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The reasons behind the clinical variability of SARS-CoV-2 infection, ranging from
asymptomatic infection to lethal disease, are still unclear. We performed genome-wide
transcriptional whole-blood RNA sequencing, bioinformatics analysis and PCR validation
to test the hypothesis that immune response-related gene signatures reflecting baseline
may differ between healthy individuals, with an equally robust antibody response, who
experienced an entirely asymptomatic (n=17) versus clinical SARS-CoV-2 infection (n=15)
in the past months (mean of 14 weeks). Among 12.789 protein-coding genes analysed,
we identified six and nine genes with significantly decreased or increased expression,
respectively, in those with prior asymptomatic infection relatively to those with clinical
infection. All six genes with decreased expression (IFIT3, IFI44L, RSAD2, FOLR3, PI3,
ALOX15), are involved in innate immune response while the first two are interferon-
induced proteins. Among genes with increased expression six are involved in immune
response (GZMH, CLEC1B, CLEC12A), viral mRNA translation (GCAT), energy
metabolism (CACNA2D2) and oxidative stress response (ENC1). Notably, 8/15
differentially expressed genes are regulated by interferons. Our results suggest that
subtle differences at baseline expression of innate immunity-related genes may be
associated with an asymptomatic disease course in SARS-CoV-2 infection. Whether a
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certain gene signature predicts, or not, those who will develop a more efficient immune
response upon exposure to SARS-CoV-2, with implications for prioritization for
vaccination, warrant further study.
Keywords: innate immunity, anti-SARS-CoV2 antibody, asympomatic, RNAseq, whole-blood
INTRODUCTION

Since December 2019 the SARS-CoV-2 has spread throughout
the world infecting dozens of millions of people and resulting in
over 2.8 million deaths, as of April 2021. Although the case
fatality rate in hospitalized patients may exceed 10% (1, 2), 35-
50% of infected adults do not develop, perceive and report any
clinical symptom (3, 4). Asymptomatic infected persons may be
responsible for viral transmission for more days than aware self-
isolated cases, which may also explain, at least partially, the
exponential increase in the number of infections globally (5–7).
Notably, we only know in retrospect who was indeed
asymptomatic, since individuals without symptoms at the time
of a positive molecular test should be followed for 14 days to
determine the clinical picture, being “pre-symptomatic” if they
develop symptoms later.

The proportion of asymptomatic individuals varies widely
among different viral infections, whereas relevant biomarkers do
not currently exist due to our limited knowledge of the molecular
host-pathogen interactions and immune response to particular
infections (8). For example, a significant fraction of
cytomegalovirus infections, similarly to SARS-CoV-2, are
asymptomatic and unsuspected (9). In contrast, measles infected
individuals are very rarely asymptomatic (10). The reasons why
certain individuals, including even people living with HIV (11) or
other immunodeficiencies (12), do not develop clinical symptoms
during SARS-CoV-2 infection are essentially unknown (13, 14). So
far, studies assessing the immune response during asymptomatic
infection are few. In an elegant study, Long et al. showed that
asymptomatic individuals presented with significantly longer
duration of viral shedding compared to symptomatic patients,
lower levels of IgG antibodies to SARS-CoV-2, and lower serum
levels of 18/48 cytokines, including interferon-gamma levels,
suggesting that asymptomatic individuals indeed displayed a
weaker anti-virus-reactive immune response to SARS-CoV-2
(15). More recently, Chan et al. also showed in a whole blood
transcriptomic analyses that asymptomatic patients display a less
robust response to type-I interferon than symptomatic patients,
whereas differences between asymptomatic and symptomatic
patients may be present at the cellular, innate, and adaptive
immune response levels (16)

While the role of genetics in determining immune and clinical
response to the SARS-CoV-2 virus is currently under
investigation, it is well established that individual human
immune systems are highly variable (17). Most of this inter-
individual immune variation is explained by environmental
exposures early in life (18) but genetic factors are clearly also
involved. For example, a gene expression signature dominated by
interferon-inducible genes in the blood is prominent in systemic
org 2
lupus erythematosus (19), whereas interferon-a is increased not
only in the serum of these patients but also in their healthy first-
degree relatives (20) pointing to genetic influences on the
interferon-mediated immune interactions.

