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In this commentary, we will review some of the early efforts aimed at understanding the
role of the enteric microbiota in the causality of inflammatory bowel diseases. By examining
these studies and drawing on our own experiences bridging clinical gastroenterology and
microbial ecology as part of the NIH-funded Human Microbiome Project (Turnbaugh et al.,
2007), we hope to help define some of the “growing pains” that have hampered these
initial efforts. It is our sincere hope that this discussion will help advance future efforts in
this area by identifying current challenges and limitations and by suggesting strategies to
overcome these obstacles.
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The notion that the indigenous enteric microbiota play an impor-
tant role in the etiopathogenesis of inflammatory bowel diseases
(IBD; Annese et al., 2005) is now well accepted. This realiza-
tion has prompted a flurry of research activity that is aimed at
determining the mechanisms by which changes in the gut micro-
biota contribute to the development and progression of IBD.
Much of this research has been made possible by advances in
culture-independent microbial ecology. Microbial ecologists who
have been studying complex communities in natural environ-
ments such as soil and seawater have leveraged advanced molecular
microbiological techniques to profile the structure and dynamics
of these microbial consortia. However, the application of these
techniques to human-associated microbial communities has not
been particularly straightforward. Most clinicians and researchers
who study clinically related problems are not familiar with the con-
cepts and techniques employed by microbial ecology. Conversely,
most microbial ecologists have not had a great deal of experience
interpreting their data in a clinical context, therefore, both sets
of investigators need to understand and develop new paradigms.
By working together, clinical experts and microbial ecologists can
design studies that will leverage their respective expertise and avoid
potential pitfalls.

CLINICAL CONSIDERATIONS IN APPROACHING THIS AREA
IBD IS NOT A SINGLE DISEASE
Inflammatory bowel diseases is not a single disease, nor is it fully
or accurately represented by the commonly used classifications
of Crohn’s disease and ulcerative colitis (UC). Crohn’s disease

includes a wide range of presentations and can affect any part of the
gastrointestinal tract from the mouth to the rectum. Crohn’s dis-
ease causes a transmural inflammation that can be associated with
structuring, penetrating, and perianal disease. By definition, UC
is limited to the colon and is characterized by confluent mucosal
inflammation starting at the rectum and extending proximally to
various lengths in the colon. The remaining 10–15% of patients
are given the diagnosis of “indeterminate colitis,” a classification
based on having features of both Crohn’s disease and UC, but
also reflecting the ambiguities of clinical descriptors. None of the
terms take into account the many types of genetic and pathophys-
iological processes that can lead to disease having similar clinical
phenotypes. Thus, studies aimed at establishing a role of enteral
microbial dysbiosis in the etiopathogenesis of “IBD” are not likely
to be useful without recognition or consideration of the complex-
ity and heterogeneity of IBD patient populations. The solution
must involve designing studies where more homogeneous patient
subsets can be defined. Unfortunately, this task remains a difficult
as few molecular and genetic markers have emerged that identify
a clear disease subset. Thus, the challenge remains in developing
better metrics to identify IBD patients that share genetic and/or
pathophysiological features. When this is achieved, we can truly
begin to understand the relationship of enteric microbiomes to
etiopathogenesis and clinical outcomes.

