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Although it has been proposed that inhibition is related to individual differences in
mathematical achievement, it is not clear how it is related to specific aspects of
mathematical skills, such as arithmetic fact retrieval. The present study therefore
investigated the association between inhibition and arithmetic fact retrieval and further
examined the unique role of inhibition in individual differences in arithmetic fact retrieval,
in addition to numerical magnitude processing. We administered measures of cognitive
inhibition (i.e., numerical and non-numerical stroop tasks) and a complementary,
more ecologically valid measure of children’s inhibition in the classroom (i.e., teacher
questionnaire), as well as numerical magnitude processing (i.e., symbolic and non-
symbolic numerical magnitude comparison) and arithmetic fact retrieval (i.e., two
verification tasks) in 86 typically developing third graders. We used a correlation, a
regression and a Bayesian analysis. This study failed to observe a significant association
between inhibition and arithmetic fact retrieval. Consequently, our results did not reveal
a unique contribution of inhibition to arithmetic fact retrieval in addition to numerical
magnitude processing. On the other hand, symbolic numerical magnitude processing
turned out to be a very powerful predictor of arithmetic fact retrieval, as indicated by
both frequentist and Bayesian approaches.

Keywords: mathematical competencies, individual differences, arithmetic fact retrieval, inhibition, numerical
magnitude processing, third grade

INTRODUCTION

There are large individual differences in the way children acquire mathematical competencies
(e.g., Dowker, 2005). Because mathematical skills are crucial abilities in modern western society
(e.g., Finnie and Meng, 2001; Ancker and Kaufman, 2007) and early individual differences in
mathematics predict later adult socioeconomic status (Ritchie and Bates, 2013), it is important
to understand the cognitive processes underlying children’s achievement in mathematics as this
can contribute to designing scientifically validated diagnostic tests and remediation programs for
children at risk for or with difficulties in mathematical achievement. One way to do so, is to
investigate the cognitive determinants of these individual differences.

Since mathematics consists of various different abilities (e.g., arithmetic, problem solving,
geometry; e.g., Gilmore et al., 2013) it is important to determine how cognitive determinants
are related to specific mathematical skills when studying individual differences in mathematical
abilities. Most existing studies focussed on associations with general tests of mathematical abilities
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(De Smedt et al., 2013), which yield a total score that reflects
performance averaged across various math abilities. This leaves
it functionally unclear how cognitive determinants are involved
in mathematical processes. In this study, we focus on arithmetic,
and more specifically arithmetic fact retrieval. The ability to
retrieve arithmetic facts is a major building block for children’s
development in more complex mathematical abilities (Kilpatrick
et al., 2001; Geary et al., 2012) and it has been considered to be
the hallmark of children with dyscalculia (American Psychiatric
Association, 2013).

There are two ways to study cognitive determinants in relation
to (specific) mathematical skills, i.e., a domain-specific and a
domain-general approach (e.g., Fias et al., 2013). Domain-specific
approaches investigate the role of number-specific processes,
such as the representation of numerical magnitudes in individual
differences in mathematics achievement (e.g., De Smedt et al.,
2013; Schneider et al., 2016, for a meta-analysis). Domain-general
approaches focus on the influence of non-numerical cognitive
skills that play a role in mathematical performance, including
working memory (e.g., Raghubar et al., 2010; Friso-van den Bos
et al., 2013, for a meta-analysis) or executive functions (e.g., Bull
and Scerif, 2001; Friso-van den Bos et al., 2013), such as inhibition
(e.g., Gilmore et al., 2013).

Over the last 5 years, there has been a large number of studies
on individual differences in various mathematical competencies,
including arithmetic fact retrieval (e.g., Vanbinst et al., 2012), that
has mainly focussed on domain-specific factors, i.e., numerical
magnitude processing – or people’s elementary intuitions about
quantity and their ability to understand the meaning of symbolic
numbers (De Smedt et al., 2013; Schneider et al., 2016). In these
studies, the role of domain-general factors has been understudied
(see for a critique Fias et al., 2013; Szucs et al., 2013; Fias,
2015). Moreover, little attention has been paid to investigating the
joint effects of domain-specific factors (e.g., numerical magnitude
processing) and domain-general factors. It is also not unlikely
that numerical magnitude processing performance itself is also
determined, to some extent, by domain-general processes, such
as inhibition (Fuhs and McNeil, 2013; Gilmore et al., 2013).

The study of inhibition has recently received some renewed
attention in the field of mathematics learning (e.g., Gilmore et al.,
2013; Szucs et al., 2013; see also Cragg and Gilmore, 2014, for a
review). Inhibition refers to one’s ability to control one’s attention,
behavior, thoughts to override a strong internal predisposition or
external lure and instead do what’s more appropriate or needed
(Diamond, 2013, p. 137). Inhibition has been associated with a
variety of learning activities (Allan et al., 2014) and inhibitory
control early in development appears to be predictive of several
outcomes throughout life (Moffitt et al., 2011).

