimental data may often lead

to incorrect conclusions [25,26]. Second, the experimental findings from the system cannot be

directly extrapolated to in vivo, human outcome. Although existing strategies for on-platform

scaling could be applied to achieve in vitro responses that better mimic those observed in vivo,

these have proven insufficient to ultimately establish the translation to humans [27]. These two

challenges could be confronted using computational modelling. More specifically, computa-

tional modelling provides a framework to quantitatively represent the system including its

nonlinearities and feedback loops, integrate and interpret the experimental measurements,

infer physiological variables that cannot be directly measured in vitro, and enable in vitro to in
vivo translation.

While several studies have shown the added value of combining computational models with

multiorgan MPS for data interpretation, these have mainly focused on pharmacokinetic (PK)

[28–31] and in some cases pharmacokinetic/pharmacodynamic (PKPD) strategies [32,33],

rather than providing mechanistic understanding of the underlying physiology. Some efforts

have been done to integrate MPS with more descriptive models, often referred to as quantitative

systems pharmacology (QSP) models [27,34]. These models generally incorporate physiological

parameters describing the MPS operating conditions, such as organoid sizes and flow rates, and

more mechanistic knowledge about the physiology of the system. However, to date, the number

of studies exploring this approach is still limited [35–38], especially for studying glucose metab-

olism. A few studies have also focused on computational strategies to extrapolate the in vitro
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responses to human proportions. Typically, these strategies account for constraints in the in
vitro setting that limit the capability of the MPS to reproduce human-like responses. These con-

straints generally include sizes of the organoids and the co-culture media, mismatches in

media-to-tissue ratio and the fact that some organs and functions are missing in the MPS

[39,40]. In a recent study, Lee et al. [41] presented a computational model for a pancreas-muscle

MPS to study glucose metabolism, and added a liver compartment in silico to improve the phys-

iological relevance of glucose and insulin dynamics in the system. However, the model was con-

structed using experimental data from individual cultures of myoblasts and pancreatic cells

from rodents, and did not incorporate measurements from interconnected co-cultures that

could reflect organ cross-talk. Despite the crucial role of the liver-pancreas cross-talk in main-

taining glucose homeostasis, the combination of a mechanistic computational model and an

MPS emulating the interaction between these organs has not been investigated yet.

In this study, we propose combining our HepaRG liver-islet MPS with a computational

model to augment in vitro investigations of human glucose homeostasis in healthy and hyper-

glycemic conditions mimicking high blood glucose levels in T2DM. Our aim is to use the

model to integrate and quantitatively analyze the experimental data to improve their mecha-

nistic interpretation, generate model predictions and, ultimately, extrapolate the results from

in vitro to in vivo. The possibility to generate human-relevant predictions from in vitro experi-

ments at a relatively low cost could reduce the need for animal models of T2DM in the future.

2 Materials and methods

2.1 In vitro experiments

To construct, calibrate and evaluate the computational model we used data from seven inde-

pendent in vitro MPS experiments (S1 Table). Each experiment corresponds to a different

donor of pancreatic islets and involves measurements on several chips, each of them including

two platform replicates (Fig 1A and 1B). Across all experiments, the number of platform repli-

cates used in the experiment was 5 ± 2 (range 4–10), Two of the experiments (experiments 1

and 2) have already been published in [18]. In the following section, we describe the materials

and methods for the five experiments performed for this study.

2.1.1 Multi-organ chip platform. To co-culture HepaRG/HHSteC spheroids and pancre-

atic islet microtissues (from now on referred to as HepaRG/HHSteC spheroids and pancreatic

islets, respectively), we used the Chip2 from TissUse which allows for simultaneous culture of

two organ models in spatially separated, but interconnected culture compartments (Fig 1A

and 1B). Details on the design and fabrication process of the Chip2 are described in prior pub-

lications [42,43]. The culture compartments are connected by a microfluidic channel, with an

on-chip micropump driving a continuous pulsatile flow that supports long-term perfusion of

the chip-cultured three-dimensional (3D) cell constructs. Both culture compartments contain

300 μL of culture medium and the microfluidic channels hold additional 5 μL of medium. The

average volumetric flow rate between the compartments was set to 4.94 μL/min, resulting in

an approximate medium turnover time of 2 h.

2.1.2 Pre-culture of HepaRG/HHSteC spheroids and pancreatic islets. Human,

HepaRG/HHSteC spheroids were formed in 384-well spheroid microplates (3830, Corning) by

combining differentiated precultured HepaRG cells (Lot HPR116189, HPR116239, HPR116246,

HPR116NS080003 or HPR116222; Biopredic International; France) and passaged primary

human hepatic stellate cells (HHSteC) (Lot PFP; passage 4–6, BioIVT; USA) at a rat

io of 24:1 as previously described [18]. The HepaRG cells are terminally differentiated hepatic

cells derived from a human liver progenitor cell line, which retain a similar expression profile

compared to primary human hepatocytes of genes relevant for the glucose metabolism and
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remain responsive to insulin [18,44]. HepaRG pre-cultures and HepaRG/HHSteC spheroids

were maintained in Williams’ medium E supplemented with 10% FBS, 2 mM L-glutamine,

50 μM hydrocortisone hemisuccinate, 50 μg/ml gentamycin sulfate and 0.25 μg/ml amphotericin

B. Glucose and insulin concentrations in the HepaRG maintenance medium were set according

to the glycemic level used in the MPS culture. For cultures in hyperglycemia, normoglycemia or

hypoglycemia, the pre-culture medium contained 11 mM glucose and 860 nM insulin, 5.5 mM

glucose and 1 nM insulin, or 2.8 mM glucose and 0.1 nM insulin, respectively. The medium used

for the pre-cultured HepaRG cells was additionally supplemented with 2% DMSO, while this

was omitted in the medium for spheroid formation in order to avoid harmful effects on the

human hepatic stellate cells. Human pancreatic islets were purchased from InSphero (MT-04-

002-0; Switzerland) and maintained in 3D InSight Human Islet Maintenance Medium (CS-07-

005-02; InSphero) until the MPS culture. The pancreatic islets used in this study were reaggre-

gated from dispersed human pancreatic islets retaining the composition of α, β and δ cells repre-

sentative of normal human pancreatic islets, and did not include exocrine cells.

The pancreatic islet donors included five men, with an age of 54 ± 5 years (range 45–57

years), body mass index (BMI) 28 ± 2 kg/m2 (range 27–30 kg/m2), hemoglobin A1c (HbA1c)

Fig 1. In vitro experiments. (A) A 3D view of the Chip2 (copyright by TissUse GmbH). (B) Illustration of the Chip2 from underneath, including liver (blue) and

pancreas (orange) compartments, the microfluidic channel, and the on-chip micropump. The arrow indicates the direction of flow between culture compartments.

The Chip2 comprises two replicate platforms. (C) Generic study design used in the experiments performed in the study. In five independent MPS experiments

(N = 5), co-cultures or single organ-cultures were exposed to either hyperglycemia (11 mM glucose, N = 5, red), normoglycemia (5.5 mM glucose, N = 3, green) or

hypoglycemia (2.8 mM glucose, N = 1, yellow). Medium exchanges occurred every 48 h (vertical black arrows) and glucose tolerance tests (GTTs) were performed

on indicated days (horizontal gray arrows). GTT d13-15 was initiated by adding co-culture medium with 11 mM glucose into each of the culture compartments. In

GTT d1-3, the glucose concentration in the co-culture medium was set to the glycemic level corresponding to each regime (11 mM, 5.5 mM and 2.8 mM for co-

cultures exposed to hyperglycemia, normoglycemia and hypoglycemia, respectively). Samples of the medium were taken 0, 8, 24 and 48 h after the start of the GTT.

Figure created with BioRender.

https://doi.org/10.1371/journal.pcbi.1010587.g001
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5.6 ± 0.3% (range 5.1–5.8%) with no known history of diabetes. All cell cultures were main-

tained at 37˚C and 5% CO2.

2.1.3 MPS cultures. Before transferring HepaRG/HHSteC spheroids and pancreatic islets

into the Chip2, both were washed twice with 0.1% BSA in 1xPBS and pre-incubated in insulin-

free HepaRG maintenance medium for 2 hours. In our previous study, we showed that the

HepaRG/HHSteC spheroids were sensitive to insulin following the pre-culture period and

prior to the beginning of the co-culture, by quantifying AKT phosphorylation [18]. To setup

the co-culture, 40 HepaRG/HHSteC spheroids and 10 pancreatic islets were placed into the

liver and pancreas compartments, respectively. In comparison to their respective human coun-

terparts, this corresponds to a downscaling factor in the order of 100,000 in both organs

[45,46]. In single-liver cultures, 40 HepaRG/HHSteC spheroids were added into the liver com-

partment while keeping the pancreas compartment empty. Both the co-cultures and single-

organ cultures were maintained in insulin-free HepaRG medium (referred as co-culture

medium from here on) with glucose concentration of 11 mM, 5.5 mM or 2.8 mM depending

on the glycemic regime (Fig 1C). The co-culture culture medium with respective glucose level

was changed first after 24 hours and then after every 48 hours over the culture period of 15

days. In each individual experiment, all glycemic levels were studied in 4–10 replicates.

