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Cotton is an important natural fiber crop; its seeds are the main oil source. Abiotic

stresses cause a significant decline in its production. The WUSCHEL-related

Homeobox (WOX) genes have been involved in plant growth, development,

and stress responses. However, the functions of WOX genes are less known in

cotton. This study identified 39, 40, 21, and 20WOX genes inGossypium hirsutum,

Gossypium barbadense, Gossypium arboreum, and Gossypium raimondii,

respectively. All the WOX genes in four cotton species could be classified into

three clades, which is consistent with previous research. The gene structure and

conserveddomainof allWOXgeneswere analyzed. The expressionsofWOXgenes

in germinating hypocotyls and callus were characterized, and it was found that

most genes were up-regulated. One candidate gene Gh_ A01G127500 was

selected to perform the virus-induced gene silencing (VIGS) experiment, and it

was found that the growth of the silenced plant (pCLCrVA: GhWOX4_A01) was

significantly inhibited compared with the wild type. In the silenced plant, there is an

increase in antioxidant activities and a decrease in oxidant activities compared with

the control plant. In physiological analysis, the relative electrolyte leakage level and

the excised leaf water loss of the infected plant were increased. Still, both the

relative leaf water content and the chlorophyll content were decreased. This study

proved thatWOX genes play important roles in drought stress and callus induction,

but more work must be performed to address the molecular functions of WOX

genes.
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Introduction

Cotton is the world’s most important fiber and oil crop

(Campbell et al., 2010; Horiguchi et al., 2012). The upland

cotton (Gossypium hirsutum L.) provides 35% of the fiber used

worldwide (Abdelraheem et al., 2019). Cotton seed oil

accounts for around 16% of the total weight of the seed

(Liu et al., 2009). With global climate change, more and

more environmental problems are threatening the growth

and development of cotton, such as drought, salinization,

and warming. Drought and heat stress have severely

affected cotton production, leading to about 34% fiber yield

loss (Ullah et al., 2017). Multiple interacting genes control

drought tolerance to induce a morphological and

physiological response, including cell membrane stability,

chlorophyll levels, and relative water content (Gadallah,

1995). The development of stress-tolerance cotton is of

great significance in sustaining world agriculture

production. Drought stress-responsive genes comprise many

groups based on their biological functions. Among these

groups, transcription factors were more important because

of their potential to regulate numerous downstream genes,

such as DREB2, SNAC1, ABF, OsSIZ1, and AVP1 (Zhang et al.,

2010; Liu et al., 2014; Kerr et al., 2018; El-Esawi and Alayafi,

2019).

WUSCHEL-related Homeobox (WOX) gene family is a

plant-specific homeobox (HB) transcription factor family with

a short stretch of amino acids (60–66 residues) that forms a

DNA-binding domain known as homeodomain (Graaff et al.,

2009). The homeodomain of WOX protein binds to DNA

through a helix-turn-helix structure characterized by two α-
helices and a short turn. Phylogenic analysis of WOX proteins

in multiple higher plant species, including Arabidopsis, rice,

soybean, and maize, showed that the WOX gene family could

be classified into three clades which include the ancient clade,

intermediate clade, and WUS clade (Kamiya et al., 2003;

Haecker et al., 2004; Nardmann and Werr, 2006; Hao et al.,

2019). Previous studies showed that WOX genes have

important roles in many aspects of growth and

development, including embryonic development and

polarization, meristematic stem cell maintenance, later

organ development, seed formation, and regeneration (Park

et al., 2005; Liu et al., 2009; Shimizu et al., 2009; Zhang et al.,

2010; Zhang et al., 2011; Chu et al., 2013; Xu et al., 2015;

Segatto et al., 2016). In Arabidopsis thaliana, the WOX gene

family comprises 15 members that play similar roles in the

initiation and/or maintenance of diverse embryonic,

meristematic cells, and organs (Haecker et al., 2004).

AtWUS is necessary for stem apical meristem formation

and maintenance (Gross-Hardt et al., 2002). In rice, the

OsWOX4 gene regulates a number of pathways, including

phytohormone signaling and cell development (Yasui et al.,

2018). Overexpression of GmWOX18 increased the

regeneration ability of clustered buds (Hao et al., 2019).

VvWOX genes appeared to be key regulators of somatic

embryogenesis in grapevine (Gambino et al., 2011).

Agrobacterium-mediated genetic transformation of cotton

was described in 1980s but is still time-consuming and

genotype-dependent due to poor regeneration.