Various studies have shown that inhibition is important
for general mathematical development. For example, individual
differences in inhibitory control are associated with general
mathematical performance in typically developing children (e.g.,
Bull and Scerif, 2001; Espy et al., 2004; St Clair-Thompson and
Gathercole, 2006; Blair and Razza, 2007; Thorell, 2007; Brock
et al., 2009; Kroesbergen et al., 2009; Lee et al., 2010; Gilmore
et al., 2013; see Allan et al., 2014, for a meta-analysis). It has
also been suggested that poor inhibition skills explain part of the

low mathematical performance in children with developmental
dyscalculia (e.g., Bull and Scerif, 2001; Passolunghi and Siegel,
2004; Szucs et al., 2013), and in children with attentional deficit
hyperactivity disorder (ADHD) – which is characterized by
poor response inhibition – in which arithmetic deficits have
been reported (Kaufmann and Nuerk, 2006). On the other
hand, at the neural level the consistent activation increases
in the (ventrolateral) prefrontal cortex during mathematical
problem solving have been interpreted as reflecting the role of
inhibitory control in the solution of these problems (e.g., Cho
et al., 2012; Willoughby et al., 2012; Allan et al., 2014; Menon,
2015, for a review). However, several studies failed to find an
association between inhibition and math performance (e.g., van
der Sluis et al., 2007; Keller and Libertus, 2015). Therefore, the
association between inhibition and mathematical performance
remains unclear.

One major limitation of the above-reviewed studies that
investigated the association between inhibition and mathematical
performance is that they investigated mathematics performance
with broad general standardized achievement tests. Yet, as
suggested by Cragg and Gilmore (2014), the association between
inhibition and mathematical skills is likely to vary depending on
the mathematical skill under investigation. As our main interest is
arithmetic fact retrieval, focussing on inhibition is very relevant,
because the association between inhibition and mathematics
achievement might be particularly prominent in the context of
arithmetic fact retrieval (Verguts and Fias, 2005). Because of the
number of features they share, arithmetic facts are particularly
prone to interference (De Visscher and Noël, 2013). During
arithmetic fact retrieval incorrect but competing answers have
to be inhibited, as arithmetic facts are stored in an associative
network in semantic memory (e.g., Ashcraft, 1987; Campbell,
1995; Verguts and Fias, 2005). For example, when retrieving
the answer to 6 × 3, the incorrect but competing answers to
6 × 2 and 6 × 4, and 5 × 3 and 4 × 3 have to be inhibited.
This associative confusion effect is commonly assumed to reflect
interference effects (Censabella and Noël, 2007). Therefore, poor
inhibition skills can lead to making specific errors when solving
these arithmetic fact retrieval problems (e.g., 6 × 3 = 24).
Having good inhibition, children are able to inhibit irrelevant
associations more efficiently and thus are less likely to develop
incorrect associations between problems and their answers
(LeFevre et al., 2013). Retrieval difficulties of children with
dyscalculia might therefore be related to inefficient inhibition of
irrelevant associations (Geary et al., 2012).

Importantly, inhibition is not a unitary concept. Often two
main types of inhibition are distinguished: behavioral inhibition
or response inhibition (measured with go/no-go tasks or stop-
signal tasks) and cognitive inhibition or interference control
(measured with Stroop tasks; Diamond, 2013). In this study,
we focus on cognitive inhibition. The rationale for focussing
on cognitive inhibition is twofold. Firstly, we aim to investigate
cognitive determinants of individual differences in arithmetic
fact retrieval. Secondly, our focus on inhibition is guided by a
functional analysis of our task of interest, i.e., arithmetic fact
retrieval, or more specifically, by the fact that when children
are retrieving arithmetic facts from their memory, competing
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answers need to be inhibited. To investigate this theoretically
appealing link, measures of cognitive inhibition, rather than
behavioral inhibition, were selected.

The Present Study
Against the background of the studies reviewed above, the
present study investigated the association between inhibition
and arithmetic fact retrieval. We extended the existing body
of evidence by focusing on one specific mathematical skill,
i.e., arithmetic fact retrieval, and by also studying the joint
influence of one other domain-specific skill, i.e., numerical
magnitude processing, that has been robustly related to
individual differences in mathematics achievement (Schneider
et al., 2016), and to arithmetic fact retrieval in particular
(Vanbinst et al., 2012, 2015a,b). This allowed us to investigate the
unique roles of inhibition and numerical magnitude processing
in explaining variability in arithmetic fact retrieval.

Inhibition was measured with cognitive tasks as well as
with a questionnaire, because both types of measures capture
unique and important aspects of inhibition (e.g., Valiente
et al., 2010; Allan et al., 2013). Because we were interested in
cognitive determinants of individual differences in arithmetical
fact retrieval, we mainly focused on cognitive inhibition – i.e., the
ability to supress competing mental representations (Diamond,
2013). We used a numerical and a non-numerical stroop task
to measure cognitive inhibition, which allowed us to compare
performance on stroop tasks with and without numerical
inhibition requirement. We used teacher ratings because teacher
ratings of inhibition are more associated with measures of
academic skills than parent ratings, given that teachers observe
children’s behavior in relation to academic tasks in the classroom
(e.g., Blair and Razza, 2007). Combining both measures of
inhibition in an experimental setting with the researcher (i.e.,
by means of stroop tasks) as well as measures of how inhibition
skills are reflected in a busy classroom where learning takes place,
allowed us to capture the inhibition skills of the children across
different settings.