2.1.4 In vitro glucose tolerance test. Regulation of glucose homeostasis as a result of

organ cross-talk was assessed by in vitro glucose tolerance tests (GTTs) [18]. On day 13,

315 μL of co-culture medium with 11 mM glucose was added into each of the two culture com-

partments and samples of 15 μL were collected after 0, 8, 24 and 48 hours. The samples col-

lected from both compartments were pooled together for glucose and insulin analysis,

resulting in a maximal volume decrease of 10% over the entire GTT. Additionally, a similar

sampling scheme was performed on day 1 but keeping the respective glycemic level as indi-

cated for each regime.

2.1.5 Glucose and insulin analysis. Glucose concentrations were determined either using

the GLU 142 kit (Diaglobal, Berlin, Germany) as described previously [18] or using Glucose

Liquid Reagent (1070–400, Stanbio) with minor modifications to the manufacturer’s instruc-

tions. Briefly, 5 μL of culture supernatant was mixed with 95 μL of pre-heated assay reagent

and after 5 min incubation at 37˚C the absorbance was measured at 520 nm. Insulin concen-

trations were measured using Insulin ELISA (10-1113-01, Mercodia) following the manufac-

turer’s instructions.

2.1.6 Glucose-stimulated insulin secretion. After the MPS culture, pancreatic islets were

transferred from the chips into a GravityTRAP plate (InSphero) to analyse their glucose-stim-

ulated insulin secretion (GSIS) as earlier described [18]. In brief, pancreatic islets were equili-

brated in low glucose buffer (2.8 mM) for 2 h followed by sequential 2 h incubations first in

low glucose buffer and then in high glucose buffer (16.8 mM).

2.2 Computational model of the HepaRG liver-islet MPS

We developed a computational model describing glucose metabolism in the HepaRG liver-

islet MPS. The model is based on data from seven independent experiments corresponding to

seven different donors of pancreatic islets (N = 7). The model, outlined in Fig 2, describes key

physiological processes underlying glucose regulation on a short-term (meal response) basis

and the long-term changes in insulin resistance and β-cell adaptation associated with impaired

glucose homeostasis. We included two model compartments, each of them representing a spe-

cific organoid (liver or pancreas) and its corresponding co-culture medium. The compart-

ments are connected in a closed loop, and the medium circulates as specified by a flow rate

parameter.
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The model is based on the long-term glucose, insulin and β-cell mass dynamics proposed

by Topp et al. [47]. Here, we have modified this model to: 1) encompass two model compo-

nents with different time scales: a fast (hours) component for glucose and insulin dynamics

between media exchanges, and a slow (weeks) component describing the development of

hepatic insulin resistance and β-cell adaptation, 2) explicitly establish an interaction between

the fast and slow model components, allowing short-term dynamics of physiological variables

to impact long-term progression of the disease (e.g. effects of daily glucose levels on insulin

resistance and β-cell volume dynamics), 3) support scaling to humans by specifying organ

sizes and operating conditions in the MPS (i.e. flow rate between culture compartments and

co-culture media volumes) and 4) allow inhibition in β-cell insulin secretion over time.

The model was formulated using a system of mass-balanced, non-linear ordinary differen-

tial equations (ODEs), and well-mixed conditions were assumed in each compartment. A

complete description of the model equations including definitions of the metabolic fluxes in

the system is provided in S1 Appendix.

2.2.1 Modelling short-term glucose homeostasis in the co-culture. The short-term glu-

cose homeostasis was modelled in the following way. First, we based our description of glucose

on the glucose equation in the model of Topp et al. [47]. This equation derives from a simplifi-

cation of the minimal glucose model [48] to represent daily average glucose [49]. Glucose con-

tent in the liver compartment culture medium is controlled by glucose dosing to the system,

Fig 2. Graphical illustration of the computational model of the HepaRG liver-islet MPS. The physiological variables described by the model are displayed in

blue and red text boxes. The solid arrows represent changes in these variables, mainly because of metabolic fluxes within each organoid compartment (black

arrows) or between compartments (blue and orange arrows). Interactions between the variables are represented as dashed arrows.

https://doi.org/10.1371/journal.pcbi.1010587.g002
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endogenous glucose production and glucose uptake by the HepaRG/HHSteC spheroids, as

well as glucose inflow from and outflow to the pancreas compartment:

dNGm;liver tð Þ
dt

¼ Gd tð Þ þ VHepaRG;spheroids � EGP tð Þ � VHepaRG;spheroids � EG0 þ SI tð Þ �
NIm;liver tð Þ
Vm;liver

 !

�

NGm;liver tð Þ
Vm;liver

þ Q �
NGm;pancreas tð Þ
Vm;pancreas

� Q �
NGm;liver tð Þ
Vm;liver

mmol=hð Þ ð1Þ

where the symbols in the equation are defined as follows. NGm,liver(t) and NGm,pancreas(t) are

the number of glucose molecules (mmol) in the culture media corresponding to the liver and

pancreas compartments, respectively, and NIm,liver(t) is the number of insulin molecules in the

liver compartment’s co-culture medium (mIU). The glucose input rate Gd(t) (mmol/h) repre-

sents glucose variations due to media exchanges, and EGP(t) describes endogenous glucose

production in the HepaRG/HHSteC spheroids (mmol/L/h). After analysing the experimental

data, EGP(t) was concluded to be negligible based on the observed decline in glucose levels

below normoglycemia (5.5 mM) in the system. Therefore, in practice, EGP(t) was set to zero.

Glucose uptake by the HepaRG/HHSteC spheroids is largely dependent on the insulin-inde-

pendent glucose disposal rate (denoted EG0 (1/h)), but is also enhanced by the action of insulin.

This enhancement accounts for an increased glucose influx through the GLUT2 hepatic trans-

porter as a result of the reduction in intracellular glucose via insulin-induced metabolic path-

ways (e.g. glycogen synthesis and de novo lipogenesis) [3,50]. The variable SI(t) (L/mIU/h)

denotes the insulin sensitivity of the HepaRG/HHSteC spheroids. The parameters representing

operating conditions include the flow rate between culture compartments (denoted Q (L/h)),

the total volume of HepaRG cells in the HepaRG/HHSteC spheroids (VHepaRG,spheroids (L)) and

the volume of co-culture medium in the liver and pancreas compartments (Vm,liver and Vm,pan-

creas (L), respectively), as previously described by Lee et al. [41].

Second, the release of insulin from β-cells in the pancreatic islets was modelled as a sigmoi-

dal function of glucose concentration [49,51,52]:

dNIm;pancreas tð Þ
dt

¼ Vb;islets tð Þ � s tð Þ �

NGm;pancreas tð Þ
Vm;pancreas

� �2

EC502

I þ
NGm;pancreas tð Þ
Vm;pancreas

� �2
þ Q

NIm;liver tð Þ
Vm;liver

� Q
NIm;pancreas tð Þ
Vm;pancreas

mIU=hð Þ ð2Þ

where NIm,pancreas(t) and NIm,liver(t) are the number of insulin molecules (mIU) in the pancreas

and the liver compartment, respectively. Insulin secretion depends on the volume of β cells in

the pancreatic islets (denoted Vβ,islets(t) (L)), the insulin secretion capacity per unit volume of β
cells (denoted σ(t) (mIU/L/h)), and the glucose concentration resulting in half-of-maximum

response to insulin (denoted EC50I (mmol/L)). We account for a decrease in the insulin secre-

tion capacity of the β cells over time, as given by:

s tð Þ ¼ smax � 1 �
t2

aþ t2

� �

mIU=L=hð Þ ð3Þ

Here, we assume that this decrease follows a sigmoidal dependence on time, determined by

the parameter α (h2). The parameter σmax (mIU/L/h) represents the maximal insulin secretion

rate of the β cells (i.e. at the beginning of the co-culture). The parameter α is estimated on an

experiment-specific basis through optimization against the experimental measurements
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(Section 2.3, S3 Table). For large values of this parameter, the decrease in insulin secretion

capacity over time would be negligible.

2.2.2 Modelling hepatic insulin resistance and β-cell dynamics. The dynamics of hepatic

insulin sensitivity SI(t) were modelled under the assumption that insulin responsiveness of the

co-cultured HepaRG/HHSteC spheroids decreases because of sustained exposure to hypergly-

cemia:

SI tð Þ ¼ SI0 � 1 �
Imax;Si � Gint tð Þ

EC50Si þ Gint tð Þ

� �

L=mIU=hð Þ ð4Þ

dGint tð Þ
dt

¼

NGm;liver tð Þ
Vm;liver

� Gnormo

NGm;liver tð Þ
Vm;liver

� Gnormo � 0

0
NGm;liver tð Þ
Vm;liver

� Gnormo < 0

mmol
L

� �

ð5Þ

8
>>>>><

>>>>>:

where SI0 (L/mIU/h) is the insulin sensitivity at the start of the co-culture. SI(t) decreases pro-

gressively as the HepaRG/HHSteC spheroids are exposed to glucose levels above the normo-

glycemic range in the co-culture medium, which we refer to as excess glucose

(
NGm;liver tð Þ
Vm;liver

� Gnormo � 0). Gint tð Þ represents the integral of excess glucose over time. The pro-

posed model captures the hypothesis postulated by Bauer et al. [18] that even short hyperglyce-

mic periods (<24 h) could induce insulin resistance in the co-cultured HepaRG/HHSteC

spheroids, resulting in an increase in glucose levels over time as observed in our system. This is

also consistent with the results from Davidson et al. [53], which reported the development of

insulin resistance in primary human hepatocytes after six days of exposure to a hyperglycemic

culture medium containing 25 mM glucose. In our model, the decrease in SI(t) was repre-

sented by a sigmoidal function with maximal fractional reduction Imax,Si, and with half of the

maximal fractional reduction occurring at EC50Si (mmol h/L).