Clearly, the most successful immune response against SARS-
CoV-2 occurs in those individuals who, while remaining
asymptomatic, develop a robust adaptive response. This is not
always the case since antibodies are not detected in a proportion of
asymptomatic infections (21). We have recently examined the
humoral immune response to SARS-CoV-2 in members of the
National and Kapodistrian University of Athens, Greece (22).
Overall, among 4.996 people the unweighted seroprevalence of
SARS-CoV-2 antibodies was 1.58%, whereas 49% of the
seropositive individuals denied having had any clinical symptom
compatible with previous SARS-CoV-2 infection, which was also
unsuspected for 33% of them. Interestingly, in our study, the mean
levels of antibodies to both the nucleocapsid (N) protein and the
receptor-binding-domain (RBD) of the spike (S) protein were
comparable between asymptomatic and clinical infection cases
and not associated with age or sex (4). Others have also reported
that IgG antibodies are commonly observed in both asymptomatic
and clinical infections (85% versus 94% of patients, respectively)
(23), whereas durable B cell-mediated immunity against SARS-
CoV-2 after mild or severe disease occurs in most individuals (24).

To further study COVID pathogenesis, herein we aimed to
identify mRNA expression patterns that could serve as baseline
correlates for development, or not,of clinical symptoms
following contact with SARS-CoV-2. Since variations in the
strength and/or extent of the immune response may be critical
for the clinical picture and progress after infection with SARS-
CoV-2, existing inter-individual differences at the transcriptome
level may be observed even later, after convalescence. Indeed,
gene expression pattern in blood samples collected 21 days after
influenza infection are indistinguishable from baseline (25).
Therefore, we performed 3 ’ mRNA next generation
sequencing-based genome-wide transcriptional whole blood
profiling to test the hypothesis that the baseline mRNA
expression of theimmune response-related genes are
differentially expressed between healthy individuals who
developed an equally robust antibody response following either
an entirely asymptomatic or clinical SARS-CoV-2 infection.
MATERIALS AND METHODS

Blood Collection and Anti-SARS-CoV-2
Antibody Testing
Blood samples were collected from members of the NKUA,
Athens, Greece in June–November 2020. The protocol was
October 2021 | Volume 12 | Article 746203
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approved by the Ethics and Bioethics Committee of the School of
Medicine, NKUA (protocol #312/02-06-2020) and study
participants provided written informed consent. All plasma
samples were analyzed as previously described (4) using, a) the
CE-IVD Roche Elecsys® Anti-SARS-CoV-2 test , an
electrochemiluminescence immunoassay (ECLIA) for the
detection of total antibodies (IgG, IgM, and IgA; pan-Ig) to
SARS-CoV-2 N-protein (Roche Diagnostics GmbH, Mannheim,
Germany), and b) the CE-IVD Roche Elecsys® Anti-SARS-CoV-
2 S, an ECLIA for the quantitative determination of antibodies
(including IgGs) to the SARS-CoV-2 S-protein RBD
(Roche Diagnostics).

3’ mRNA Sequencing, Mapping, Quality
Control, and Quantifications
Total RNA was isolated from whole blood, stored in paxgene,
using the ExtractionMonarch® Total RNA Miniprep Kit (NEB
#T2010). Upon blood isolation, Monarch DNA/RNA Protection
Reagent (supplied as a 2x concentrate) was added undiluted to an
equal volume of blood. Addition of the protection reagent and
the following RNA isolation was performed as described in the
kit’s manual for Total RNA Purification from Mammalian
Whole Blood Samples.