Numerical magnitude processing was measured with symbolic
and non-symbolic numerical magnitude comparison tasks, which
allowed us to compare performance on numerical tasks with
and without symbolic processing requirement (Schneider et al.,
2016). We additionally administered a test of intellectual ability
and a motor reaction time task to exclude the possibility that
associations between our variables of interest and arithmetic
fact retrieval were explained by these confounds. We assessed
children in the third grade, because we wanted to study the
association between arithmetic fact retrieval and inhibition in
children who had already acquired a considerable number of
arithmetic facts.

To examine the association between arithmetic fact retrieval
and inhibition skills, we ran correlational, regression and
Bayesian analyses. The use of frequentist analyses allowed us
to explore our data by means of a well-known method to gage
statistical support for the hypotheses of interest. However, using
this p-value null hypothesis significance testing has a number
of statistical limitations (e.g., Andraszewicz et al., 2015). For
example, p-values cannot quantify evidence in favor of a null

hypothesis, they only signal the extremeness of the data under
the null hypothesis and p-value logic resembles a proof by
contradiction (i.e., low p-values indicate extreme data and usually
lead researchers to reject the null hypothesis and interpret this
as evidence in favor of the alternative hypothesis; Andraszewicz
et al., 2015). Unlike null-hypothesis testing, Bayesian statistics
allow for the testing of the degree of support for a hypothesis.
This is expressed as the Bayes factor, which is the ratio between
the evidence in support of the null hypothesis over the alternative
hypothesis. By comparing the fit of the data under the null
hypothesis to the alternative hypothesis, Bayes factors quantify
the evidence in favor of these hypotheses ranging from ‘no
evidence’ to ‘extreme evidence’ (see Andraszewicz et al., 2015, for
a classification scheme). By adding these analysis we deepen our
findings from the traditional regression analysis, as we are able to
identify which predictors are the strongest.

Drawing on previous work, we expected that both measures of
inhibition skills and measures of numerical magnitude processing
would positively correlate with arithmetic fact retrieval skills (the
better the inhibition/numerical magnitude processing skills, the
better the arithmetic fact retrieval skills). Secondly we verified
if both inhibition and numerical magnitude processing play a
unique role in arithmetic fact retrieval.

MATERIALS AND METHODS

Participants
Participants were recruited from four elementary schools located
in provincial towns in the middle of Flanders, Belgium and had
dominantly middle- to high socio-economic background. None
of them had a developmental disorder or mental retardation,
nor repeated a grade. Initially, 102 children were invited to
participate, but the parents of seven children did not give
consent. Due to technical problems during data collection, the
final sample comprised 86 typically developing third-graders (46
boys, 40 girls) between 8 years 3 months and 9 years 2 months
(M = 8 years 9 months; SD = 4 months). For all participants,
written informed parental consent was obtained.

Materials
Materials consisted of standardized tests, paper-and-pencil tasks
and computer tasks designed with E-Prime 2.0 (Schneider et al.,
2002). All computer tasks were conducted on a 17-inch notebook
computer. Stimuli occurred in white on a black background
(Arial font, 72-point size). Response keys were always “d” (left
response; labeled with a green sticker) and “k” (right response;
labeled with a red sticker). The children were instructed to keep
their index fingers on both keys during the task and to perform
both accurately and fast. Both accuracy and reaction time (ms)
were registered by the computer.

Inhibition
Cognitive inhibition was assessed by means of two stroop tasks.
We also administered a teacher questionnaire, i.e., the BRIEF
(Smidts and Huizinga, 2009), as more ecologically valid measure
of inhibition.
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Stroop tasks
We used two measures of interference control, i.e., Stroop tasks
(MacLeod, 1991), in which the processing of possibly interfering
information had to be inhibited. We administered a numerical
(counting) and a non-numerical (color-word) variant of the
Stroop task (van der Sluis et al., 2004). Both tasks involved
a baseline and an interference condition and both conditions
were preceded by 16 practice trials to ensure that the children
understood the task. In the baseline condition the children had
to name the number of objects (e.g., how many in 111; ranging
from 1 to 4 triangles) in the numerical stroop and name color
words (i.e., blue, yellow, red, and green) in the non-numerical
stroop. In the interference condition, the children had to name
the number of objects (e.g., how many digits in 222; number of
objects ranging from 1 to 4; see Figure 1 for all stimuli) in the
numerical stroop and name the ink of a color word (e.g., blue
written in red ink) in the non-numerical stroop. Because both
the enumeration of stimuli within the subitizing range and the
reading of short, well-known words are very automatic processes,
the stimuli of both tasks are ideally suitable to measure inhibition
by means of a stroop task (which requires an automatic process in
the baseline condition for a reliable measure). Each task included
four stimuli that were repeated 10 times, namely combinations
of the numbers 1, 2, 3, and 4 (see Figure 1) in the numerical
and combinations of the colors blue, yellow, red, and green in the
non-numerical stroop task. All stimuli were presented on a paper,
with five lines of eight stimuli. Task administration was the same
in both stroop tasks. The child had to name all the stimuli, while
the experimenter registered accuracy and time to name the entire
sheet. For each condition an inverse efficiency score (i.e., reaction
time divided by accuracy) was calculated by dividing the time
needed to name the sheet by the accuracy. An index of inhibition
was calculated for each task by subtracting the baseline inverse
efficiency score from the interference condition inverse efficiency
score.