In the computational model, insulin secretion depends on both the total volume of β cells

in the pancreatic islets and their individual secretion capacity. The β cells adapt to the long-

term (slow) changes in glucose concentration by regulating their rates of replication and apo-

ptosis, as previously described by Topp et al. [47]. This adaptation changes the number of β
cells, with an associated change in total β-cell volume (Vβ,islets(t)) given by:

dVb;islets tð Þ
dt

¼ Replication � Apoptosisð Þ � Vb;islets tð Þ L=hð Þ ð6Þ

Replication ¼ kv � r1;rGslow;pancreas tð Þ � r2;rGslow;pancreas tð Þ
2

� �
ð7Þ

Apoptosis ¼ kv � d0 � r1;aGslow;pancreas tð Þ þ r2;aGslow;pancreas tð Þ
2

� �
ð8Þ

where the rates of replication and apoptosis are modelled as nonlinear functions of glucose

concentration in the medium, on the basis of previous in vitro studies [54–57]. The parameter

d0 is the death rate at zero glucose (h-1) and r1,r, r2,a (L/mmol/h), r2,r, r1,a (L2/mmol2/h) are

parameters that determine the dependence of the replication and apoptosis rates on glucose.

The parameter kv was introduced to account for potential differences in behaviour between

human pancreatic islets in our in vitro system and rodent islets in the model of Topp et al.
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[47]. This parameter is estimated on an experiment-specific basis through optimization against

the experimental measurements (Section 2.3, S3 Table)

We have modified the original insulin secretion model [47] by introducing the variable

Gslow,pancreas(t), which represents the long-term average glucose concentration in the co-culture

medium, as given by:

dGslow;pancreas tð Þ
dt

¼
Gpancreas tð Þ � Gslow;pancreas tð Þ

tslow
mmol=L=hð Þ ð9Þ

where Gpancreas(t) is calculated from the number of glucose molecules in the co-culture medium

corresponding to the islets compartment NGm,pancreas(t) (mmol) and Vm;pancreas ðGpancreas tð Þ ¼
NGm;pancreas tð Þ=Vm;pancreas

Þ and τslow (h) is a time constant that determines the averaging of Gpancreas(t)

over time. Previous in vivo and in vitro studies on rodent pancreatic islets have demonstrated

changes in β-cell mass and proliferation via glucose stimulation on a time scale of days [54,57–

60]. Therefore, the value of τslow was chosen so that Gslow,pancreas(t), represents daily average glu-

cose in the co-culture medium.

The equation describing the dynamics of β-cell volume (Eq 6) can then be rewritten as fol-

lows:

dVb;islets tð Þ
dt

¼ kv � d0 þ r1Gslow;pancreas tð Þ � r2Gslow;pancreas tð Þ
2

� �
� Vb;islets tð Þ L=hð Þ ð10Þ

where r1 = r1,r + r1,a (L/mmol/h) and r2 = r2,r + r2,a (L2/mmol2/h). The formulation for the rate

of change of β-cell number (kv(-d0 + r1Gslow,pancreas(t)−r2Gslow,pancreas(t)2) captures the hypothe-

sis that a small increase in glucose from normoglycemia (i.e. mild hyperglycemia) leads to an

increase in total β-cell volume in order to restore glucose homeostasis, while a higher glucose

concentration drives total β-cell volume down instead [47,49]. Based on the study from Topp

et al. [47], the values of r1 and r2 were chosen to achieve two steady state solutions at glucose

concentrations corresponding to 5.55 and 13.87 mM, resulting in a net increase in β-cell vol-

ume when glucose levels are in the range 5.55–13.87 mM.

2.3 Model calibration

The model has a total of 25 parameters. All the model parameters and the method used to

set their values are listed in Table 1. The parameters describing the flow rate between com-

partments (Q) and the medium volumes in the liver and pancreas compartments (Vm,liver

and Vm,pancreas, respectively) were set to the actual MPS operating conditions during the

experiment. The volume of HepaRG cells in the liver compartment (VHepaRG,spheroids) was

estimated based on the number of HepaRG/HHSteC spheroids in the co-culture (40) and

the number of HepaRG cells per spheroid (24,000), assuming an average hepatocyte vol-

ume of 3.4�10−9 cm3 as reported in [61]. Similarly, the volume of pancreatic β cells at the

start of the co-culture (Vβ,islets(0)) was approximated from the number of pancreatic islets

(10), assuming that the proportion of β cells per islet is approximately 50%, and that each

islet was spherical with a diameter of 150 μm [62].

A subset of parameters characterizing insulin secretion and changes in volume of pancre-

atic β cells (EC50I, d0, r1 and r2) were defined according to values reported in previous studies

[47]. The parameters that define normoglycemic concentrations in the co-culture (Gnormo) and

τslow were approximated based on physiological considerations about the MPS system in the

study, as previously described (Section 2.2). The remaining 12 parameters were estimated on

an experiment-specific basis. Four of these 12 model parameters represent offsets in glucose
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(ΔGd1, ΔGd13) and insulin concentrations (ΔId1, ΔId13) related to co-culture media exchanges

at the beginning of each GTT. Parameter estimation was performed using nonlinear optimiza-

tion, by finding parameter values that provided an acceptable agreement with the experimental

Table 1. Parameters in the computational model. Parameters specified as constant were not included in the parameter estimation routine. The estimated parameter val-

ues for each MPS experiment are listed in S3 Table.

Parameter Description Unit Estimation/reference

Operating conditions

Vm,liver Volume of co-culture medium in the liver compartment L Set based on MPS operating conditions (3�10−4, constant)

Vm,pancreas Volume of co-culture medium in the pancreas compartment L Set based on MPS operating conditions (3�10−4, constant)

VHepaRG,

spheroids

Total volume of HepaRG cells in the MPS L Set based on MPS operating conditions (3.4�10−6, constant)

Vsample,liver Volume of co-culture medium collected from the liver

compartment in each sample

L Set based on MPS operating conditions (1.5�10−5, constant)

Vsample,

pancreas

Volume of co-culture medium collected from the pancreas

compartment in each sample

L Set based on MPS operating conditions (1.5�10−5, constant)

Q Flow rate between culture compartments L/h Set based on MPS operating conditions (2.96�10−4, constant)

Gdose Glucose dose in each media exchange mmol/L Set based on MPS operating conditions (11, 5.5 and 2.8 for hyper-,

normo- and hypoglycemia respectively, constant)

HepaRG/HHSteC spheroids

EG0 Insulin-independent glucose disposal rate 1/h Estimated from data

CLI,spheroids Insulin elimination rate constant 1/h Estimated from data

Insulin resistance (slow model)
Gnormo Glucose concentration for normoglycemia mmol/L Set based on physiological considerations (5.5, constant)

SI0 Insulin sensitivity at the start of the co-culture L/mIU/h Estimated from data

Imax,Si Maximal fractional reduction of insulin sensitivity Estimated from data

EC50Si Value of time integral of excess glucose providing half of the

maximal fractional reduction.

mmol�h/L Estimated from data

Pancreatic islets

σmax Insulin secretion rate of the β cells at the start of the co-culture mIU/L/h Estimated from data

α Parameter defining the sigmoidal dependence of the insulin

secretion capacity on time

h2 Estimated from data

EC50I Glucose concentration resulting in half-of-maximum response to

insulin of the β cells

mmol/L From literature [47] (7.86, constant)

β-cell dynamics (slow model)
d0 Rate of β-cell death at zero glucose 1/h From literature [47] (2.5�10−3, constant)

r1 Rate constant that determines the dependence of the replication and

apoptosis rates on glucose

L/mmol/h From literature [47] (6.3�10−4, constant)

r2 Rate constant that determines the dependence of the replication and

apoptosis rates on glucose

L2/mmol2/

/h

From literature [47] (3.24�10−5, constant)

kv Scaling parameter for the rate of change of β-cell number Estimated from data

τslow Constant for time averaging of glucose concentration h Estimated from literature [54,57–60] (500, constant)

Experimental errors

ΔGd1 Offset in glucose concentration related to co-culture media

exchange in the GTT initiated at day 1 (GTT d1-3)

mmol/L Estimated from data

ΔGd13 Offset in glucose concentration related to co-culture media

exchange in the GTT initiated at day 13 (GTT d13-15)

mmol/L Estimated from data

ΔId1 Offset in insulin concentration related to co-culture media exchange

in in the GTT initiated at day 1 (GTT d1-3)

mIU/L Estimated from data

ΔId13 Offset in insulin concentration related to co-culture media exchange

in in the GTT initiated at day 13 (GTT d13-15)

mIU/L Estimated from data

https://doi.org/10.1371/journal.pcbi.1010587.t001
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data according to the following cost function:

V pð Þ ¼
X

i

X

t

yi tð Þ � ŷi t; pð Þð Þ
2

SEMi tð Þ
2

where i is summed over the number of experimental time-series for the given experiment yi(t)
and ŷi t; pð Þ represents the model simulations and p the model parameters. SEM denotes the

standard error of the mean and t the measured time points in each time-series. Therefore, the

value of the cost function V(p) was calculated over all measured time points for all time-series

considered in the optimization. We used a simulated annealing approach [63] to find the set of

acceptable parameters that provided good agreement with the data according to a statistical χ2

test [64,65]. We chose a significance level of 0.05, and the number of degrees of freedom was

set to the number of data points in the experimental data.