After quantification on a NanoDrop ND-1000 (Thermofisher)
and Bioanalyzer RNA 6000 Nano assay (Agilent), 140-300ng of
total RNA from samples passing quality control were processed
using theQuantSeq 3’mRNA-SeqLibraryPrepKit FWD(Lexogen,
015.96) for library preparation. Libraries were assessed formolarity
and median library size using Bioanalyzer High Sensitivity DNA
Analysis (Agilent, 5067-4626). After multiplexing and addition of
13% PhiXControl v3 (Illumina, FC-110-3001) as spike in, the NGS
was performed on a NextSeq550 with NextSeq 500/550 High
Output Kit v2.5 - 75 cycles (Illumina, 20024906).

The quality of FASTQ files was assessed using FastQC
(version 0.11.9) (26). The reads were mapped to the GRCh38
reference human genome using STAR, as part of a pipeline
provided by Lexogen and BlueBee. After quality control, we
obtained quantifications for 16.737 (12.789 protein coding)
genes with more than five reads in more than 25% of the 17
asymptomatic and 15 clinical disease samples. Raw bam files, one
for each sample, were summarized to a 3’UTR read counts table,
using the Bioconductor package GenomicRanges (27), through
metaseqR2 (28). The gene counts table was normalized for
inherent systematic or experimental biases (e.g., sequencing
depth, gene length, GC content bias) using the Bioconductor
package EDASeq (29). For the downstream analysis, 12
hemoglobin (HBQ1, HBG2, HBZ, HBA2, HBA1, HBM, HBZP1,
HBE1, HBG1, HBD, HBBP1, HBB) genes were removed from
all samples.

Blood Immune Cell Subsets Deconvolution
CIBERSORTx (30) was used to estimate the proportion of blood
immune cell subsets for each individual. As a signature matrix,
the LM22 signature matrix for 22 subsets obtained at the single
cell level was used. The Mann-Whitney U test was applied in
order to calculate the significance of the difference in
Frontiers in Immunology | www.frontiersin.org 3
distributions between the asymptomatic and clinical groups.
Statistical significance calculation and plotting were applied
with R.

Differential Gene Expression
The resulting gene counts table was subjected to differential
expression analysis (DEA) to compare individuals with a history
of asymptomatic versus clinical (“symptomatic”) infection using
the Bioconductor packages DESeq (31), edgeR (32), NOISeq
(33), limma (34), NBPSeq (35), baySeq (36). In order to combine
the statistical significance from multiple algorithms and perform
meta-analysis, the PANDORA weighted P-value across results
method was applied through metaseqR2. The weighted meta p-
value was used as metric for the statistical significance for the
differentially expressed genes. Multidimensional scaling was also
applied through metaseqR2. DAVID analysis (37) was
performed for the increased and decreased genes, both for
enriched Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways and for biological processes [Gene Ontology (GO)].
For the prediction of enriched regulons in asymptomatic disease
we used the TRRUST (v2) reference transcription factor (TF)–
target interaction database (38) and enrichR (39) focusing on the
ChEA prediction with the increased genes in asymptomatic
disease as input. For the identification of interferon-regulated
genes the interferome database (v2) (40) was used.

Real Time PCR
Validation of the gene expression signatures was performed not
only on the 32 samples for which the RNAseq propocol was
followed, but also for 9 additional available samples (5 and 4 from
prior asymptomatic or clinical infection, respectively). Briefly,
1000 ng starting material (or 500 ng for the samples with limited
available RNA) was reverse transcribed to cDNA using a Takara
PrimeScript RT Reagent Kit (Takara RR037A), following the
manufacturer’s protocol. Real-time quantitative PCR (qPCR) was
performed using the SYBR™ Select Master Mix, Applied
Biosystems, ThermoFisher Scientific on the LightCycler® 96,
Roche. Primers specific for each gene were designed with Primer
Blast, while GAPDH served as the housekeeping gene
(Supplementary Table S1.). All samples were measured in
duplicates. Relative expression of each sample was defined as 2^-
DCt, where DCt = Ct (gene target) – Ct (housekeeping gene).
RESULTS