BRIEF
The inhibition subscale of the Behavior Rating Inventory of
Executive Function or BRIEF (Smidts and Huizinga, 2009)
version for teachers was used as a complementary, more
ecologically valid measure of children’s inhibition in the
classroom. The BRIEF is a standardized questionnaire that
consists of 75 items that describe executive functioning behavior,
divided in eight subscales (e.g., inhibition, cognitive flexibility,
working memory). We used the 10 items of the inhibition
subscale (Cronbach α = 0.94), which includes items such as ‘Has
difficulties controlling his/her behavior.’ The teacher rated every

FIGURE 1 | Stimuli of the numerical stroop task.

item for every child on a 3-point scale (never – sometimes –
always). The answer ‘never’ scored 1 point, ‘sometimes’ 2 points
and ‘always’ 3 points. The score consisted of the sum of the
points on the 10 items (max= 30). Higher scores indicated more
teacher-reported difficulties in inhibition.

Numerical Magnitude Processing
To investigate the role of inhibition in addition to the well-
established influence of numerical magnitude processing, we
assessed children’s numerical magnitude processing using a
symbolic and a non-symbolic numerical magnitude comparison
task consisting of Arabic digits and dot arrays, respectively.
The tasks consisted of comparing two simultaneously presented
numerical magnitudes arranged on either side of the center of
the screen. The children had to select the numerically larger
magnitude by pressing the key on the side of the larger numerical
magnitude. The stimuli in both tasks comprised all combinations
of numerosities 1 to 9, yielding 72 trials for each task. Three
practice trials were presented for each task. Per task, the stimuli
were randomly divided into two blocks and children were given
short breaks between blocks. Each trial started with a 200 ms
fixation point in the center of the screen and after 1000 ms the
stimulus appeared. In the symbolic task, stimuli remained visible
until response. In the non-symbolic task, stimuli disappeared
after 840 ms in order to avoid counting of the dots. The
position of the largest numerosity was counterbalanced. The
non-symbolic stimuli were generated with the MATLAB script
provided by Piazza et al. (2004) and were controlled for non-
numerical parameters (i.e., density, dot size and total occupied
area). On half of the trials dot size, array size and density were
positively correlated with number, and on the other half they were
negatively correlated. These visual parameters were manipulated
to ensure that children could not reliably use these non-numerical
cues or perceptual features to make a correct decision.

Arithmetic Fact Retrieval
Arithmetic fact retrieval was assessed by means of two single-
digit verification tasks: one addition task and one multiplication
task. Stimuli were selected from a standard set of single-digit
arithmetic problems (LeFevre et al., 1996), which excludes tie
problems (e.g., 4 + 4) and problems containing 0 and 1
as an operand or answer. The addition items comprised all
combinations of the numbers 2 to 9 (n = 28) and each item
was once presented with the correct answer and once with an
incorrect answer, yielding 56 trials. The multiplication items
consisted of all items with a product smaller or equal to 25
(n = 30), because these small problems are more likely to be
solved by direct retrieval from long-term memory (e.g., Campbell
and Xue, 2001). Each item was once presented with the correct
answer and once with an incorrect answer, yielding 60 trials. The
position of the numerically largest operand was counterbalanced.
The false solutions in the addition task were created by adding
or subtracting 1 or 2 to the solution. The false solutions in the
multiplication task were table related, i.e., one of the operands−1
or+1 (n= 10; e.g., 6× 3= 24), the answer of the corresponding
addition (n = 10; e.g., 8 × 2 = 10) or unrelated (n = 10; e.g.,
8 × 3 = 25). Half of the false solutions were numerically larger
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than the correct answer. Each task was preceded by eight practice
trials to familiarize the child with the task requirements. Each trial
started with a 250 ms fixation point in the center of the screen and
after 750 ms the stimulus appeared. The stimuli remained visible
until response. The children had to indicate if the presented
solution for the problem was correct (by pressing the left response
key, labeled with a green sticker) or false (by pressing the right
response key, labeled with a red sticker). For each task, stimuli
were presented randomly divided into two blocks and children
were given short breaks between blocks.

Control Measures
Intellectual ability
Raven’s Standard Progressive Matrices (Raven et al., 1992) was
used as a measure of intellectual ability (Cronbach α = 0.88).
The children were administered 60 multiple-choice items where
they had to complete a pattern. The raw score was the number
of correct answers within 40 min. For each child a standardized
score (M = 100, SD= 15) was calculated.

Motor reaction time
A motor reaction time task was included as a control for
children’s response speed on the keyboard. Two shapes, one of
which was filled, were simultaneously displayed, one on the left
and one on the right of the computer screen. The children had
to press the key corresponding to the side of the filled figure.
All shapes were similar in size. The administered shapes were
circle, triangle, square, star, and heart. Each shape occurred four
times filled and four times non-filled. This resulted in 20 trials.
Three practice trials were included to familiarize the child with
the task. The position of the correct answer (filled shape) was
counterbalanced. Each trial started with a 200 ms fixation point in
the center of the screen and after 1000 ms the stimulus appeared.
The stimuli remained visible until response.

Procedure
All children were tested at their own school during regular school
hours. They all completed three sessions: an individual session
(20 min), a session in small groups of four children (45 min), and
a group-administered session (60 min). The individual session
and small group session with the computer took place in a
quiet room. All children were tested in the middle of the third
grade. The individual session consisted of both stroop tasks, the
small group session of the computer tasks (i.e., motor reaction
time, both verification tasks, both comparison tasks), and the
group session of the measure of intellectual ability. All children
completed the tasks in the same order.