2.4 Software

Computations were carried out in MATLAB R2018b (The Mathworks Inc., Natick, Massachu-

setts, USA) using IQM tools (IntiQuan GmbH, Basel, Switzerland) and the MATLAB Global

Optimization toolbox, as well as in Python (v 3.8.8). The freely available software WebPlotDi-

gitizer 4.3 (https://automeris.io/WebPlotDigitizer) was used to extract the experimental data

from the study by Dalla Man et al. [66]. Figures were prepared using BioRender (https://

biorender.io/) and Illustrator CC 2019 (Adobe).

2.5 Data correction

The number of replicate platforms considered in the study was on average 5, varying between

4 and 10 across the different experiments. Due to this small sample size, we assume that the

measured SEM is an underestimation of the uncertainty in the data and SEM values below 5%

of the corresponding mean are considered unrealistic. To correct for such possible underesti-

mations in data uncertainty, we set the SEM of data points with a measured SEM below 5% of

their mean to the largest measured SEM value across all points in the dataset. In experiments

where all datapoints had a SEM value below 5% of their mean, the SEM was changed to 10% of

their mean instead. The resulting SEM values in each experiment are given as errors bars in

the figures included in the main article and S2 Fig.

3 Results

3.1 The integrated experimental-computational approach

A flow chart of the steps involved in the experimental-computational approach is presented in

Fig 3. First, we developed a computational model for the interplay between glucose and insulin

in the HepaRG liver-islet MPS, describing fast (hours) glucose homeostasis and slow (2 weeks)

changes in insulin sensitivity and β-cell dynamics (Fig 2). We limited the complexity of the

model to represent only mechanisms needed to describe the experimental data in the study,

thereby keeping the model’s size small (12 free model parameters). A complete description of

the model equations, as well as the code used for simulations, are provided in the S1

Appendix.

The next step was to calibrate the model on an experiment-specific basis. To perform this

calibration, the parameters were estimated using the available data from the corresponding

experiment. These data varied among the seven experiments (S1 Table), and comprised com-

binations of the following time-series measurements: 1) glucose and insulin concentrations

during GTTs in co-cultures under two different glycemic regimes (hyper-, and/or
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normoglycemia) and 2) glucose concentrations during GTTs in HepaRG single-liver cultures

under hyperglycemia. The model development and calibration steps were executed in an itera-

tive manner, allowing us to modify the model with each iteration until it was able to accurately

describe the calibration data. The final model resulting from this iterative process is the one

proposed in this paper. Last, we evaluated this model by testing its ability to predict data not

considered during calibration in two of the seven experiments.

3.2 Quantitative analysis of the mechanisms behind impaired glucose

homeostasis over 15 days of co-culture

We applied the computational model to quantitatively describe the physiological processes

behind impaired glucose homeostasis in the liver-islet co-cultures. We calibrated the model using

data from an experiment where both liver-islet and single-liver cultures were exposed to hypergly-

cemic conditions mimicking high plasma glucose in T2DM (experiment 2 [18]). Fig 4A–4C

shows a comparison between the model simulations and the experimental measurements used

for calibration, which included time-series data of both glucose and insulin concentrations during

GTTs in the co-cultures (Fig 4A and 4C respectively, red markers), and glucose concentration in

the single-liver cultures (Fig 4B, blue markers). The estimated parameter values provided an

acceptable agreement between the model simulations (Fig 4A–4C, lines) and the data (Fig 4A–

4C, markers), as determined by χ2 statistics (S2 Table). This agreement is statistically supported

by the fact that the model passes a χ2 test at significance level α = 0.05, with a value of the cost for

the optimal parameter set popt lower than the χ2-threshold (V(popt) = 21.62<31.41).

As shown in Fig 4A, glucose levels in the liver-islet co-culture during the GTT initiated at

day 1 (GTT d1-3) reached a glucose concentration of 7.45 ± 0.63 mM, within the normoglyce-

mic range (3.9–7.8 mM) [18], within eight hours. On the contrary, we observed a slower glu-

cose consumption after 13 days of co-culture, with a glucose concentration of 8.77 ± 0.74 mM

eight hours after the start of the GTT. In contrast, in single-liver cultures, glucose levels

remained within hyperglycemia for the entire co-culture period (Fig 4B). These changes in glu-

cose dynamics were accompanied by a decrease in insulin concentration levels over time, as

seen in Fig 4C. We used the modelling approach to infer variables that could mechanistically

describe the physiological changes underlying these alterations in glucose regulation and β-cell

function. According to the model, insulin sensitivity in the HepaRG/HHSteC spheroids

decreases progressively as they are exposed to hyperglycemic periods during the co-culture

(Fig 4E). The sustained hyperglycemic levels are quantified in the model as the integral of

excess glucose (difference between glucose levels in the co-culture media and 5.5 mM) over

time (Fig 4D). This decline in insulin sensitivity potentially leads to reduced glucose utilization

by the HepaRG/HHSteC spheroids, resulting in higher daily glucose levels over time (Fig 4F).

In turn, the model suggests an increase in the number of β cells to compensate for the rise in

glucose levels, and therefore β-cell volume increases (Fig 4G). However, besides this adaptation

in β-cell volume, the secretion capacity of the individual β cells decays (Fig 4H). These com-

bined effects result in a decline in circulating insulin levels over the 15-day co-culture period,

in agreement with the experimental measurements (Fig 4C). The model predicted a decrease

in insulin sensitivity for all acceptable parameters, with an average and maximal decrease in

insulin sensitivity of 7.5% and 66% of its initial value, respectively, across all parameter values.

We estimated parameters for each MPS experiment individually to fit the corresponding mea-

surements of glucose and insulin, and achieved an acceptable agreement between the model sim-

ulations and the experimental data (S2 Table). A comparison between the model simulations

and the experimental measurements for the seven experiments included in the study is shown in

S2 Fig. The estimated parameter values for each MPS experiment are listed in S3 Table.
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3.3 Investigating the effect of glycemic regimes on glucose metabolism

To further investigate the effect of glycemic levels on HepaRG/HHSteC spheroid-pancreatic islet

cross-talk, we applied the computational model to leverage data from experiments under varying

glycemic conditions. We performed in vitro experiments where co-cultures were exposed to both

normo- and hyperglycemic glucose levels emulating healthy and T2DM conditions, respectively.

Fig 3. Flow chart illustrating the steps in the modelling approach. (A) Model development: The computational model includes a fast component governing daily

interactions between glucose and insulin, and a slow component describing the development of insulin resistance and pancreatic β-cell compensation. (B) Model

calibration: The parameters in the model were estimated individually for each of the seven experiments (N = 7). Experimental data used for calibration (C) includes time-

series measurements of glucose and insulin from both co-cultures and single-liver cultures, as well as from co-cultures exposed to different glycemic regimes (hyper- and

normoglycemia). These measurements were acquired during 48-hour GTTs initiated at day 1 or day 13. (D) Model evaluation: The model was evaluated against

independent data not used in the calibration step. This evaluation was performed in two of the seven experiments (N = 2) in which we acquired additional in vitro
measurements to compare against the model predictions.

https://doi.org/10.1371/journal.pcbi.1010587.g003
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By using the computational model, we sought to interpret the experimental results in relation to

the changes in pancreatic β-cell function and impaired glucose tolerance.

Fig 4. Model-based analysis of the physiological processes behind impaired glucose homeostasis in the co-culture. The results correspond to experiment 2 [18]. A-C:

Comparison between experimental measurements (markers) and model simulations (lines) of glucose concentration in the co-cultures (A), in single-liver cultures (B),

and insulin concentration in the liver-islet co-cultures (C). Co-cultures were exposed to hyperglycemic medium (11 mM glucose) at each media exchange (grey arrows).

Experimental time-series were acquired during GTTs initiated at day 1 (GTT d1-3) and day 13 (GTT d13-15). The mechanistic variables inferred by the model, which can

explain the experimental data in (A-C) are shown in (D-H). (D) Time-integral or area under the curve (AUC) of excess glucose (i.e. difference between glucose levels in

the co-culture media and 5.5 mM) over time. This accounts for the effect of exposing the HepaRG/HHSteC spheroids to periods of hyperglycemia during the co-culture

time, with the associated decrease in hepatic insulin sensitivity (E) and rise in daily average glucose levels (F). Changes in β-cell insulin-producing capacity predicted by

the model are caused by an increase in pancreatic β-cell volume (G) and a decay in the individual secretion capacity of β cells over time (H). Model uncertainty is depicted

as shaded areas in panels A-H. Data in panels A-C are presented as mean ± SEM, n = 5. n: Number of platform replicates included in the experiment.

https://doi.org/10.1371/journal.pcbi.1010587.g004
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We assessed how repeated exposure of the co-cultures to two different glycemic conditions

(hyper- and normo-glycemia) impacted their response to a glucose load. To do so, the co-cul-

tures were exposed to either hyper- or normoglycemic glucose levels (11 mM or 5.5 mM glu-

cose, respectively) at each medium exchange during the first 13 culture days. In the

hyperglycemic co-cultures, we performed a GTT at day 1 (GTT d1-3, Fig 5A and 5B) to evalu-

ate glucose tolerance at the beginning of the co-culture. We then performed GTTs on day 13

(GTT d13-15, Fig 5A and 5B) on both hyper- and normoglycemic co-cultures, to establish a

comparison with the response from the initial GTT for both glycemic regimes. The GTT initi-

ated at day 1 was only performed in the co-cultures maintained under hyperglycemia, to avoid

exposure of HepaRG/HHSteC spheroids in normoglycemia to high glucose levels in the begin-

ning of the co-culture.