Whole Blood Transcriptional Profiling and
Determination of Immune Cell Subsets in
Healthy Seropositive Individuals With Prior
Asymptomatic Versus Clinical Infection
Time PCR
As shown in Table 1, the two groups under study comprised 15
seropositive individuals (9 men, mean age 34 years) who
experienced clinical infection 7 to 25 weeks before sampling
(mean 13; SD5.3)and 17 seropositive individuals (11 men, mean
age 37 years)with entirely asymptomatic infection. Of those with
October 2021 | Volume 12 | Article 746203
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clinical infection, 12/15 experienced fever and only one was in
need of hospitalization which was uneventful. Individuals were
considered asymptomatic in the absence of any symptoms since
the onset of the pandemic, according to a detailed history
obtained by a physician (absence of fever of any grade, fatigue,
conjunctivitis/sweating coughs, headaches, respiratory distress/
dyspnea, smell or taste loss, diarrhea). These individuals reported
putative exposure to SARS-CoV-2 5 to 21 weeks before sampling
(mean 14; SD 6.8).

Whole blood-derived, 3’ mRNA next generation sequencing-
based, genome-wide transcriptional profiling was performed and,
overall, more than 386 million reads were generated. Genes with
fewer than five counts in fewer than 25% of the samples were
filtered out, resulting to 16.737 profiled genes, of which 12.789
were protein coding. Twelve hemoglobin genes (HBQ1, HBG2,
HBZ, HBA2, HBA1, HBM, HBZP1, HBE1, HBG1, HBD, HBBP1,
HBB) were removed. A multidimensional scaling (MDS) plot
generated using all 16.737 expressed genes, in order to avoid
gene-type biases, revealed no clear separation of the two sample
groups (Figure 1A).

The proportions of immune cell populations, namely, naive
B cells, memory B cells, plasma cells, CD8+ T cells, naive CD4+ T
cells, resting memory CD4+ T cells, activated memory CD4+
T cells, follicular helper T cells, regulatory T cells, gamma delta T
cells, resting NK cells, activated NK cells, monocytes, M0
macrophages, M1 macrophages, M2 macrophages, resting
dendritic cells, activated dendritic cells, resting mast cells,
activated mast cells, eosinophils and neutrophils in the
peripheral blood estimated by CIBERSORTx were also
comparable between the two groups (Figure 1B).

Differentially Expressed Genes Are
Associated With Innate Immunity and
Interferon Activity
Although the differential expression analysis of 12.777 protein
coding genes did not reveal a distinct transcriptional profile
between the two groups of healthy individuals, 24 genes were
returned as differentially expressed (logFC=|1|, meta p-
value<0.05) in a primary analysis (Supplementary Figure S1).
Because the number of these genes was small, we repetitively
applied the DEA pipeline, removing samples that were possible
outliers in terms of expression of each differentially expressed
gene. Therefore, genes that were repeatedly returned as
significantly differentially expressed in those with prior
asymptomatic infection relatively to those with clinical SARS-
Frontiers in Immunology | www.frontiersin.org 4
CoV-2 infection were characterized as differently expressed
(Figure 2). Brief description of the function of six and nine
genes that were found significantly decreased (Supplementary
Table S2) and increased (Supplementary Table S3),
respectively, in prior asymptomatic versus clinical SARS-CoV-2
infection is shown in Supplementary Tables.

In order to validate our DGEA results we performed SYBR
Green-based qPCR to quantify the mRNA expression of 5
randomly selected differentially expressed genes Indeed, all 5
genes showed the same pattern of expression as in the RNA-
sequencing experiment, reaching statistical significance in 4
genes, despite the small sample size (Supplementary Figure
S1).The statistical significance remained excluding the 9
additional samples that were not included in the RNAseq run
from the PCR validation (data not shown).