RESULTS

We explored all data for potential outliers (defined as values
larger than three times the interquartile range). In total, nine
outliers were identified. Importantly, we analyzed all our data
both with and without outliers. Including the outliers did not
affect the results. Consequently, all subsequent results are based
on the full dataset.

In the stroop and computerized tasks, accuracy was very high
[M = (0.84–0.99)]. We therefore combined for all these tasks the
accuracy and response times into an inverse efficiency score, by
dividing a child’s response time by its accuracy. These inverse
efficiency scores were included in all subsequent analyses.

There were several careful manipulations built in our tasks.
In order to verify if our task format worked, we did several
analyses. Firstly, we verified if the task design of the stroop
tasks had worked by comparing the baseline and interference
condition. As mentioned before we used a difference score
as an index of inhibition (calculated by subtracting the
baseline score from the interference condition score). This score
was significantly different from zero for both the numerical
[t(85)= 29.24, p < 0.001] and the non-numerical [t(85)= 22.51,
p < 0.001] stroop task, which indicates that the task manipulation
worked. The results of our analyses were very similar if we
calculated (partial) correlations with the interference condition
controlled for the baseline condition instead of the difference
score.

Secondly, the use of the MATLAB script provided by
Piazza et al. (2004) for the non-symbolic numerical magnitude
comparison task, including a control for the non-numerical
parameters density, dot size and total occupied area, allowed us to
divide the items into congruent items (i.e., items where children
could reliably use non-numerical cues or perceptual features to
make a correct decision, i.e., congruency between visual cues
and numerical cues) and incongruent items (i.e., items where
children could not reliably use non-numerical cues or perceptual
features to make a correct decision, i.e., visual and numerical
cues lead to opposite decisions). Our data showed an effect of
congruency: congruent items were solved faster than incongruent
items [t(85) = −4.87; p < 0.001]. However, the associations of
both types of items with fact retrieval were very similar (for
congruent items r = 0.27, p = 0.012; for incongruent items
r= 0.22, p= 0.044), and therefore, the effect of this manipulation
was not further considered.

Thirdly, on the verification tasks we analyzed whether
performance on items with different types of false solutions
differed in reaction time and/or accuracy. In the addition task
accuracy was significantly lower on the items with the false
solutions with a distance of 2 of the correct solution, than
on the items with a false solution with a distance of 1 of
the correct solution (p < 0.01). In multiplication, accuracy
was significantly lower on the table related false solutions
than on the uncorrelated false solutions (p < 0.01). We
further investigated whether performance on different types
of false solutions was differently related to our measures of
inhibition. No differential associations of the different types
of false solutions with inhibition were found. Consequently,
in the following analyses we did not differentiate between the
different types of false solutions in the arithmetic verification
tasks.

Descriptive Analyses
The means, standard deviations and ranges for all administered
measures are displayed in Table 1. The data were well distributed
and there were no floor- or ceiling effects.
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TABLE 1 | Descriptive statistics of the administered measures.

N M SD Range

Inhibition

Numerical stroop (s)◦ 86 20.96 6.65 (7.59–38.50)

Non-numerical stroop (s)◦ 86 25.64 10.56 (8.23–72.08)

BRIEF (raw score) 86 14.08 4.50 (10–27)

Numerical magnitude processing

Symbolic (ms)◦ 86 908.81 232.72 (602.47–1583.62)

Non-symbolic (ms)◦ 86 798.64 196.26 (531.82–1439.98)

Arithmetical fact retrieval

Addition verification task (ms)◦ 86 4099.60 1391.31 (2156.59–8788.95)

Multiplication verification task (ms)◦ 86 3627.99 2066.55 (1558.79–14420.11)

Control measures

Raven (standardized total score) 86 109.29 10.95 (72–130)

Motor reaction time (ms)◦ 86 620.81 177.71 (358.89–1158.05)

◦ Inverse efficiency score (i.e., response time/accuracy).

Correlational Analyses
Pearson correlation coefficients were calculated to examine
the associations between the different variables under study
(Table 2). Correlations with computerized tasks were controlled
for motor reaction time by means of partial correlation
coefficients. Because of the significant correlation between the
arithmetic fact measures (|r| = 0.74, p < 0.01), we combined
these scores (i.e., both verification tasks) into one composite score
(i.e., verification tasks; consisting of the mean of the verification
tasks scores) to improve clarity. This score was included in all
subsequent analyses. However, when the pattern of correlations
was investigated for each arithmetic fact measure separately,
results were very similar.

All experimental measures that were thought to measure the
same underlying component – i.e., the numerical magnitude
processing tasks and the inhibition tasks – were significantly
correlated with each other, except for the behavioral measure of
inhibition (i.e., BRIEF questionnaire), which was not significantly
correlated with the two cognitive measures of inhibition (i.e.,
stroop tasks).

Both numerical magnitude processing tasks were significantly
correlated with arithmetic verification, indicating that children
with better numerical magnitude processing skills showed
better arithmetic fact retrieval performance. This association
was stronger for symbolic than for non-symbolic numerical
magnitude processing. The William-Steiger test indicated that the
difference between these associations was statistically significant
[t(85)=−4.23, p < 0.001].