To calibrate the model, we estimated the model parameters using data from both normo-

and hyperglycemic conditions simultaneously. Only the parameters corresponding to glucose

offsets due to media exchanges (ΔGd1, ΔGd13) were estimated for each condition indepen-

dently. Furthermore, the parameter describing glucose dosing to the system (Gd) was set

accordingly for each condition (11 mM or 5.5 mM). Analysis of the model simulations indicate

that HepaRG/HHSteC spheroids exposed to normoglycemic conditions over the co-culture

period exhibited higher insulin sensitivities than those maintained under hyperglycemia (Fig

5C). Thus, although insulin levels in hyperglycemic conditions during the GTT performed at

day 13 were higher than those under normoglycemia (by 4-fold 24 h after the start of the GTT,

Fig 5B), glucose levels were comparable for both glycemic regimes (Fig 5A). These results are

in line with our previous observations on the possible development of insulin resistance due to

exposure to high glucose levels (Fig 4). The observed differences in insulin secretion between

hyper- and normoglycemia (Fig 5B) could also be reproduced by the model. These differences

could be explained by the bell-shaped relationship between average glucose levels in the co-

culture and the net change of β-cell volume (Eq 10). In the experiments under hyperglycemia,

daily average glucose levels varied between 5.5 mM and 7.2 mM over the the 15-day co-culture

period (Fig 5D). Thus, the model predicted a net increase in β-cell volume (Fig 5E), as these

values lie within the range of glucose levels for increased rate of change of β-cell number (i.e.

replication minus apoptosis) suggested by Topp et al. [52], which is set to 5.55–13.87 mM

based on the study from Topp et al. [47]. On the contrary, daily average glucose levels in co-

cultures maintained under normoglycemia were within the range of 5.0–5.5 mM (Fig 5D) pos-

tulated to lead to a decrease in β-cell volume (Fig 5E) and the resulting decay in insulin secre-

tion compared to hyperglycemia (Fig 5B).

3.4 Assessing the predictive capabilities of the computational model

3.4.1 Prediction of glucose and insulin responses under hypoglycemia. To evaluate our

computational model, we assessed whether it was able to predict data not employed during cal-

ibration (last step in Fig 3). To do so, we applied an experiment-specific model calibrated to

both normo- and hyperglycemic conditions simultaneously (experiment 3, Fig 5) to simulate

hypoglycemia in silico. We then performed the corresponding in vitro MPS experiment, where

the co-cultures were exposed to hypoglycemic glucose levels (2.8 mM) at each medium

exchange during the first 13 culture days, followed by a GTT at day 13. To account for experi-

mental uncertainties in the glucose dose administered to the system at the start of the GTT, we

allowed the value of the glucose dose to vary within the measured range of SEM (± 0.85 mM)

when computing the model predictions.

The predictions of glucose and insulin responses during the GTT initiated at day 13 (GTT

d13-15, Fig 6B and 6D, shaded areas) were in good agreement with the experimental data (Fig
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Fig 5. The computational model can explain impaired glucose homeostasis and β-cell dysfunction under varying

glycemic conditions in HepaRG liver-islet MPS. The results correspond to a single experiment (experiment 3). A-B:

Comparison between experimental measurements (markers) and model simulations (lines) of glucose concentration (A),

and insulin concentration (B) over the 15 days of liver-islet co-culture. Co-cultures were exposed to either a

hyperglycemic (11 mM glucose, red) or normoglycemic medium (5.5 mM glucose, green) in each media exchange (grey
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6B and 6D, markers) according to a statistical χ2 test at significance level α = 0.05 (V(popt) =

12.79< 14.07). The validation was performed against glucose and insulin experimental mea-

surements, but the additional mechanistic variables provided by the model, such as β-cell vol-

ume, insulin secretion capacity and insulin resistance were not validated against experimental

measurements.

3.4.2 Prediction of long-term changes in glucose and insulin responses. Next, we

assessed the ability of the computational model to predict long-term changes in glucose and

insulin responses in the liver-islet co-culture over time, and how these were influenced by the

operating conditions in the MPS (i.e. the flow rate distribution on-chip and the medium vol-

ume in each culture compartment). To that end, in one experiment (experiment 3), we mea-

sured glucose and insulin concentrations periodically 48 hours after each media exchange

between days 3 and 13 of the co-culture. In addition, to characterize the effect of the MPS

operating conditions on the observed dynamics, we collected glucose and insulin samples

from each culture compartment (liver and pancreas). The model was calibrated using glucose

and insulin data acquired during GTTs initiated at day 1 and 13 (GTT d1-3 and GTT d13-15,

Figs 4 and 7C and 7F). In the experimental data used for calibration, the concentrations were

measured by pooling samples of 15 μL from each compartment (i.e. measuring the average

concentration of the two compartments), as opposed to the compartment-wise measurements

acquired for the evaluation dataset. The model predictions (Fig 7A, 7B, 7D and 7E, shaded

areas) showed good visual agreement with the experimental measurements in terms of both

temporal evolution of glucose and insulin dynamics along the co-culture, and the glucose con-

centration levels in each culture compartment (Fig 7A, 7B, 7D and 7E, markers). The compu-

tational model also captured the greater insulin concentration in the pancreas compartment

compared to that in the liver compartment. However, the model predicted insulin concentra-

tion between days 5 and 9 that were slightly larger than those found experimentally. Neverthe-

less, given that the model is not calibrated using these data, there is still a good agreement

between the model predictions and the experimental data, and the prediction error is compa-

rable to the size of the variability in the experimental measurements.

3.5 Translation to in vivo responses in humans

Following evaluation, we investigated whether a model-based scaling strategy could translate

the MPS results from in vitro to in vivo. We established an upscaling approach that involves

extrapolation of the following model parameters: volumes of the organoids, flow rate and vol-

ume of co-culture medium in the compartments. To upscale the volume of the organoids to

human proportions, we multiplied the total volume of both HepaRG cells (VHepaRG,spheroids)

and pancreatic β cells (Vβ,islets(0)) by the 100,000 factor applied in the miniaturization to MPS.

The total volume of co-culture medium was scaled to 3 L, under the assumption that the blood

volume in humans is approximately 5.1 L [43] with a plasma proportion of 58% [67]. This vol-

ume was distributed equally between both tissue compartments, resulting in a medium volume

arrows) between days 1 and 13. Experimental time-series were acquired during GTTs initiated at day 1 (GTT d1-3) in

hyperglycemic co-cultures and day 13 (GTT d13-15) in both hyper- and normoglycemic co-cultures. The model predicts

decreased insulin sensitivity (i.e. increased insulin resistance) in HepaRG/HHSteC spheroids from hyperglycemic co-

cultures, compared to those under normoglycemia (C). The predicted differences in daily glucose levels over the co-

culture time between both glycemic regimes (D) lead to different trends in β-cell volume changes (E) due to the bell-

shaped relationship between average daily glucose and net β-cell growth rate in the model. The changes in β-cell insulin

secretion predicted by the model do not depend on the glycemic levels and therefore are the same for both glycemic

regimes (i.e. overlap in (F)). Model uncertainty is depicted as shaded areas in panels A-E. Data in panels A-B are

presented as mean ± SEM, n = 5. n: Number of platform replicates included in the experiment.

https://doi.org/10.1371/journal.pcbi.1010587.g005
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Fig 6. The model can predict GTT responses in the end of the liver-islet co-culture following repeated exposure to

hypoglycemic media concentrations. The results correspond to a single experiment (experiment 3). In A,C, experimental

measurements of glucose and insulin concentrations (markers) are compared to model simulations for hyper- and normo-

glycemia (red and green, lines) and model predictions for hypoglycemia (yellow lines) over the 15 days of co-culture. Co-cultures

were exposed to either a hyperglycemic (11 mM glucose, red), normoglycemic (5.5 mM glucose, green) and hypoglycemic (2.8

mM glucose, yellow) media in each media exchange (grey arrows) between days 1 and 13. Experimental time-series were acquired

during GTTs initiated at day 1 (GTT d1-3) in hyperglycemic co-cultures and day 13 (GTT d13-15) in all co-cultures (hyper-,

normo- and hypoglycemic). For a clearer comparison between the model predictions and the corresponding experimental data

for the evaluation part, panels B and D zoom in on the GTT performed at day 13 for the hypoglycemic arm—glucose (B) and

insulin (D). Model uncertainty is depicted as shaded areas in A-D. Data in panels A,C are presented as mean ± SEM, n = 5. n:

Number of platform replicates included in the experiment.

https://doi.org/10.1371/journal.pcbi.1010587.g006
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of 1.5 L in each compartment. The flow rate (Q) was then set to achieve a media turnover time

of 5 min, as observed in humans [68].