Overexpression of AtWUS promoted somatic embryogenesis

and induced organogenesis in cotton (Bouchabke-Coussa

et al., 2013). Overexpression of GhWUS in Arabidopsis

promoted shoot regeneration from the excised root without

exogenous hormones (Xiao et al., 2018). In addition to the

function of WOX genes in plant development and

regeneration, some genes play important roles in abiotic

stress. AtWOX6, also known as HOS9-1, plays an

important role in freezing tolerance independent of the

C-repeat binding factor pathway (Zhu et al., 2004).

Overexpression of OsWOX13 in rice resulted in

drought resistance and early flowering (Minh-Thuet al.,

2018). Most of the WOX genes from rice were

responsive to drought, salt, and cold treatment

(Cheng et al., 2014). Most of the WOX genes in soybean

responded to cold and drought stress treatments (Hao

et al., 2019).

The roles of the WOX gene family have been well

documented in Arabidopsis, maize, and rice. However,

the functions of WOX genes in callus induction,

regeneration, and abiotic stress are largely unknown in

cotton. This study aimed to identify the WOX genes in

cotton based on updated genome sequences of four species,

examine their gene structure and expression profiles, and

characterize their molecular roles in response to drought

stress and callus induction.

Materials and methods

Plant material and germination

Three varieties of G. hirsutum with higher regeneration

ability including Zhongmainsuo24 (ZM24), Coker312 (C312),

and YZ-1, and one cultivar Texas Marker-1 (TM-1) with lower

regeneration ability were selected based on previous reports

(Jin et al., 2006; Zheng et al., 2014; Cao et al., 2017; Chen et al.,

2022). All these seeds were obtained from the Mid-term

GeneBank of the Institute of Cotton Research of Chinese

Academy of Agricultural Science. Seeds were delinted and

disinfected with 0.1% HgCl2 (W/V) by blending for

10 min, and then washed five times with sterilized

distilled water for 2 min each time. To induce hypocotyl

germination, 30 healthy seeds were placed on a sterilized

filter paper in a petri plate, cultured in sterilized distilled

water, and stored in a dark chamber for 48 h at 28°C

(Kumar et al., 2015).
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WOX gene characterization in Gossypium
species

To identify cottonWOX genes, the full-length sequences of

15 AtWOX genes which were downloaded from the

Arabidopsis genome database (https://www.arabidopsis.

org) were used as queries for BLASTp in CottonFGD

(www.cottonfgd.net). We further confirmed all WOX

genes in cotton using Pfam (http://pfam.xfa.org).

Protein length, weight, charge, isoelectric point (pI), and

GRAVY were available from CottonFGD (Supplementary

Table S1).

Chromosomal mapping, phylogenetic
tree, gene structure, and conserved motif
analysis of WOX genes

We used the GFF3 dataset from CottonFGD and gene IDs

to assess the distribution of WOX genes across all

chromosomes of G. hirsutum, G. barbadense, G. raimondii,

and G. arboreum, and the result was visualized using

the TBtools (Chen et al., 2020). ClustalX was utilized to

perform multiple sequence alignment (Larkin et al.,

2007). The neighbor-joining (NJ) strategy was used to

decide the advancement distance with 1000 bootstrap

replications by MEGA 5.0 (Tamura et al., 2011). The

WOX gene structure was analyzed using the Gene Structure

Display Server 2.0 (http://gsds.cbi.pku.edu.cn/). MEME

(http://meme-suite.org) was used to discover the conserved

motifs.

RNA sequencing data analysis

WOX gene IDs from G. hirsutum were retrieved from

CottonFGD, and corresponding gene IDs from variety

ZM24 were retrieved from GRAND (http://grand.cricaas.com.

cn/home). Heml software was used to demonstrate the

expression (Deng et al., 2014).

Medium preparation and callus induction

Seven-day-old seedlings have been divided into

hypocotyl, cotyledon, and shoot tip. Individual hypocotyl and

cotyledon were transplanted into Murashige and Skoog (MS)

medium containing 2,4-dichlorophenoxyacetic acid (2,4-D,

0.5 mg/L) and kinetin (0.1 mg/L), and shoot tips were

transplanted into MS medium containing 2,4-D (0.5 mg/L)

and kinetin (0.2 mg/L) (Jin et al., 2006).