MICROBIAL DYSBIOSIS IN IBD: CAUSE OR CONSEQUENCE?
Dysbiosis of the intestinal microbiota is commonly found in
patients with IBD (Peterson et al., 2008), but in almost all cases, it
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cannot be determined whether these changes are causal or merely
consequences of the activated immune and inflammatory con-
dition. Typically, large changes in 16S rRNA gene-based profiles
are observed at the phylum level. These changes are character-
ized by blooms of Proteobacteria and decline in Firmicutes and
Bacteroidetes (Frank et al., 2007), the latter typically associated
with the microbiota of a normal, healthy colon (Eckburg et al.,
2005). Similar patterns have been observed in other non-IBD
inflammatory states (Lupp et al., 2007; Sekirov et al., 2008) and
in experimental colitis (McKenna et al., 2008; Hoffmann et al.,
2009; Nagalingam et al., 2011), suggesting that these changes are
largely a consequence of the altered immune and inflammatory
state. Similarly, studies of healthy and IBD-associated micro-
bial functional metagenomes have shown significant differences
(Manichanh et al., 2006). In the final analysis, however, these stud-
ies have resulted in the accumulation of large, descriptive datasets
that have shed little light on fundamental mechanisms of IBD
etiopathogenesis. What is needed are prospective studies, initiated
at a time point before the onset of disease in order to capture
information on functional and structural characteristics of the
enteric microbiome that correlate with eventual development of
disease or with maintained health. Unfortunately, these types of
studies are difficult to do in IBD, because the means to identify
subjects at risk do not yet exist. Moreover, long term, population-
based studies that include microbiome analysis are impractical
and cost-prohibitive. Nevertheless, a few opportunities exist for
longitudinal studies of the enteric microbiome in IBD risk, par-
ticularly when the study questions and types of test subjects can
be more precisely defined. As one example, the development of
pouchitis in patients with UC is a condition where the incidence
of disease is high and predictable (Hurst et al., 1996; Ferrante
et al., 2008). Pouchitis is an inflammatory complication of the
surgically created ileal pouch that serves as a pseudo-rectal vault
in patients with UC who have undergone total colectomy. The
condition is unique to UC, as it is rarely seen in patients with famil-
ial adenomatous polyposis (FAP) who undergo the same surgical
procedure (Salemans et al., 1992). The study of pouchitis offers
several advantages: (1) a clear “time-zero” can be defined when
all patients are absent of disease and off medications, (2) each
patient serves as his/her own control, (3) sampling of both luminal
and mucosa-associated pouch microbiota is feasible, eliminating
potential confounders such as the need for lavage preparation, and
(4) the analysis of microbiome and host responses can be easily
correlated with clinical outcomes.

CONFOUNDING VARIABLES ASSOCIATED WITH CLINICAL RESEARCH
Very few studies to date that have examined the relationship
between IBD and intestinal microbial dysbiosis have taken into
account confounding variables such as age of onset, disease dura-
tion, patient age, gender, life style, smoking history, ethnic back-
ground, diet, environmental exposures, surgical history, and med-
ications. Each of these factors may be important in IBD patients
and can independently impact host biology and enteric micro-
biota, directly or indirectly. Conclusions drawn from data analysis
in absence of careful multivariate analysis or patient stratification
can be misleading and lead to both type I and type II errors. As one
example, dietary modifications are common in the management
or clinical course of IBD patients. Dietary components such as fat

and carbohydrates have also been shown to have dramatic effects
on the enteric microbiota in animal models (Hildebrandt et al.,
2009; Turnbaugh et al., 2009). Since the diets of patients in remis-
sion versus those that have active disease are likely to be quite
different, this introduces a variable that confounds interpretation
of data aimed at defining a causal relationship between changes
in enteric microbiota and disease activity. Few studies have taken
into consideration the types of medications patients may be tak-
ing. IBD patients take a number of medications which are aimed
at altering the immune response and promoting intestinal heal-
ing. Although no data exists to indicate how the various classes
of medications impact the intestinal microbiome in IBD, pre-
liminary data from animal models suggest that medications may
have a dramatic and sustained impact (Croswell et al., 2009; Hill
et al., 2010; Manichanh et al., 2010; Robinson and Young, 2010).
The nature of these confounding variables are perhaps more sig-
nificant in complex immune-based disorders and challenge our
ability to design studies that can yield unambiguous results. They
underscore the importance of a team effort that involves clini-
cian investigators, microbial ecologists, and biostatisticians in the
design of microbiome-IBD studies in compiling, reviewing, and
analyzing these important patient factors.

TECHNICAL NUANCES AND CHALLENGES OF MICROBIOME
RESEARCH RELATED TO IBD
Researchers who are considering embarking on studies of the
microbiome in IBD need to consider numerous factors before
initiating their studies. The planning and design phase are
essential and arguably the most critical aspects of any research
endeavor. The explosion of microbiome-based technologies pro-
vides numerous research opportunities and emphasizes the need
for collaboration between clinical researcher and microbiologist,
particularly in the early stages of study development.