Fig 7. Model predictions of glucose and insulin concentrations in each organ compartment. The results correspond to a single experiment (experiment 2). A,B

Comparison between model predictions of glucose in the liver and islets compartments, respectively, and the corresponding experimental data (markers). D,E

Comparison between model predictions of insulin in the liver and islets compartments, respectively, and the corresponding experimental data (markers). Co-

cultures were exposed to hyperglycemic medium (11 mM glucose) in each media exchange (grey arrows). The calibration data (C,F) consisted of glucose and insulin

measurements acquired during GTTs initiated at day 1 (GTT d1-3) and day 13 (GTT d13-15). In the calibration data (C,F), glucose and insulin concentrations were

measured by pooling samples of 15 μL from each compartment (i.e. measuring the average concentration of the two compartments), while concentrations in the

evaluation dataset (A,B,D,E) were measured independently in each culture compartment (liver or pancreas). Data points for evaluation were acquired 48 hours

following each media exchange between days 3 and 13. Model uncertainty is depicted as shaded areas in (A-F). Data are presented as mean ± SEM, n = 10. n:

Number of platform replicates included in the experiment.

https://doi.org/10.1371/journal.pcbi.1010587.g007
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As a proof-of-concept demonstration, we tested the scaling strategy in one of the experi-

ments (experiment 1). We first calibrated the original model using data of glucose and insulin

during GTTs initiated at day 1 (GTT d1-3) in both liver-islet co-cultures and single-liver cul-

tures (S2A–S2C Fig, markers). The parameters describing the operating conditions in the sys-

tem were then modified according to the proposed upscaling approach. Additionally, to

account for glucose consuming organs other than the liver (i.e. muscle, adipose tissue, brain

and kidneys), we increased the glucose uptake rate of the liver. More specifically, we multiplied

both the insulin-independent glucose disposal rate (EG0) and insulin sensitivity (SI) by a factor

of 2.22, assuming that the liver is responsible for approximately 45% of the total postprandial

glucose uptake in humans [69,70]. Similarly, the insulin elimination rate constant of the liver

(CLI,HepaRG) was doubled under the assumption that the liver stands for approximately 50% of

the total insulin clearance [71]. Endogenous glucose production was kept to zero for the trans-

lation, since this term was considered to be negligible for the HepaRG/HHSteC spheroids. The

changes in model parameters for translation from the HepaRG liver-islet MPS to human are

listed in Table 2.

After these parameter changes, the temporal dynamics of the glucose and insulin responses

predicted in the model were significantly faster than in the MPS and in agreement with those

found in humans [66] (S3C and S3F Fig). However, the glucose uptake predicted by the model

(S3C Fig, shaded area) was larger than the in vivo measurement (S3C Fig, markers). Further-

more, the predicted insulin concentrations (S3F Fig, shaded area) were one order of magni-

tude higher than the ones measured in vivo (S3F Fig, markers). The peak insulin concentration

in the model predictions ranged between 1.8 and 2.0 nM, while the corresponding in vivo
value was 0.34 nM. Because insulin concentrations measured in the MPS were also one order

of magnitude higher than those reported in human studies [66,72,73], we hypothesize that the

increased insulin concentrations might be due to impaired insulin clearance by the HepaRG/

HHSteC spheroids and/or enhanced insulin secretion by the pancreatic islets compared to the

in situ case. To investigate the first hypothesis, we translated the model-based CLI,HepaRG to

human hepatic insulin elimination rate constant, using Eq. S5 (S1 Appendix) and the corre-

sponding parameter values in Table 2. The resulting hepatic insulin elimination rate constant,

CLhuman = 4.04 (1/h), is 4.23 times lower than the reported value in humans [66]. Therefore,

we increased the value of CLI,HepaRG accordingly to account for this potential effect. Enhanced

islet insulin secretion, on the other hand, can possibly be due to the long-term exposure of the

pancreatic islets to a hyperglycemic medium over the co-culture time, leading to overstimula-

tion of insulin release. While our experimental results indicate enhanced GSIS values for islets

that have been cultured under hyperglycemia, in comparison to those that have been cultured

Table 2. Extrapolation of parameter values in the computational model to perform in vitro to in vivo translation. The results correspond to experiment 1.

Parameter Description (units) Value

In vitro (MPS) Translation to in vivo (human)

VHepaRG,spheroids Total volume of HepaRG cells (L) 3.4�10−6 0.34

Vβ,islets(0) Total volume of pancreatic β cells at the beginning of the co-culture (L) 8.8�10−9 8.8�10−4

Vm,liver Volume of co-culture medium in the liver compartment (L) 3�10−4 1.5

Vm,islets Volume of co-culture medium in the islets compartment (L) 3�10−4 1.5

Q Flow rate between culture compartments (L/h) 2.96�10−4 35.5

EG0 Hepatic insulin-independent glucose disposal rate (mmol/L/h) 1.47 3.25

SI0 Hepatic insulin sensitivity at the start of the co-culture (L/mIU/h) 5�10−3 1.1�10−2

σmax Maximal insulin secretion rate per unit volume of β cells (mIU/L/h) 6�106 6�106

CLi,hep Hepatic insulin elimination rate constant (1/h) 17.81 150.67

https://doi.org/10.1371/journal.pcbi.1010587.t002

PLOS COMPUTATIONAL BIOLOGY Computational analysis of a HepaRG-islet microphysiological system for diabetes research

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010587 October 19, 2022 21 / 34

https://doi.org/10.1371/journal.pcbi.1010587.t002
https://doi.org/10.1371/journal.pcbi.1010587


under normo-and hypo-glycemia (S1 Fig), we currently lack a quantitative measure of the

comparison between these GSIS values and their human counterparts. We therefore halved

the maximal insulin secretion rate of the β cells (σmax) to achieve good visual agreement with

the insulin concentration measured in vivo. The resulting glucose and insulin responses pre-

dicted by the computational model (Fig 8C and 8F, shaded areas) agree well with the measured

ones in humans (Fig 8C and 8F, markers), even though the predicted glucose concentration

decreases to values below normoglycemia as endogenous glucose production from the

HepaRG/HHSteC spheroids cells is neglected in our model.

4 Discussion

This study demonstrated the potential of applying computational modelling in combination

with MPS to augment in vitro investigations of glucose metabolism and allow translation to

humans. We constructed a computational model of glucose homeostasis in a previously devel-

oped HepaRG liver-pancreas MPS [18]. After calibration, the model was able to replicate glu-

cose and insulin responses under both healthy glucose levels and high plasma glucose

mimicking T2DM (Fig 5). To demonstrate the predictive power of the model, we evaluated it

on measurements not considered for calibration. The model could correctly predict the

response of the MPS to a hypoglycemic regime (Fig 6), and the long-term dynamics of glucose

and insulin over 15 days of co-culture (Fig 7). Last, we have shown that the model is able to

translate in vitro glucose and insulin responses in the MPS to humans, showing good agree-

ment with reported data on meal responses from healthy subjects [66] (Fig 8).

The mechanistic, computational model presented in this study aims at describing the physi-

ology in the MPS, encapsulating mechanisms underlying glucose regulation and disease pro-

gression in T2DM (insulin resistance and β-cell adaptation). To date, studies combining

computational models and MPS have mainly applied PK [28–31] and PKPD [32,33,74]

approaches, and have not included experimental measurements characterizing the cross-talk

between liver and pancreas. Since glucose homeostasis relies on a feedback loop involving stor-

age and release of glucose by the liver in response to glucose-regulated insulin secretion from

the pancreas, it is crucial to examine data from interconnected co-cultures that reflect this

organ interplay. Moreover, the computational model in Lee et al. [41] was designed to simulate

a 3-hour response to a meal, and, in contrast to our model, did not include a description of dis-

ease progression.

Several computational approaches have also been developed to describe glucose homeosta-

sis and different aspects of T2DM in animal models. These could potentially be used in combi-

nation with preclinical animal studies, to help in data interpretation and extrapolating the

results to humans. Alskär et al. [73] demonstrated that an allometrically scaled model of

human glucose homeostasis [75] could reproduce glucose and insulin responses in several pre-

clinical animal species. However, this model only describes short-term regulation of glucose

homeostasis during GTT and cannot simulate the long-term pathophysiology of T2DM. In

contrast, other animal-based computational models have focused on long-term changes in

weight [76,77], but they do not establish a link with pathophysiological defects implicated in

T2DM such as insulin resistance.

The computational model presented in our study could simultaneously describe glucose

and insulin responses in the MPS under both normo- and hyperglycemic conditions represen-

tative of T2DM (Fig 5A and 5B). The fact that the model can reproduce a range of behaviors

consistent with experimental observations only through estimation of the model parameters

suggests the generality of the model structure, that is, the robustness of the mathematical equa-

tions. However, to further build confidence in the computational model, it is crucial to
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evaluate its predictive capability against experimental data not considered during calibration

[78,79]. Considering this, we first calibrated the model using MPS measurements from

normo- and hyper-glycemic conditions, and subsequently evaluated the model predictions

under a different glycemic regime (hypoglycemia) using data from an independent MPS

Fig 8. Model-based extrapolation of glucose and insulin concentrations in the HepaRG liver-islet MPS to human meal responses. The results correspond to

a single experiment (experiment 1). A,B,D,E Model predictions of glucose (A,B) and insulin (D,E) in the liver and islets compartments after scaling to human. C

shows the comparison between the model prediction of plasma glucose concentration in a corresponding human and experimental data of glucose response to a

meal in healthy subjects [66]. The model-based prediction of the insulin response and the experimental measurements of insulin are compared in F. The

predictions are computed for the GTT initiated at day 1 (GTT d1-3). The experimental data, reported in a previous study by Dalla Man et al. [66], were acquired

in a group of 204 normal subjects. We consider the time point of peak glucose concentration in the experimental data as time = 0 h for this study, since the

HepaRG liver-islet MPS lacks an intestinal compartment and glucose is administered directly to the liver and pancreas compartments. Data are presented as

mean ± SEM, n = 204. Model uncertainty is depicted as shaded areas in (A-F).

https://doi.org/10.1371/journal.pcbi.1010587.g008
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experiment. We showed that the model was able to predict glucose and insulin responses

under this new glycemic regime, although it was not calibrated for this purpose (Fig 6B and

6D). In addition, we demonstrated the ability of the model to predict glucose and insulin con-

centrations at times not included in our experimental sampling protocol, and in both culture

compartments (Fig 7A, 7B, 7D and 7E).