RNA extraction and qRT-PCR analysis

Total RNA was extracted from hypocotyls and callus using

RNAprep Pure Plant Plus Kit (TIANGEN, Beijing, China),

following the manufacturer’s instructions. RNA concentration

and purity were measured using NanoDrop 2000. The RNA was

reverse-transcribed to cDNA by using the transcript Reverse

Transcriptase (TransGen, Beijing, China). The specific primers of

WOX genes for qRT-PCR are listed in Supplementary Table S2. The

ABI 7500 Fast Real-Time System (Applied Biosystems, Foster City,

CA, United States) was used for the qRT-PCR experiment. Each

reaction included 1 µL of cDNA, 2 µL of forward and reverse

primers, 6 µL of RNA-free water, and 10 µL of SYBR solution.

GhActinwas employed as an internal control in three biological and

technical replications. Gene expression levels were calculated using

the 2−ΔΔCt method (Livak and Schmittgen, 2001).

Protein interaction network prediction

Interaction network analysis of WOX proteins was

performed with STRING with default parameters (version

11.0, https://string-db.org/cgi/input.pl) on the foundation of

the homologous proteins in Arabidopsis (Szklarczyk et al., 2019).

Transactivation activity assay

The GAL4 DNA-binding domain was fused with the cotton

GhWOX4_A01 gene into pGBKT7. pGBKT7-GhWOX4_A01,

pGBKT7, and positive control pGADT7-largeT + pGBKT7-p53

were transformed into the AH109 yeast by utilizing the Clontech

technique to investigate auto-activation and toxicity. The transformed

yeast cells were cultured on SD/-Trp, SD/-Trp + X-α-gal, or SD/-
Trp/-His/-Ade media and incubated at 30°C for 3–5 days.

Virus-induced gene silencing of
GhWOX4_A01 and drought treatment

A 339-bp fragment of GhWOX4_A01 was amplified from the

cDNA of TM-1 by using gene-specific forward and reverse

primers to construct a VIGS vector (Supplementary Table S2).

The PCR product was then digested with Spe I and Acs I, and

cloned into Spe I-Acs I -Cut pCLCrVA. The fusion vector was

named pCLCrVA: GhWOX4_A01 and transformed into

Agrobacterium tumefaciens strain LBA4404. The control

vector pCLCrVA, pCLCrVA: GhWOX4_A01 and positive

vector pCLCrVA: PDS were mixed with pCLCrVB at a 1:

1 ratio (Gu et al., 2014). The mixed Agrobacterium

tumefaciens solutions were injected into the two-week-old
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FIGURE 1
WOX genes position on the chromosome in Gossypium species. (A) G. hirsutum, (B) G. barbadense, (C) G. arboreum, and (D) G. raimondii.
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cotton cotyledons ofG. hirsutum variety H177 on the abaxial side

with a needle-free syringe. The plants were placed at room

temperature in the dark overnight and grew at 23°C with a

16 h/8 h light/dark cycle. The study on Agrobacterium infection

was carried out three times with 30 plants for each vector. After

4 weeks, the plants injected with empty control pCLCrVA and

pCLCrVA: GhWOX4_A01 were subjected to drought treatment.

For drought treatments, plants were irrigated with 15% PEG6000

(w/v) for 2 weeks to detect their drought response, while control

plants were irrigated with 1/2 MS nutrient solution. Under

control and drought circumstances, the concentrations of

antioxidant enzymes catalase (CAT) and peroxidase (POD),

and oxidants malondialdehyde (MDA) and H2O2 were

determined in both control and silenced plants. After drought

treatment, important parameters were investigated, including ion

leakage, excised leaf water loss, chlorophyll concentration, and

relative leaf water content. The experiments were performed with

three independent biological repetitions.

Statistical analysis

GraphPad Prism (version 8.4.3; GraphPad Software, La Jolla

California, United States) was used to analyze the quantitative

data generated from the experiments. All the experiments were

carried out with three replications. Analysis of variance

(ANOVA) and multiple comparisons (Fisher’s LSD) were

used to investigate the statistical significance of different

FIGURE 2
Phylogenetic tree of WOX genes in Gossypium species and Arabidopsis.
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treatments. The significance level for the different treatments was

labeled as different letters under p < 0.05.