There was no significant correlation of the behavioural
measure of inhibition (BRIEF) with any other measure. We
found no significant correlations between the stroop tasks and
arithmetic verification. The non-numerical stroop task was
significantly correlated with symbolic as well as non-symbolic
numerical magnitude processing.

Regression Analyses
Regression analyses were calculated to assess the unique
contribution of numerical magnitude processing and inhibition

TABLE 2 | Correlation coefficients between the administered measures.

1 2 3 4 5

(1) Numerical stroop

(2) Non-numerical stroop 0.25∗

(3) BRIEF −0.05 0.13

(4) Symbolic NMP 0.18a 0.29a∗∗ 0.16a

(5) Non-symbolic NMP 0.04a 0.24a∗ 0.16a 0.55a∗∗

(6) Verification tasks 0.11a 0.18a
−0.02a 0.61a∗∗ 0.26a∗

NMP, numerical magnitude processing. aControlled for motor reaction time.
∗p < 0.05, ∗∗p < 0.01.

to arithmetic verification. To this end, all these predictors as well
as confounding variables, such as intellectual ability and motor
reaction time were entered simultaneously into a regression. In
addition, in order to quantify evidence in favor of our hypotheses,
Bayes factors were calculated for each predictor with the Bayes
Factor package of Morey et al. (2015) implemented in R.

The results of our regression analysis are presented in Table 3.
Inhibition skills did not significantly predict arithmetic fact
retrieval above numerical magnitude processing (ps > 0.05).
Symbolic numerical magnitude processing significantly predicted
fact retrieval (p < 0.001), even when controlling for each
inhibition task. Non-symbolic numerical magnitude processing
did not significantly predict arithmetic fact retrieval (p= 0.407).

Since p-values only signal the extremeness of the data
under the null hypothesis and p-value logic resembles a proof
by contradiction – i.e., low p-values indicate extreme data
and usually lead researchers to reject the null hypothesis and
interpret this as evidence in favor of the alternative hypothesis
(Andraszewicz et al., 2015) – we also calculated Bayes factors,
which are reported in Table 3. These factors compare the fit of
the data under the null hypothesis compared to the alternative
hypothesis, and thereby quantify the evidence in favor of these
hypotheses. Our results suggested that the data were more likely
to occur under a model including no effect for inhibition (Bayes
factor 0.35 for numerical stroop and 0.76 for non-numerical
stroop) than a model that included inhibition.
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TABLE 3 | Regression analysis of verification and Bayes factors.

Variable β t p Bayes factor

Motor reaction time −0.10 −01.01 0.316 0.41

Intellectual ability 0.08 0.91 0.364 0.31

Numerical stroop −0.01 −0.05 0.957 0.35

Non-numerical stroop −0.01 −0.07 0.943 0.76

Symbolic NMP 0.70 6.23∗∗ 0.000 13 376 272

Non-symbolic NMP −0.09 −0.83 0.407 2.91

NMP, numerical magnitude processing. ∗p < 0.05, ∗∗p < 0.01.

Turning to the effects of numerical magnitude processing,
the Bayes factors only provide anecdotal evidence for the
hypothesis that non-symbolic numerical magnitude processing
is an important predictor. On the other hand, the Bayes factors
provide extreme evidence for the hypothesis that symbolic
numerical magnitude processing is an important predictor of the
variability in arithmetic fact retrieval. As pictured in Figure 2,
when symbolic numerical magnitude processing is omitted from
our regression model, the model loses much of its fit to the data.
This is the only predictor where this is the case, which indicates
that symbolic numerical magnitude processing is by far the most
powerful predictor in our model.

DISCUSSION

Understanding which cognitive processes underlie individual
differences in mathematical skills is a necessary prerequisite to
design validated diagnostic tests and appropriate interventions.
Numerical magnitude processing has been pointed out as an
important factor of these individual differences (Schneider et al.,

2016), but the predominant focus on numerical magnitude
processing has recently been criticized (Fias et al., 2013; Fias,
2015). On the other hand, several studies provided evidence
for an association between inhibition and individual differences
in mathematics achievement (Allan et al., 2014, for a meta-
analysis). However, it is currently not clear how this association
with inhibition occurs in specific aspects of mathematical
achievement, such as arithmetic fact retrieval. Importantly, it also
needs to be verified whether the association between inhibition
and mathematics achievement remains when other crucial factors
that have been shown to contribute to individual differences
in mathematical competence, such as numerical magnitude
processing, are controlled for. Such analysis also reveals whether
the well-established association between numerical magnitude
processing and mathematical competence is not merely explained
by domain-general factors, such as inhibition (Fuhs and McNeil,
2013; Gilmore et al., 2013). We addressed these questions by
examining the association between inhibition and arithmetic
verification and by investigating the unique contribution of
inhibition to arithmetic fact retrieval in addition to numerical
magnitude processing.

The present study failed to observe a significant association
between inhibition and arithmetic fact retrieval. Moreover,
the Bayesian analysis provided evidence for no influence of
inhibition. These findings are not in line with the theoretically
postulated association between arithmetic fact retrieval and
inhibition (e.g., Barrouillet et al., 1997; Geary et al., 2000; Verguts
and Fias, 2005; Geary, 2010; Geary et al., 2012) and contradict
previous studies that showed an association between inhibition
and mathematics achievement (e.g., Bull and Scerif, 2001; Geary
et al., 2012; LeFevre et al., 2013; Szucs et al., 2013).