These considerations can be divided into two main categories.
The first involves the clinical (e.g., patient-oriented) aspects of
the research. The second major category involves consideration
of the technical aspects of microbiome research. Although most
researchers who study clinical aspects of IBD might consider the
latter category to be of prime importance, it is critical to realize
that the nature of microbiome research requires re-evaluation of
the patient-oriented components of IBD research.

CLINICAL CONSIDERATIONS (SAMPLING, REPLICATES, ETC.)
Microbiome research involves characterizing complex microbial
communities that inhabit a particular ecological niche. A major
concern with regards to this question is exactly what samples
should be studied. Current evidence suggests that in a genetically
susceptible individual, IBD results from an abnormal interac-
tion between the indigenous microbiota and the host epithe-
lium/immune system (Sartor, 2008; Round and Mazmanian, 2009;
Garrett et al., 2010). As such, consideration has to be given as to
whether it is appropriate to sample luminal contents versus the
microbes that are associated with the mucosa. It has been proposed
that examination of fecal material is an appropriate surrogate for
all of the microbial communities that are upstream of the rec-
tum. In this manner, stool can be considered to be the “summary
statement” of the entire gastrointestinal (GI) tract. However, while
many of the organisms that inhabit the GI tract can be detected
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in feces, the relative abundance of these organisms in fecal mate-
rial is likely to be quite different from that found either luminally
or mucosal-associated in more proximal sections of the GI tract.
Since the relative abundance of microbes in a community is impor-
tant to the actual function of that community, stool may not be
the most appropriate analyte for microbiota research in all types of
IBD (Lepage et al., 2005). For example in patients with ileal Crohn’s
disease, analysis of fecal material is likely to be a poor surrogate
for the microbial community found in the terminal ileum.

Given the realization that fecal material may not be the most
suitable sample for assessing microbial communities associated
with IBD, despite the ease of obtaining this material and its rel-
ative abundance, many microbiome studies related to IBD utilize
material retrieved via endoscopy. With regards to endoscopically
harvested material, it should be noted that there is also an axial
variation in the microbiota. Studies have demonstrated that the
intestinal microbiota have both a structural and spatial organi-
zation that may be altered in patients with IBD and vary with
disease activity (Swidsinski et al., 2002; Hu et al., 2010; Wang et al.,
2010a,b). In addition to the axial variation, the variation in com-
munities along the GI tract, coupled with the known regional
variation in IBD from region to region, makes it important to take
these variables into consideration when designing studies. A com-
prehensive experimental design might therefore involve sampling
from both mucosal and luminal communities.

Another important consideration arises when obtaining sam-
ples via endoscopy; the standard bowel preparation regimens can
have a significant impact on the gut microbiome. The washout
of luminal intestinal contents can skew or abolish both the lon-
gitudinal and axial gradients that are normally present within
the GI tract (Wang et al., 2010a,b) and thus affect the entire gut
microbial community. Although bowel preparation is required for
standard diagnostic and interventional endoscopic procedures, its
routine use may adversely affect research endoscopies performed
to understand the role of the indigenous microbiota in IBD. Even
local endoscopic washes prior to sample collection could alter the
community structure of the associated microbes and should be
avoided or taken into consideration when interpreting findings.
Furthermore, the exact sampling technique needs to be consid-
ered. Biopsies are commonly used, but cause local trauma (which
may affect subsequent longitudinal samples) and survey a limited
area. Brushings can be used, but it needs to be established whether
these two techniques yield similar samples. Regardless of what
types of specimens are obtained, investigators should carefully
follow established protocols for collection, handling, and stor-
age of samples. Inconsistencies in these steps may dramatically
alter microbial communities thereby decreasing the reliability and
accuracy of the results.