Result

Sequence analysis and chromosome
mapping of WOX genes identified in four
cotton species

We have identified 39, 40, 21, and 20 WOX (WUSCHEL-

related Homeobox) genes in G. hirsutum, G. barbadense, G.

arboreum, and G. raimondii, respectively (Supplementary Table

S1). In G. hirsutum, the amino acid length of WOX proteins

stretches from 125 aa to 383 aa, and the molecular weight ranges

from 14.10 to 42.90 kDa. The amino acid length ofWOX proteins

inG. barbadense ranged from 187 aa to 369 aa, and the molecular

weight ranged from 21.78 to 41.93 kDa. In G. arboreum, the

amino acids stretch from 77 aa to 364 aa, and molecular weight

ranges from 9.17 to 41.77 kDa. In G. raimondii, the amino acids

stretch from 188 aa to 377 aa, and their molecular weight is

within the range of 21.89–41.73 kDa. All the WOX proteins in

the four cotton species have negative GRAVY values, indicating

that all proteins were hydrophilic.

FIGURE 3
RNA-seq data analysis of WOX genes in germinating hypocotyls, callus, and embryonic callus (EC) in ZM24.
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WOX geneswere not evenly distributed across the chromosomes

in the four cotton species (Figure 1). In G. hirsutum and G.

barbadense, chromosomes A05, D05, A10, and D10 possessed the

highest number ofWOX genes (3). InG. hirsutum,WOX genes were

missing on chromosomes A04, D04, A06, D06, A09, and D09.

Similarly, WOX genes were also missing on chromosomes A04,

D04, A06, D06, A09, and D03 in G. barbadense. In G. arboreum,

chr05 and chr10 hadmost of the genes (3).WOX genes were missing

on chr03, chr04, chr06, and chr09 but had two genes on scaffolds in

G. arboreum. In G. raimondii, chr09 and chr11 had the highest

number of genes (3).WOX genesweremissing on chr06 and chr10 in

G. raimondii. The total number ofWOX genes identified in the two

diploid species was higher than that in the tetraploidG. hirsutum due

to the hybridization of progenitors resembling G. arboreum and G.

raimondii.

Phylogenetic tree, gene structure, and
conserved domain analysis of WOX genes

The phylogenetic tree result shows that all theWOX genes

could be classified into three clades, which is consistent with

the previous result in other species (Figure 2). Eight, eight,

four, and four WOX genes from G. hirsutum, G. barbadense,

G. arboreum, and G. raimondii were classified into the

intermediate clade. Eight, eight, four, and four WOX genes

from G. hirsutum, G. barbadense, G. arboreum, and G.

raimondii were classified into the ancient clade. The

modern/WUS clade includes 23, 24, 12, and 13 WOX genes

from G. hirsutum, G. barbadense, G. arboreum, and G.

raimondii. From the gene structure analysis result, we can

find that mostWOX genes have three or four exons, and those

FIGURE 4
Callus induction rate in G. hirsutum. (A) 1-day hypocotyl callus induction for TM-1, (B) 2-day hypocotyl callus induction for ZM24, (C) 2.5-day
hypocotyl callus induction for YZ-1, (D) 3-day hypocotyl callus induction for C312, (E) 1-day cotyledon callus induction for TM-1, (F) 2-days’
cotyledons callus induction for ZM24, (G) 2.5-day cotyledon callus induction for YZ-1, (H) 3-day cotyledon callus induction for C312, (I) 1-day shoot
tip callus induction for TM-1, (J) 2-day shoot tip callus induction for ZM24, (K) 2.5-day shoot tip callus induction for YZ-1, and (L) 3-day shoot tip
callus induction for C312.
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genes classified into the same clade tend to have similar gene

structures (Supplementary Figure S1). The patterns of motifs

were studied to elucidate the structural evolution of WOX

proteins. Multiple motifs were identified, and results revealed

that motif one was conserved in four species, while motif two

was conserved in G. barbadense and G. raimondii

(Supplementary Figure S2). We further found that motif

four was conserved in the genes that were classified

into the intermediate clade in all four species, and

motif two and six were conserved in the genes that were

classified into the ancient clade in G. hirsutum and G.

barbadense. In contrast, motif three was conserved in the

genes classified into the ancient clade in both G. arboreum and

G. raimondii.

FIGURE 5
Expression profile of 16 WOX genes in shoot tip, hypocotyls, and cotyledon-induced callus in four different varieties. (A) Callus induced from
hypocotyls in TM-1, (B) callus induced from hypocotyls in ZM24, (C) callus induced from hypocotyls in YZ-1, (D) callus induced from hypocotyls in
C312, (E) callus induced from the shoot in TM-1, (F) callus induced from the shoot in ZM24, (G) callus induced from the shoot in YZ-1, (H) callus
induced from the shoot in C312, (I) callus induced from cotyledon in TM-1, (J) callus induced from cotyledon in ZM24, (K) callus induced from
cotyledon in YZ-1, and (L) callus induced from cotyledon in C312.
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Expression analysis of WOX gene in G.
hirsutum cultivar ZM24

Expression patterns of WOX genes in G. hirsutum variety

ZM24 were analyzed, and eight genes that did not have

expression in all these tissues are not shown in Figure 3.