Our approach also offers mechanistic insight through simulation of key physiological vari-

ables that are not measured in the experiments, such as insulin resistance and the total volume of

β cells in the co-culture (Figs 4 and 5). Our model predicted an increase in total β-cell volume

after exposure to hyperglycemic glucose levels over 15 days of co-culture, while this volume was

predicted to decrease when the pancreatic islets were exposed to normoglycemic levels (Fig 5E).

These predictions follow from the previously established hypothesis that small deviations from

normoglycemia cause β-cell volume increase as a feedback mechanism to reestablish glucose

homeostasis [47], which stems from previous studies reporting a nonlinear variation of both β-

cell replication and apoptosis rates in vitro [54,80]. GSIS analysis from our co-culture experi-

ments revealed increased insulin secretion in pancreatic islets co-cultured under hyperglycemic

conditions (11 mM) as compared to those in either normo- or hypoglycemic co-cultures (5.5

and 2.8 mM, respectively) (S1 Fig). This might indicate that the total volume of β cells in the end

of the co-culture is larger when they have been exposed to hyperglycemic concentrations. How-

ever, GSIS measurements do not only reflect the volume of β-cells but also their individual secre-

tion capacity. To increase confidence in this model prediction, future studies should be carried

out to establish a comparison against experimentally measured β-cell volumes in the liver-islet

co-culture under different glycemic levels, for instance focusing on β-cell proliferation. There

may be also additional biological mechanisms governing β-cell dynamics that are not considered

in the computational model. For instance, in our study the insulin secretion capacity of the β
cells was assumed to decrease over time. However, previous studies have hypothesized an

increase in β-cell secretion capacity via reduction in the number of ATP-sensitive K+ (KATP)

channels of the β cell as a compensatory mechanism to sustained, elevated glucose levels [49].

Similarly, β-cell secretion capacity might initially rise and then fall, leading to the increase and

subsequent decrease in insulin levels typically observed in human and animal studies [3,49].

Experimental measurements characterizing β-cell volumes could help in elucidating the com-

pensatory changes in both β-cell volume and function in response to hyperglycemia.

The complexity of the computational model was chosen based on the intended level of

detail and the available experimental measurements. With this in mind, we only modelled the

physiological mechanisms needed to simulate the data in the study. Here, the only measure-

ments available to characterize the contribution of the HepaRG/HHSteC spheroids to glucose

metabolism were glucose concentrations in the co-culture medium over time. Therefore, we

established a relatively simple model of hepatic glucose metabolism that only captured net glu-

cose fluxes between the HepaRG/HHSteC spheroids and the co-culture medium, but did not

describe any intracellular fluxes. Additional experiments using isotope labeling tracing meth-

ods [81–83] could be done to characterize metabolic pathways in the HepaRG/HHSteC spher-

oids, including both glucose producing (e.g. glycolysis and glyconeogenesis) and glucose

utilizing (e.g. gluconeogenesis, glycogenolysis) pathways. We may then expand our current

computational framework by incorporating more detailed models of hepatic glucose metabo-

lism [50,84] for further elucidation of mechanisms behind T2DM and refined in silico predic-

tions. These studies would also provide insight into the extent to which the mechanisms

behind insulin resistance in the HepaRG liver-islet MPS are equivalent to those in humans.

Future studies should also investigate glucagon dynamics in our HepaRG liver-islet MPS, and

its effect on glucose metabolism. However, this would require additional MPS experiments

and modifications to the computational model which are outside the scope of this study.
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In this study, we used HepaRG/HHSteC spheroids derived from HepaRG cells, a human

hepatoma cell line. The HepaRG cell line has been used for almost two decades [85], mostly

for drug metabolism and toxicity studies [86–88]. The HepaRG cell line has been shown to

exhibit structural and functional features that are representative of primary human hepato-

cytes (PHHs) for studying glucose and lipid metabolism [89], and disease mechanisms associ-

ated to insulin resistance. In particular, HepaRG cells express numerous genes encoding key

proteins involved in pathways of glucose and lipid metabolism, including gluconeogenesis,

glycogen metabolism, glycolysis, lipid synthesis and degradation [44]. Moreover, a functional

insulin responsiveness has been reported for HepaRG cells [44] and shown to be improved by

a 3D spheroid co-culture [18]. Therefore, HepaRG cells have been suggested as a suitable

model to investigate the regulation of pathways in glucose metabolism and disease mecha-

nisms related to insulin resistance [44,90]. However, the HepaRG cell line does not represent

population differences and may display deviations in gene expression from PHHs that are rele-

vant to glucose metabolism, in line with previously reported limitations for their use in drug

metabolism and toxicity studies [91]. HepaRG cells have also been shown to exhibit a low

expression of the glucagon receptor, and could therefore be unresponsive to glucagon, when

cultured in monolayers including only HepaRG cells [89]. However, our 3D spheroid co-cul-

ture model might have improved glucagon sensitivity, as previously demonstrated for the

improved insulin responsiveness in comparison to monocultures [18]. The use of PHHs,

which remain the gold standard for studying hepatic metabolism in vitro [92], could improve

the physiological relevance of our MPS and the in vivo extrapolation of the experimental

results, and should be investigated in future studies.

Because of the relatively small number of MPS experiments included in our study, we cali-

brated the computational model using data exclusively from a given individual experiment. By

acquiring data from a larger set of MPS experiments, we could expand our framework with a

non-linear mixed-effects (NLME) modelling approach [93,94]. Using this approach, we could

estimate the model parameters using data from all the MPS experiments simultaneously,

thereby sharing information among them. This would in turn allow us to obtain additional

insight on interindividual variability within the experiments, and more robust parameter esti-

mation when the available data from one experiment alone may be insufficient.

The most widespread models to study glucose metabolism under both healthy and T2DM

conditions are in vivo animal models in rodents. These are comparators for the novel, inte-

grated experimental (MPS)-computational approach presented here. Translation between

these animal models and humans is often unsuccessful, partly due to species-specific glucose

regulation mechanisms ranging from cell to organ level [12]. To overcome these limitations,

the HepaRG liver-islet MPS in this study incorporates human cells at organ emulation levels

(e.g. 3D tissue environment), mimicking their human counterpart architecture and function.

While our system could potentially be more predictive of in vivo, human outcome, its ability to

replicate human physiology is still limited. For instance, with our current experimental setting,

kinetics of the in vitro glucose response was considerably slower than in vivo. In our HepaRG

liver-islet MPS, glucose levels reached normoglycemia approximately 48 hours after the start

of a GTT, as opposed to 1 to 2 hours in vivo [66,72,95]. This could be due to several factors

including design aspects, properties of the co-culture medium and the organoids, operating

conditions (e.g. flow rate) and, most likely to a lesser extent, the lack of other glucose consum-

ing organs (e.g. muscle, brain) and signaling mechanisms (e.g. incretins). For example, the

media-to-tissue ratio in our system was in the order of 100:1, whereas the physiological extra-

cellular fluid to tissue ratio is 1:4 [43]. This gives a much larger load of glucose mass per liver

cell in the MPS than in the in vivo case, likely increasing the time needed to adjust glucose lev-

els back to normoglycemia. The synergistic experimental-computational approach allowed us
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to gain insight into the impact of these experimental in vitro factors in the system and ulti-

mately bridge the in vitro-in vivo gap by compensating for them in silico. We argue that to

maximize the ability of this approach to exploit the in vitro MPS investigations, it should be

applied in an iterative fashion that involves two steps: data interpretation/translation and

model-guided design.

In the data interpretation/translation step, we calibrated the computational model using glu-

cose and insulin responses measured during GTTs in the HepaRG liver-pancreas MPS and per-

formed model-based extrapolation (i.e. scaling) of in vitro experimental aspects (co-culture and

organoid volumes, flow rates and incorporation of missing organs) to translate to humans.

After this extrapolation, both insulin levels (S3F Fig, shaded areas) and glucose uptake (S3C Fig,

shaded areas) were higher than those observed during meal responses in humans (black mark-

ers, from Man et al., 2007 [66]). These discrepancies indicate that our current MPS set-up may

have design limitations that cannot be compensated for using a purely scaling approach, thereby

pinpointing possible biological imperfections related to both the organoids and co-culture con-

ditions. One potential explanation concerning biological imperfections is that the increased

insulin levels in the MPS (S3F Fig) are due to impaired hepatic insulin clearance because of the

lack of sinusoidal structures in the liver model [96]. Other possible explanations would be

enhanced insulin secretion of the pancreatic islets compared to in vivo, and the lack of renal

insulin clearance mechanisms [96]. As a proof-of-concept investigation, we tested the first

hypothesis by comparing the human-translated insulin elimination rate constant in the MPS

and the reported value in humans [66], and found it to be approximately four times lower than

in humans. We corrected for this discrepancy and proceeded to test the second hypothesis by

decreasing the insulin secretion of the pancreatic islets in silico. When reducing the insulin

secretion rate to half of its initial value, which is within the range of interindividual variability in

insulin concentrations found in our study, the simulated glucose and insulin responses agreed

well with the experimental data from humans (Fig 8C and 8F). These results suggest that a

decreased insulin secretion capacity of the pancreatic islets in the MPS, in combination with

increased hepatic insulin elimination rate constant and the model-based scaling approach,

would yield human-like responses. We confirmed the validity of the first hypothesis by per-

forming an independent MPS experiment to experimentally measure the value of hepatic insu-

lin clearance in vitro. Additional investigations should be performed to further assess the

remaining hypotheses in a larger number of experiments and establish a translation on a popu-

lation level. Similarly, a number of additional biological hypotheses could explain the glucose

responses during the GTT initiated at day 13 for the different glycemic regimes (Fig 6A), for

example development of insulin resistance due to culture-related factors other than hyperglyce-

mia, or insulin resistance induced by the high-insulin pre-culture conditions.