In addition to these considerations regarding sample acquisi-
tion from an individual patient, there are multiple considerations
relating to overall planning and establishing a study population.
It is becoming abundantly clear that although certain features of
the gut microbiome are encountered in many normal individu-
als, there is also considerable person-to-person variation (Costello
et al., 2009; Benson et al., 2010; Willing et al., 2010; Walker et al.,
2011). As such, considerations related to replication, study size,
and selection of controls related to microbiome research require
significant attention. The analytic methods related to processing

microbiome data involve statistical methods that previously were
not commonly applied to biomedical research (see below). There-
fore, the standard power analyses that are applied to clinical
research are not always easily translated to microbiome study
design. Given that this field is in its infancy, there is no consen-
sus yet on which statistical methods and power analyses are most
appropriate. However, given the ongoing work in this area, clarifi-
cation of which statistical methodology to use is forthcoming. In
addition, because many early microbiome studies have been aimed
at finding associations between aspects of the microbiome and
health or disease, these studies have been “hypothesis generating”;
once they are completed, appropriately powered confirmatory
studies can be designed.

Experimental replication also requires significant consideration
(Prosser, 2010). Replication can be in the form of multiple samples
from the same region from a given individual at a specific time,
longitudinal sampling from an individual patient, or obtaining
samples from multiple individuals stratified by specific clinical cri-
teria. Each form of replication may be important depending on the
actual clinical question posed. Selection of appropriate controls
can also be problematic given the inherent individual variation in
microbiome structure. Comparative studies of the microbiome in
IBD have used“healthy”controls that included patients with irrita-
ble bowel syndrome (IBS), diverticulosis, acute self-limited colitis,
and a variety of other gastrointestinal conditions. Clearly many of
these controls may also have perturbations in their microbiome,
which must be accounted for in the data analysis and interpreta-
tion of results. In some cases, patients might be able to serve as
their own controls, which will be useful for understanding how
the microbiota changes correlate with the course of disease. With
such a study design the status of the microbiome within a given
patient prior to a particular intervention, for example treatment
with a biologic agent or antibiotics or surgery, could serve as the
controls for subsequent samplings that were done in a longitudinal
manner.

Finally, although study of human patients is a necessary com-
ponent of IBD research, there is a distinct utility for using animal
models of disease (Wirtz and Neurath, 2007). Animal models,
including the wide variety of murine models of IBD, can be used
in conjunction with human clinical and translations studies to
address questions mechanism and causality in IBD pathogene-
sis. Specific hypotheses that arise from observations in human
patients can be directly tested in appropriate animal models. The
same considerations with regards to sampling need to be applied
to animal model studies, especially to provide comparability with
observations made in patients.

ANALYSIS OF THE MICROBIOME: WHERE TO BEGIN?
For investigators who have not conducted or even considered
performing microbiome research the variety of analytic meth-
ods that are available can appear daunting (Robinson et al., 2010).
Many of the culture-independent methods for studying micro-
bial ecology have benefited from the advances in next-generation
sequencing platforms (Andersson et al., 2008; Huse et al., 2008).
Additionally advances in mass spectroscopy and other means for
large-scale analysis of complex mixtures of proteins and metabo-
lites have been applied for microbiome research in order to try and
make sense of which methods might be appropriate for specific
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biomedical questions. Investigators can start by understanding
what types of questions each specific method is best suited to
address. One way to consider the suite of methods for microbiome
analysis available is to divide them into groups based on the specific
types of information they provide about a given microbial com-
munity. There are several useful reviews that describe the available
technologies (Zoetendal et al., 2008; Simon and Daniel, 2011). The
first type of information available is information about the struc-
ture of a specific consortium of microbes. This can be thought of
as a census of microbes both in terms of the number of different
types of microbes and their relative abundance. The next type of
information goes beyond community structure and provides a cat-
aloging of functional capacity of the entire community. The final
type of information that can be gained by certain analytic meth-
ods gives information regarding the in situ activity of the given
microbial community. We will discuss each of these platforms in
more detail as well as describe in general terms specific analytic
methods that can provide each of these types of data.