This inconsistency might be explained by various factors.
Firstly, it could be due to differences in the measurement of

FIGURE 2 | Change in Bayes factor when a variable is omitted from the model. The lower the values, the worse the fit of the model to the data. Numerical,
numercial stroop; Non-numerical, non-numerical stroop; Symbolic, symbolic numerical magnitude processing; Non-symbolic, non-symbolic numerical magnitude
processing; Motor, motor reaction time.
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inhibition in the present study, compared to existing studies.
For example, LeFevre et al. (2013) used the broad concept
executive attention, which they defined as the common aspects
of executive function and working memory that are necessary in
many complex cognitive tasks, including inhibition of competing
responses, goal maintenance, and response selection. These
authors used span tasks and a color trail test to measure executive
attention. These measures tap into broader executive functions
rather than inhibition per se, which might explain the differences
between their findings and the current study. Geary et al. (2012)
measured inhibition by counting the number of intrusion errors
on an arithmetic task. As a result, these authors derived an index
of inhibition from the mathematical task under study, but they
did not use an independent measure of inhibition as we did.
This measurement difference might again explain differences in
results.

Secondly, the inconsistency might be due to the differences in
samples that were used. For example, Szucs et al. (2013) showed
that children with dyscalculia performed significantly more
poorly on several inhibition measures (including the number
stroop), pointing to an inhibition deficit in these children.
However, the current sample comprised typically developing
children. Indeed, it is possible that inhibition has a role in
arithmetic fact retrieval in children with mathematical disabilities
but not in typically developing children, which could explain
the differences between the results of Szucs et al. (2013) and
the current study. However, other studies in children with
mathematical disabilities did not find significant associations
between arithmetic fact retrieval and inhibition. Both van der
Sluis et al. (2004) and Censabella and Noël (2007) found that
children with mathematical disabilities did not differ from
the typically developing children on (the same) inhibition
tasks as in our study. The present findings, although only
applicable to typically developing children and not to children
with mathematical disabilities, are in line with these studies
that failed to find a significant association between inhibition
and mathematical performance. Moreover, recently Keller and
Libertus (2015) also failed to find an association between
inhibition on general mathematical skills in typically developing
5- and 6-year-olds. The current data extend the results of existing
studies by specifically focussing on the theoretically appealing
association between inhibition and arithmetic fact retrieval, i.e.,
because during arithmetic fact retrieval incorrect but competing
answers have to be inhibited, as arithmetic facts are stored in
an associative network in semantic memory. Importantly, it is
unclear whether the children with mathematical disabilities in
van der Sluis et al. (2004) and Censabella and Noël (2007) had
specific problems with arithmetic fact retrieval. For example,
Censabella and Noël (2007) stated that, although assumed, their
sample of children with mathematical disabilities did not have
difficulties in arithmetic fact retrieval per se. Therefore, these
studies should be replicated in samples of children with specific
difficulties in arithmetic fact retrieval.

The present study also investigated the association between
numerical magnitude processing and arithmetic fact retrieval.
We used both symbolic and non-symbolic tasks to verify
whether the access to numerical magnitudes from symbolic

digits or numerical magnitude processing per se is related
to arithmetic fact retrieval (see De Smedt et al., 2013, for
a discussion). In line with Vanbinst et al. (2012, 2015a,b)
and De Smedt et al. (2013), the importance of symbolic
numerical magnitude processing in arithmetic fact retrieval
was supported by our results. More specifically, we found
a unique association between symbolic numerical magnitude
processing and fact retrieval. Thus, children with better symbolic
numerical magnitude processing skills showed better arithmetic
fact retrieval performance. We also found a significant correlation
of non-symbolic numerical magnitude processing with fact
retrieval. However, as strongly indicated by our Bayesian analysis,
symbolic numerical magnitude is a much stronger predictor than
non-symbolic numerical magnitude.

Recently, Fuhs and McNeil (2013) and Gilmore et al. (2013)
suggested that performance on the non-symbolic numerical
magnitude processing task is determined by domain-general
processes such as inhibition. We also explored this issue in our
data. However, the results on the association between inhibition
and the non-symbolic numerical magnitude processing task
were not so univocal. We observed an association with the
non-numerical stroop task, but found no association with the
numerical stroop task. On the other hand, we also found an
association between the non-numerical stroop task and the
symbolic numerical magnitude processing task. However, these
associations did not explain the association between numerical
magnitude processing and arithmetical fact retrieval.