Sixteen genes have higher expression levels and 15 genes have

lower expression levels in germinating hypocotyls, callus, and

embryonic callus. We further analyzed expressions of these

16 WOX genes in callus in four different varieties (Figure 3).

Callus induction rate and expression of
WOX genes in shoot tip, hypocotyl, and
cotyledon-induced callus in four cotton
varieties

Callus induction rate analysis was carried out on hypocotyl,

cotyledon, and shoot tips (Figure 4). For 1-day, 2-day, 2.5-day,

and 3-day callus induction, shoot tip and hypocotyl have much

higher callus induction rates than cotyledon. Subculturing of calli

after 2 weeks into theMSmedium increased the size of the calli in

different tissues of G. hirsutum. Callus with different textures,

sizes, and appearances was fully observed among four cotton

varieties (Supplementary Figure S3).

To further analyze the expression profile of the above 16 WOX

genes in callus, we examined the expression of selected genes in three

types of callus induced from shoot tip, hypocotyl, and cotyledon in

four varieties. The result showed thatmost genes were up-regulated in

all three types of callus in four varieties, indicating that WOX genes

play vital roles in callus induction (Figure 5). First, more genes have

higher expression in callus induced from shoot tip than callus induced

from hypocotyls and cotyledon. Second, WOX genes have similar

expression patterns in callus induced from the same explants. In four

varieties, Gh_A05G188600 was up-regulated in both three types of

callus.

Network interaction prediction of WOX
proteins

From the constructed protein interaction network, we can know

that ten proteins have high predicted interaction levels with WOX4,

including Clavata3, Homeobox8 (HB-8), Clavata3/Embryo

Surrounding Region-Related (CLE) 44, and CLE41

(Supplementary Figure S4). The structure of the vascular meristem

FIGURE 6
Phenotypic characterization of GhWOX4-A01 silenced plants. (A) Negative control, positive control, and GhWOX4_A01 silenced plants and (B)
qRT-PCR analysis of GhWOX4_A01 in control and silenced plants under control conditions and after 10 days drought treatment. Different letters
show significant differences at p < 0.05.
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during secondary growth is influenced by a component of the

Tracheary Element Differentiation Inhibitory Factor (TDIF)-TDIF

Receptor (TDR)-WOX4 signaling pathway. Phloem intercalated with

xylum (PYX) is a leucine-rich repeat receptor-like protein kinase that

acts with CLE41 and CLE44. ATHB-8 is a homeobox-leucine zipper

protein that may have a role in controlling vascular development,

which shares 31.8%of identity with theWOX4protein and is thought

to promote precambial and cambial cell differentiation.

GhWOX4_A01 transcriptional activation
assay

Three vectors including pGBKT7- GhWOX4_A01, pGBKT7,

and pGADT7-largeT + pGBKT7-p53 were transformed into the

AH109 yeast. All transformants could grow in SD/-Trpmedium and

turned blue in the SD/-Trp + X-α-gal medium but did not grow in

the SD/-Trp-Ade-His medium (Supplementary Figure S5). This

result indicated that GhWOX4_A01 has no activation activity.

GhWOX4_A01 silenced plants showed
significant sensitivity to drought

The function of the GhWOX4_A01 (Gh_A01G127500) in

drought tolerance was investigated using the VIGS approach.

The indicator pCLCrVA: PDS showed an albino color, while the

control plant had a normal color without visible change. The

silenced plants pCLCrVA: GhWOX4_A01 showed complete

shrinkage of the leaves, indicating total silencing of the gene

(Figure 6A). qRT-PCR was used to analyze the expression level

of GhWOX4_A01 (Figure 6B). Under control and drought

circumstances, the concentrations of antioxidant enzymes (CAT

and POD) and oxidants (MDA andH2O2) were determined in both

control and silenced plants. Under control conditions, both the

antioxidant enzymes and oxidants did not have a significant

difference between control and silenced plants. After drought

treatment, the oxidant concentrations were significantly higher,

but the antioxidant enzymes were significantly lower in silenced

plants than in respective controls (Figures 7A–D).