Notably, all six decreased genes in asymptomatic SARS-CoV-2
infection (IFIT3, IFI44L, FOLR3, RSAD2, PI3, ALOX15), are
involved in innate immune responses (41–45) while the first two
are interferon-inducible genes. Similarly, three increased genes
(GZMH, CLEC1B, CLEC12A) are involved in innate immunity
mechanisms (43, 46, 47), one (GCAT) in viral mRNA translation
(48), one (CACNA2D2) in the integration of energy metabolism
(49) and one (ENC1) in oxidative stress responses (50). The
expression patterns of these 15 genes across all samples are
depicted in Figure 2. Enrichment analysis returned no
statistically significant enriched KEGG or GO terms. Similarly,
there were no common upstream transcriptional regulators
revealed by transcription factor (TF)–target interaction databases
for these genes.

Furthermore, the interferome database which hosts genomic
and transcriptomic data generated from cells or tissues treated
with interferons was used for the 15 genes that were found to be
differently expressed in asymptomatic versus clinical SARS-CoV-
2 infections. Collectively, 8 out of 15 genes are regulated by
interferons (ENC1, FOLR3, IFIT3, PI3, RSAD2, IFI44L,
CLEC12A, ALOX15). Specifically, six genes are regulated by
both type I and type II Interferons (ENC1, FOLR3, IFIT3, PI3,
RSAD2, IFI44L), whereas the remaining two are targets of
interferon type II only (CLEC12A, ALOX15) (40) (Figure 3).
DISCUSSION

Genome-wide transcriptome analyses studies using next
generation sequencing technology in patients infected with
TABLE 1 | Demographics and antibody measurements.

Number of Indi-
viduals (males)

Age, mean ±
SD (range)

Interval (weeks, mean ± SD)
between sampling and symptoms
or putative SARS-CoV-2 exposure

anti-SARS-CoV-2 N-protein
Abs, mean ± SD (range)

anti- SARS-CoV-2 S-protein RBD
Abs, mean ± SD (range)

Clinical
Disease

15 (9) 34 ± 14 (18-57) 13 ± 5.3 38 ± 39 (5-119)* 179 ± 255 (6-752)

Asymptomatic
Disease

17 (11) 37 ± 17 (19-70) 14 ± 6.8 46 ± 45 (1-166)** 122 ± 131 (3-426)***
October
n = 14*, n = 15**, n = 14***.
Age, sex distribution and levels of antibodies to both SARS-CoV-2 N-protein and the S-protein RBD were comparable between asymptomatic and clinical cases.
2021 | Volume 12 | Article 746203
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SARS-CoV-2 provide evidence that transcriptome-wide changes
may serve as predictors of morbidity and possibly of response to
specific therapies (51). In addition, transcriptomic analyses may
provide mechanistic insights into certain complications
associated with SARS-CoV-2 infection (52). To our knowledge,
this is the first whole blood genome-wide transcriptomic
comparative analysis in seropositive healthy individuals who
Frontiers in Immunology | www.frontiersin.org 5
either experienced a clinical SARS-CoV-2 infection or an
entirely asymptomatic infection around 3 months before
sampling and developed an equally robust antibody response.
In one previous study published so far in asymptomatic
seropositive individuals infected in a super spreading event, the
transcriptome in peripheral blood mononuclear cells was similar
to that of seronegative highly exposed individuals from the same
A