16S SEQUENCE RETRIEVAL: CHOOSING THE APPROPRIATE PLATFORM
Landmark ideas and research from Woese et al. (1990) and Pace
(2009) established a common metric for identifying microbes –
the nucleotide sequence of the small subunit (SSU) ribosomal
RNA. The gene encoding the SSU rRNA has a sedimentation
coefficient of 16S which is unique to bacteria and archaea and
allows distinction from the SSU rRNA from human eukaryotic
cells. Initially, SSU sequences were obtained by amplification and
sequencing of SSU genes from complex microbial communities
and then compared to databases containing more than 2 mil-
lion aligned rRNA gene sequences (DeSantis et al., 2006; Pruesse
et al., 2007; Cole et al., 2009) to provide a census of microbes in
each sample. More recently, the application of “next-generation”
sequencing platforms has increased the number of sequences that
can be obtained, as well as lowering the cost of analysis (Sogin
et al., 2006; Huse et al., 2008).

Analysis of the data obtained by SSU sequence analysis contin-
ues to evolve, but two general approaches are used to bin or classify
the sequences into microbial populations. Sequences can be com-
pared to reference taxonomic outlines and binned based on sim-
ilarity to references sequences (“phylotyping”) or the sequences
can be assigned to operation taxonomic units (OTUs) based on
similarity to other sequences within a given dataset. There are rel-
ative advantages and disadvantages of each method (see Schloss
and Westcott, 2011 for a discussion). It should be noted however,
that the desire to “name” a given community member based on
SSU analysis can be complicated by the fact that most existing
taxonomies for bacteria are based solely on cultured organisms.

The number of sequences required to assess microbial com-
munities depends both on the questions being asked as well as the
spatial and temporal variability in a community. Deeper sequenc-
ing will uncover less common members of a community, which
may be necessary to enumerate a particular pathogen, but shifts
in overall community structure can be detected identified with
many fewer sequences (Young and Schmidt, 2004; Antonopoulos
et al., 2009). A critical factor in determining the depth of sequenc-
ing required to address a question is to assess variability within
replicate samples and determine if the variability is less than that

found in treatment level comparisons. Pilot studies with either
clone libraries or high-throughput sequencing methods are essen-
tial to identify the degree of variability and will establish the extent
of sequencing required in a full-scale experimental design.

The next step is to consider how the structure of the microbial
community might relate to its function. 16S sequences on their
own do not provide specific functional information. However, if
there is a genome sequence available corresponding to a bacterium
with a given 16S with a known function, it may be possible to infer
the functional capacity. It should be noted that inference of the
metabolic potential of an organism based on its SSU rRNA gene
sequences may also be complicated by the lateral transfer of genes
between microbes.

LOOKING AT THE “BIG PICTURE”: METAGENOMES,
METATRANSCRIPTOMES, AND IN SITU ANALYSIS
Rather than inferring metabolic potential from 16S rRNA gene
sequences, the genetic diversity of the microbiome can be
accessed directly through shotgun metagenomes (Handelsman,
2004; Riesenfeld et al., 2004; Streit and Schmitz, 2004; Gill et al.,
2006). In this approach, DNA extracted from a sample of the
microbiome is sequenced directly, rather than following amplifi-
cation of a specific gene (e.g., 16S rRNA). The absence of a specific
amplification step to recover microbial genes often means that suit-
able amounts of DNA from microbial communities are difficult to
obtain, particularly without interference from host DNA. Physical
methods for separating microbial communities from host tissue,
including the user of lasers to remove attached microbes from
epithelial cells in the GI tract (Wang et al., 2010a), can be effec-
tive, but typically provides insufficient DNA for direct sequencing.
Fortunately, there are approaches for whole genome amplification
that can be employed to produce sufficient DNA for metage-
nomic sequencing (Binga et al., 2008). Understanding the biases
and variability introduced by each of these steps is essential for a
meaningful analysis of the resulting sequences.

When sequences derived from metagenomes are compared
to previously characterized genes, using platforms such as MG-
RAST (Glass et al., 2010), a picture of the metabolic potential
of a community emerges. Millions of sequences from shotgun
metagenomes from the human GI tract (Qin et al., 2010) have
been generated in an effort to identify those that are consistent
with health and various disease states. It has been suggested that
while the taxonomic structure of microbiomes can fluctuate con-
siderably, the composition of metabolic genes remains consistent
(Turnbaugh et al., 2009). The definition of OTUs for both rRNA
genes and protein-encoding genes will certainly influence this
interpretation of the data: defining the appropriate level of resolu-
tion in sequence analysis is central to future analysis of microbiome
sequences.