The mechanistic insights gained from the model could be used in a future model-guided
design step, to enhance the physiological relevance of our in vitro MPS through, for instance,

increased insulin clearance by the liver organoid or decreased insulin secretion by the pancre-

atic islets. This updated MPS set-up would then generate experimental data that supports the

development of a respective, extended computational model for prediction in the subsequent

data interpretation/translation step.

A recent MPS report to advance patient’s benefit and animal welfare has identified four ele-

ments to make preclinical drug evaluation predictive to human exposure [97]. These elements

are: i) academic invention and MPS-model development, ii) tool creation and MPS-model

qualification by supplier industries, iii) qualification of a fit-for-purpose assay and its adoption

for candidate testing by pharmaceutical industries, and iv) regulatory acceptance of the predic-

tive results of validated assays for a drug candidate for a specific context of use. Here, we pro-

pose to support these MPS-based developments with computational modelling. Our results
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demonstrate the synergies between MPS and computational models, which we believe would

accelerate the drug development cycle. Both in academic science and pharmaceutical decision

making, fit-for-purpose experimental-computational models hold the potential to reduce the

use of animal models currently used for the same purpose. A purely experimental in vitro
approach to this goal is further away, since recreating human-like responses in vitro poses

major challenges related to constraints in design and experimental conditions. For example,

the differences in media-to-tissue ratio that lead to the slow time dynamics in GTT responses

in our MPS system are difficult to address experimentally, because a reduction in the volume

of co-culture medium would result in sampling volumes that are insufficient for analysis. With

our integrated experimental-computational approach these limitations can be overcome. Our

vision is that once the effect of drugs are well-characterized in vitro in MPS recapitulating the

physiology of different organs, computational modelling can be used to create in silico repre-

sentations of individual organs that can then be combined in a multi-organ computational

model as a step towards extrapolation to humans.

5 Conclusion

In conclusion, the use of computational modelling to analyze experimental results from the

HepaRG liver-islet MPS allowed for better mechanistic understanding of the physiological

processes underlying glucose metabolism and the development of T2DM in the system. Fur-

thermore, it provided a first step towards translation of the experimental responses to in vivo
outcome, and guidance to improve the physiological relevance of the model. The synergistic

experimental-computational approach proposed in this study, when applied in an iterative

manner and for a specific context of use, could contribute to eventually generating computa-

tional evidence of higher predictive power than that derived from current animal models. We

envision that, with further validation, this approach could reduce animal experiments and sig-

nificantly decrease phase 1 and phase 2 clinical trial failures due to its relatively low cost and

ability to generate human-relevant predictions.

Supporting information

S1 Fig. Comparison between glucose-stimulated insulin secretion (GSIS) from pancreatic

islets exposed to different glycemic levels during the co-culture. The pancreatic islets were

collected from the MPS after 15 days of co-culture. During the co-culture, they were exposed

to either hyper- (11mM, red), normo- (5.5 mM, green) or hypoglycemic conditions (2.8 mM,

yellow). At day 13, a GTT with a glucose load of 11 mM was performed in all co-cultures. After

being collected from the MPS, the pancreatic islets were incubated in low glucose (2.8 mM)

over 2h, following 2h incubation in high glucose (16.8 mM). The results correspond to experi-

ments 3 (A), 4 (B) and 5 (C).

(TIF)

S2 Fig. Agreement between model simulations (lines) and experimental data (markers) for

the experiments not shown in the main article (experiments 1 and 4–7). Experiment 1

(A-C): Glucose concentration in the liver-islet co-culture under hyperglycemia (A), glucose

concentration in the single-liver culture under hyperglycemia (B), insulin concentration in the

liver-islet co-culture under hyperglycemia (C); experiment 4 (D-G): glucose concentration in

the liver-islet co-cultures under normoglycemia (D), insulin concentration in the liver-islet co-

culture under normoglycemia (E), glucose concentration in the liver-islet co-culture under

hyperglycemia (F), insulin concentration in the liver-islet co-culture under hyperglycemia (G);

experiment 5 (H-K): glucose concentration in the liver-islet co-culture under normoglycemia
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(H), insulin concentration in the liver-islet co-culture under normoglycemia (I), glucose con-

centration in the liver-islet co-culture under hyperglycemia (J), insulin concentration in the

liver-islet co-culture under hyperglycemia (K); experiment 6 (L-M): Glucose concentration in

the liver-islet co-culture under normoglycemia (L), insulin concentration in the liver-islet co-

culture under normoglycemia (M); experiment 7 (N-O): Glucose concentration in the liver-

islet co-culture under hyperglycemia (N), insulin concentration in the liver-islet co-culture

under hyperglycemia (O). In hyperglycemic and normoglycemic conditions, co-cultures were

exposed to 11 mM or 5.5 mM glucose in each media exchange (arrows), respectively. Model

uncertainty is shown as shaded areas in panels A-O. Data in panels A-O are presented as

mean ± SEM, where the number of replicas considered for each experiment are: n = 4 (experi-

ments 1, 6 and 7 for all glycemic conditions), n = 5 (experiment 4 for all glycemic conditions

and experiment 5 for hyperglycemia) and n = 10 for experiment 5 under normoglycemia.

(TIF)

S3 Fig. Model predictions of glucose and insulin concentrations in the MPS after scaling to

humans, considering the initial secretion rate of the β cells estimated in the co-culture

(σmax = 6�106 mIU/L/h). The results correspond to a single experiment (experiment 1). A,B,

D,E: Model predictions of glucose (A,B) and insulin (D,E) in the liver and pancreas compart-

ments after scaling. C shows the comparison between the model prediction of plasma glucose

concentration after scaling and experimental data of glucose response to a meal in healthy sub-

jects [66]. The model-based prediction of the insulin response and the experimental measure-

ments of insulin are compared in F. The predictions are computed for the GTT initiated at day

1 (GTT d1-3). The experimental data were acquired in a group of 204 normal subjects [66].

We consider the time point of peak glucose concentration in the experimental data as time = 0

h for this study, since the MPS lacks an intestinal compartment and glucose is administered

directly to both the liver and pancreas compartments. Data are presented as mean ± SEM

(n = 204). Model uncertainty is depicted as shaded areas in (A-F).

(TIF)

S4 Fig. Estimation of the hepatic insulin clearance rate in the HepaRG liver-islet MPS

based on experimental data from single-islet experiments. The experimental data corre-

sponds to a single experiment, where single-liver cultures were exposed to hyperglycemic con-

ditions (11 mM glucose in each co-culture medium exchange during a 7-day co-culture

period). At days 1 and 6, an insulin dose was added to the co-culture medium to assess insulin

clearance. Data in (A,B) are presented as mean ± SEM (n = 4). In (C, D), a linear regression

model was fitted to the mean values of the experimental data for each day to estimate the

hepatic insulin elimination rate constant. The resulting estimated values are kday1 = 0.024 (1/h)

and kday7 = 0.021 (1/h) for days 1 and 7, respectively.

(TIF)

S5 Fig. Experimental measurements of insulin concentration in an empty chip (i.e. empty

culture compartments). Media exchanges were performed every 24 hours, and samples of the

culture media were taken directly after each media exchange (t = 0 h) as well as 24 hours after

(t = 24 h). In each media exchange, a specific amount of insulin was added to the culture

medium. Data correspond to a single chip replicate (n = 1).

(TIF)

S1 Table. Summary of the experimental settings used in the MPS experiments and the

measurements acquired for calibration and evaluation of the experiment-specific compu-

tational models. GTT: Glucose tolerance test.

(PDF)
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S2 Table. Summary of model evaluations for all the MPS experiments included in the anal-

ysis. Acceptable models could be inferred for every experiment. The threshold for the χ2 test

with 95% significance is calculated based on the number of data points in the experimental

time-series for each experiment.

(PDF)

S3 Table. Estimated values of the experiment-specific parameters for each MPS experi-

ment included in the study. Values indicated as (-) were not estimated because there were no

available data to perform the estimation.

(PDF)

S1 Appendix. Supplementary methods. Supplementary description of the computational

model, and comparison of hepatic insulin clearance rates in the HepaRG liver-islet MPS with

human in situ values.

(PDF)
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77. Gennemark P, Jansson-Löfmark R, Hyberg G, Wigstrand M, Kakol-Palm D, Håkansson P, et al. A

modeling approach for compounds affecting body composition. J Pharmacokinet Pharmacodyn. 2013;

40(6):651–67. https://doi.org/10.1007/s10928-013-9337-x PMID: 24158456

78. Carusi A, Burrage K, Rodrı́guez B. Bridging experiments, models and simulations: an integrative

approach to validation in computational cardiac electrophysiology. Am J Physiol Circ Physiol. 2012 May

11; 303(2):H144–55. https://doi.org/10.1152/ajpheart.01151.2011 PMID: 22582088

79. Pathmanathan P, Gray RA. Validation and trustworthiness of multiscale models of cardiac electrophysi-

ology. Front Physiol. 2018; 9(FEB):1–19. https://doi.org/10.3389/fphys.2018.00106 PMID: 29497385
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