Limitations and Future Directions
Firstly, our choice for specific measures of inhibition might have
had an important impact on our findings. The present study
only included one specific measure of inhibition, i.e., Stroop
tasks, yet inhibition is not a unitary construct, but a family
of functions (Harnishfeger, 1995; Dempster and Corkill, 1999;
Hasher et al., 1999; Nigg, 2000; Shilling et al., 2002; Censabella
and Noël, 2007). Different aspects of inhibitory control are
dissociable from each other at both the behavioral and the neural
levels (Diamond, 2013). One often-used distinction between
different types of inhibition is between behavioral inhibition
and cognitive inhibition (Diamond, 2013). Different tasks (e.g.,
Stroop tasks, Flanker task, go/no-go task, stop-signal task) are
used to measure these different types of inhibition, and their
association with arithmetic fact retrieval might be different.
Future studies should therefore use a combination of different
measurements of inhibition. Additionally, there are several
versions of the Stroop task [e.g., animal stroop (Szucs et al.,
2013), spatial stroop (Diamond, 2013), numerical stroop (Bull
and Scerif, 2001)], and, in particular, of the numerical stroop task.
We used a counting stroop task as numerical stroop task. The
difference between the different versions of the tasks lies in the
information that has to be inhibited. In our numerical stroop task
(i.e., Counting Stroop Task), the number represented by the digits
had to be inhibited in favor of the quantity of digits in the array.
On the other hand, in the Number Stroop (e.g., Kaufmann and
Nuerk, 2006) magnitudes of two one-digit numbers who differ in
physical size are compared and participants have to inhibit the
irrelevant physical size in favor of the numerical magnitude of
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the digits (or vice versa). Because these tasks contain different
kinds of numerical information that needs to be inhibited (i.e.,
the number represented by digits vs. the physical size of the
digit), they may be differently related to arithmetic fact retrieval.
Moreover, the design of the classic stroop task we used in this
study might have had an impact on the performance on the task,
as children see all stimuli at once, which can influence cognitive
load, i.e., higher load when seeing the stimuli all at once vs. a trial-
by-trial administration (e.g., Kindt et al., 1996). Future studies
could compare the design we used (i.e., a card format) to a design
where one stimulus at a time is presented (e.g., a computer task),
in order to investigate the impact of the design on performance
on the task.

Importantly, we also included a teacher questionnaire, the
BRIEF (Smidts and Huizinga, 2009) to measure inhibition
skills in children, but this measure was not associated with
our measures of cognitive inhibition. Although the inhibition
subscale of the BRIEF is known to be reliable, the use of 10
items might have been limited to capture sufficient intersubject
variability. Moreover, it could be due to measure selection,
namely the stroop task being a direct measure of inhibition and
the BRIEF being an indirect measure. It could also be due to
the task design of the stroop task (e.g., number of trials). On the
other hand, the current data are in line with several studies who
failed to observe a significant correlation between ratings (e.g.,
BRIEF questionnaire) and performance-based measures (e.g.,
stroop tasks), suggesting these measures assess different aspects
of inhibition (Mahone et al., 2002; McAuley et al., 2010; Toplak
et al., 2013).

Secondly, the participant selection in this study might have
had an impact on our results. We only investigated children
in third grade, which might explain why we did not find
an association between inhibition skills and arithmetic fact
retrieval. Although children in third grade have already acquired
a considerable number of arithmetic facts, there is still room for
improvement in automatizing these facts. Through the course of
primary school, problem-answer associations become stronger,
and more efficient arithmetic fact retrieval arises (Vanbinst
et al., 2015a). Moreover, inhibitory control also continues to
mature through the course of primary school (Luna et al.,
2004; Luna, 2009). On the other hand, inhibition could play
a role in the learning of arithmetic facts, because similarity
between arithmetic facts provokes interference and this could
lead to difficulties in storing arithmetic facts in long-term
memory (De Visscher and Noël, 2014a,b). Therefore, it would
be interesting for future studies to investigate the association
between inhibition and fact retrieval in children of different ages.
Additionally, the present study comprised typically developing

children. It might be that the association between inhibition
and arithmetic fact retrieval is only observed in the context
of atypical development of arithmetic fact retrieval and/or
of atypical development of inhibition. Future studies should
examine the association between inhibition and arithmetic
fact retrieval skills in atypical groups, such as children with
arithmetic fact retrieval deficits and children with ADHD –
who are known to have deficits in (response) inhibition
(e.g., Bayliss and Roodenrys, 2000; Kaufmann and Nuerk,
2006).

Thirdly, the association between inhibition and mathematics
observed in previous studies might also be explained by other
factors that are associated with both individual differences in
mathematics and inhibition. Potential examples include working
memory (Friso-van den Bos et al., 2013; Peng et al., 2015), socio-
economic status and home environment (Sarsour et al., 2011;
Dilwordth-Bart, 2012; Keller and Libertus, 2015). These factors
should be considered in future studies.

Future studies should also examine the association between
inhibition and arithmetic fact retrieval at the neural level.
Even though this association might not be detectable at the
behavior level, it might be that it can be observed at the neural
level. Indeed, neuroimaging data might generate findings that
cannot be detected by behavioral data alone (De Smedt et al.,
2010). Brain areas associated with inhibition (e.g., prefrontal
cortex) are often found to be activated during mathematical
tasks (e.g., Menon, 2015, for a review). Although many fMRI
studies have pointed to prefrontal cortex control processes
during arithmetic fact retrieval (Menon, 2015), there is no study
that has directly investigated the overlap between these control
networks and arithmetic fact retrieval. Cho et al. (2012) found
that increased retrieval use was correlated with the dorsolateral
and ventrolateral prefrontal cortex, areas that are also known to
show increased activity during inhibition. The authors suggested
that this increase in the lateral prefrontal cortex suggested the
involvement of inhibitory processes, yet they did not directly test
this hypothesis. Future studies should investigate this hypothesis
with imaging studies, for example by investigating the neural
overlap between an arithmetic task and an inhibition localizer
task.
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