B

FIGURE 1 | Whole blood transcriptional profiles and immune cell subsets in seropositive healthy individuals with prior asymptomatic or clinical SARS-CoV-2
infection. (A) Dimensionality reduction of all samples: Multidimensional scaling of all samples from individuals with prior clinical (n=15) and prior asymptomatic (n=17)
infection. Each dot corresponds to the sample of one individual. All expressed elements were used (16.737, out of which 12.789 were non-zero protein-coding
genes), in order to avoid gene type biases. The smaller the distance between each sample pair, the greater the similarity of the gene expression profile of the
samples. No separation of the two sample groups is revealed, reflecting their similarity. (B) Blood transcriptome deconvolution with CYBERSORTx in prior
asymptomatic (AS) and prior clinical (CL) disease groups. For every cell type, the Mann-Whitney U test p-value comparing the two groups is displayed on top. No
statistically significan differences (meta p-value< 0.05) were detected between the two groups.
October 2021 | Volume 12 | Article 746203
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community. The putative time of infection of seropositive
asymptomatic individuals was 4–6 weeks prior to sample
collection, suggesting that the development of antibody
response following viral exposure in asymptomatic cases is not
Frontiers in Immunology | www.frontiersin.org 6
necessarily associated with sustained alterations in the immune
transcriptome (53).

Variations in innate immune system responses and cytokine
networks could explain, at least in part, the wide heterogeneity in
clinical presentation of SARS-CoV-2 infection (54). The
symptom that best reflects the potency of the immune
response, namely fever, has been repeatedly shown to be a
poor diagnostic marker in severe disease (55, 56). Along these
lines, it has been speculated that asymptomatic infection could be
partly explained by the examples of altered innate immunity
mechanisms operating in bats and pangolins. Despite carrying an
enormous load of viral species, these animals display an apparent
genetic resistance to coronavirus pathology (57). For example,
decomposition of many type I interferon genes (58) and partial
loss of function in stimulator of interferon genes (STING) is
observed in bats (59). Regarding pangolins, recent findings
suggest that these animals have lost interferon-ϵ (60) as well as
interferon-induced with helicase C domain 1 (IFIH1), also
known as IFIH1/MDA5 (61).

Our results provide evidence that among 12.777 genes, there
were only 15 with significantly different expression when
comparing healthy, relatively young individuals after
convalescence from a previous entirely asymptomatic SARS-
CoV-2 infection to those with a clinical infection history.
While there were no apparent differences in cellular
components and no specific immune deficiencies or co-
morbidities to explain the different clinical presentation, the
small, only, number of differentially expressed genes is
expected since the cohort comprised healthy individuals at the
time of sampling, who experienced in the past a SARS-CoV-2
infection. The small number of differentially expressed genes was
also the reason why further bioinformatics analysis, i.e.
enrichment and/or functionality analysis could not be applied.
It should be highlighted that the transcriptome analysis was
performed several weeks after the time of active infection; thus,
certain potential differential responses may have been blunted
during assessment after infection. This could also explain the
FIGURE 2 | Differential gene expression analysis in seropositive healthy individuals with prior asymptomatic or clinical SARS-CoV-2 infection. Heatmap of robustly
differentially expressed genes (genes that were differentially expressed and highly expressed in three or more samples, logFC>|1|, meta p-value<0.05) in individuals with
prior asymptomatic infection relatively to those with clinical (“symptomatic”) SARS-CoV-2 infection, with raw expression values being scaled. The values for all samples
(17 asymptomatic on the left and 15 clinical on the right) is plotted. The first nine genes are increased in the Asymptomatic group, while the next six are decreased.
FIGURE 3 | Chord diagram of differentially expressed genes in seropositive
healthy individuals with prior asymptomatic or clinical SARS-CoV-2 infection
with respect to interferon activity. The 15 genes characterized as differentially
expressed in those with prior asymptomatic relatively to those with clinical
infection were queried in the Interferome database and 8/15 were found to be
associated with interferon activity. Of those, 6 are regulated by both interferon
type I and II (blue), while 2 genes only by type II (green) and none by type III;
the 7 remaining genes are not regulated by interferons (pink).
October 2021 | Volume 12 | Article 746203
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limitation of the absence of differentially expressed genes
with >2-fold change in our primary analysis. However, such
differential responses should be more robust at the time of
infection and more genes and immune networks may be
differentially expressed.