A logical extension of the metabolic potential suggested by
community metagenomic sequencing is insight into the actual
activity of a community gained through metatranscriptomic
sequencing (Gilbert and Hughes, 2011; Gosalbes et al., 2011).
In this case, total RNA is isolated and structural RNAs removed
to enrich for mRNA, which is then reverse transcribed into
cDNA for sequence analysis. Rather than just revealing the poten-
tial activity, this will indicate which of the potential metabolic
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pathways are actually being used on the basis of their transcrip-
tion within the community. To move even closer to actual function,
metaproteomics employs high-throughput, high-resolution mass
spectroscopy to determine which proteins are actually present in
a given community (Verberkmoes et al., 2009). This approach
generally requires some knowledge of the coding potential of a
community in order to make predictions about potential pro-
teins based in mass/charge ratios, and thus is often combined
with metagenomic sequencing. A final approach used to assess
in situ function, often via mass spectroscopy, is to measure the
complement of metabolites (e.g., short chain fatty acids, lipids,
small molecules) associated with a community. This so-called
metabolomics or metabonomics approach assesses function based
on the presence of metabolites, many of which will be produced by
specific members of the community (Martin et al., 2007; Kinross
et al., 2011).

The three dimensional structure of microbial communities in
the GI tract, particularly those in close proximity to epithelial
cells may also provide useful information about the function of
the community, including cell–cell interactions among microbes
and between microbes and their host. Extraction and purification
of DNA for microbiome analysis obliterates the architecture of
microbial communities, but fortunately the sequence data gath-
ered as part of a SSU microbial census can be used to design
fluorescently labeled probes that permit visualization of the struc-
tural organization of microbes in preserved samples. The recent
application of combinatorial labeling of probes and spectral imag-
ing (Valm et al., 2011) offers the potential to visualize dozens of
microbes in a community and holds considerable promise for
microbiome studies.

SELECTING THE APPROPRIATE METHODOLOGY; AN ARGUMENT FOR
THE TEAM APPROACH
With this immense armamentarium of tools for microbiome
analysis, the decision as to which method to employ must return to

the most basic considerations, namely, what is the scientific and/or
clinical question(s) to be addressed? In some cases, associations
with disease based on 16S sequence retrieval are an appropri-
ate first step, in an exercise as we discussed earlier that can be
thought of as being hypothesis generating. However, in order to
specifically test a given hypothesis or to monitor the physiologic
effects of specific microbiome alterations, functional assessments
via metagenomics or metabolomics might be more appropriate.
To help in such decision making, a “team science” approach is
often necessary, bringing together clinicians with expertise in IBD
with microbial ecologists, bioinformatics specialists, statisticians,
and microbial physiologists. As demonstrated by the NIH Human
Microbiome Project (HMP) and the European MetaHIT projects,
collaborative teams of scientists from a broad range of disciplines
working together to address questions of the microbiome in health
and disease are an important and effective approach. Similarly, the
study of IBD using a“systems science,”with interdisciplinary teams
and expertise will be essential for discovering the etiopathogenesis
of these diseases, novel therapies, and potentially a cure.

SUMMARY
We propose that collaboration between microbial ecologists and
clinician investigators is critical and should be considered an
essential component for translational studies of the role of the
microbiome in IBD. We caution against overzealous claims about
the significance of the findings based on our current evidence.
Existing descriptive studies should be used to generate hypotheses
and help us move toward mechanistic studies that will truly help
us discover the causes and potential cures for IBD and other gas-
trointestinal diseases. As our molecular techniques for evaluating
the microbiome evolve and become more refined, the field needs to
move beyond the descriptive studies which constitute the current
state of microbiome-IBD research and toward mechanistic studies
that will fundamentally improve and expand our understanding
of IBD.
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