Among the six genes that were found with significantly
decreased expression in previously asymptomatic cases
relatively to clinical cases, and in line with our research
hypothesis, all are involved in innate immune responses
(Supplementary Table S2) and two of these genes (IFIT3,
IFI44L) belong to the interferon-induced family of genes.
Overall, 8 of the 15 differentially expressed genes in those with
prior asymptomatic infection relatively to those with clinical
SARS-CoV-2 infection can be found in datasets that include
genes which have been implicated in interferon related signaling
pathways in vitro (38). A detailed explanation according the
functionality of those genes and the pathways though which
they act requires further studies. However, on the basis of these
findings some assumptions can be made, since, indeed, the first 6
genes with higher expression in individuals with clinical infection
compared to asymptomatic individuals, namely IFIT3, IFI44L,
FOLR3, RSAD3, PI3, and ALOX15, share some common
characteristics that can be relevant. For example, IFIT3, IFI44L
and RSAD3 expression can be induced by viruses which in turn
enhances the progress of the viral infection (62–64), whereas
higher intrinsic expression of IFIT3, FOLR3, PI3 and ALOX-15
have all been associated with immune-mediated chronic diseases
(65–68) In contrast, a protective effect of GZMH, CLEC1B,
CLEC12A, that have a higher expression in asymptomatic
individuals, may be associated with the effectiveness of GZMH
in viral eradication (69) and the ability of CLEC1B and CLEC12A
to enhance neutrophil extracellular trap formation, thus
presenting an antiviral effect that helps to control systemic virus
levels (70).Despite the fact that ourfindings have to be validated in
a larger independent cohort of prior SARS-CoV-2 infected
individuals, taken together with those of the literature support
the hypothesis that there are differences in the innate immune
responses between clinical and asymptomatic individuals during
SARS-CoV-2 infections (15, 16).

As happens in all viral infections, type I interferon response
plays a major protective role for the host because not only
promotes viral clearance but also triggers a prolonged adaptive
immune response (71). Insights into the innate and adaptive
immune responses to SARS-CoV-2 have been gained by many
research efforts over the past year (52). The innate immune
responses that protect against disease and particularly the role of
type I and III interferons have been addressed in numerous
studies, mainly in patients with severe disease at the time of
sampling. Important findings by Casanova and collaborators
have shown that either neutralizing autoantibodies to type I
interferons (72) or deleterious mutations in components
involved in interferon induction or signaling (17) predispose
patients to life-threatening infections. Along these lines, a highly
impaired type I interferon response has been reported in patients
with severe disease (73). However, in contrast to these findings,
increased levels of interferons and interferon-stimulated genes
Frontiers in Immunology | www.frontiersin.org 7
have been observed in severe and life-threatening infections in
many other studies (74–76). Indeed, increased interferon-alpha
levels are a biomarker of mortality (77).

Moreover, the SARS-CoV-2 receptor ACE2, which is expressed
in specific cell subsets across tissues is an interferon-stimulated gene
in human airway epithelial cells (78), suggesting that a weaker
individual interferon response may be protective. The latter may
explain the low infection levels and morbidity in children (55, 56)
who, relative toadults, display, in general lower interferonresponses
(79) and lower ACE2 expression (80). Taken together, in
individuals infected with SARS-CoV-2, interferon-mediated
responses may be protective or detrimental depending on the
timing and the stage of infection, in addition to other factors,
including viral load, age, and co-morbidities (71, 81, 82).

To conclude, our results suggest that subtle differences in the
expression levels of innate immunity-related genes, including
lower expression of genes involved in interferon signaling, may
be beneficial for the host upon SARS-CoV-2 infection. The
current study attempts to fill the existing gap regarding the
potential implication of certain pathways in the clinical
phenotype of SARS-CoV-2 infection. The described association
of a ‘weaker’ immune response to SARS-CoV-2 with a lack of
clinical symptoms needs further investigation, which hopefully
will be performed in the near future. Whether a certain innate
immunity signature predicts, or not, those who will develop a
more successful immune response upon contact with SARS-
CoV-2, with possible implications for prioritization of
vaccination, warrant further study.
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