The effects of GhWOX4_A01 on plant physiological changes

during drought stress were investigated. Important parameters

were investigated, including ion leakage, excised leaf water loss,

chlorophyll concentration, and relative leaf water content.

Compared to the control plant, the relative electrolyte leakage

level of the infected plant (pCLCrVA: GhWOX4_ A01) increased

by about 15% (Figure 7E). The chlorophyll content of infected

plants decreased compared to control plants. However, in terms

of excised leaf water loss, the infected plants increased

significantly more than the control plants (Figures 7F,G).

Under drought conditions, the relative leaf water content of

the infected plant drops to 65%, compared to 86% for the control

(Figure 7H).

Discussion

Cotton is one economically important crop for the textile

industry. WOX gene family is highly conserved in plants.

Previous studies reported that WOX genes play important

roles in stem cell regulation, embryo patterning, and abiotic

stress (Breuninger et al., 2008; Dolzblasz et al., 2016; Minh-Thu

et al., 2018). Although the function of WOX genes has been well

studied in the model plant Arabidopsis, the specific roles ofWOX

genes in callus induction, regeneration, and stress response are

not yet well understood. In this study, we found 39WOX genes in

G. hirsutum, which was different from previous research (Yang

et al., 2017). For example, Gh_D01G1463 cannot be found based

on the genome sequence used in this study, and we found this

gene has a high identity with the intergenic sequence between

Gh_D01G167200 and Gh_D01G167300 (Supplementary Table

S3). Furthermore, the previous study could not find two genes in

our study (Gh_A11G371100 and Gh_D12G289200). We believe

all these differences were due to different versions of the G.

hirsutum genome. Gene loss usually occurs due to hybridization

and chromosome doubling (Paterson et al., 2004). In this study,

we determined gene loss by comparing the number of WOX

genes in G. hirsutum (39) andG. barbadense (40) with the sum of

the gene numbers of its two progenitors (41). The orthologous

gene of Gorai.002G178400 was lost in the Dt subgenome of G.

hirsutum. The orthologous gene of Ga08G1116 was lost in G.

raimondii, G. hirsutum, and G. barbadense, and this gene was

also the minimum gene that only encoded 66 amino acids.

Previous research has shown that the WOX gene family can

be divided into the ancient, intermediate, andWUS clades. In this

study, eight, eight, and 23 WOX genes from G. hirsutum were

classified into the intermediate, ancient, and modern/WUS

clades, respectively, which is consistent with previous research

that theWUS clade wasmuch higher than either the intermediate

or ancient clade (Deveaux et al., 2008). Both the gene structure

and conserved motif analysis showed that WOX genes classified

into the same group tend to have similar structures and motifs,

which strongly supported the close evolutionary relationships

among the WOX genes within each subfamily.

The WOX genes have been pivotal in organ formation,

embryo patterning, and stem cell maintenance (Deveaux et al.,

2008; Nardmann and Werr 2012). RNA-seq and qRT-PCR data

analysis showed that most genes are expressed in germinating

hypocotyls, callus, and embryonic callus. Our result indicated

that these genes might be involved in callus induction and

regeneration. Previous studies showed that most WOX genes

in rice and soybean were responsive to abiotic stress (Cheng et al.,

2014; Hao et al., 2019). Overexpression of OsWOX13 resulted in

drought resistance in rice (Minh-Thuet al., 2018). Abiotic stresses

such as drought stress inhibit plant growth, including reducing

the photosynthetic rate and electrolyte pressure (Magwanga

et al., 2019; López et al., 2020). To determine if

GhWOX4_A01 was involved in drought stress response in
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cotton, we have silenced its expression by VIGS and measured

relative water content, ion leakage, excised water loss, and

chlorophyll content in both the silenced plants and the

negative control under normal and drought stress conditions.

The finding revealed that the silenced plants showed more water

loss and ion leakage, and the chlorophyll content was lower than

that of the control under drought stress conditions. Reactive

oxygen species (ROS) are by-products of cellular metabolism,

which are usually produced under stress conditions. However,

the plant developed effective mechanisms, including antioxidant

molecules and antioxidant enzymes, to minimize the damage

caused by ROS (Atkinson and Urwin, 2012). In this study, the

knockdown plant (pCLCrVA: GhWOX4_A01) has higher MDA

and H2O2 content than the control plants. CAT and POD levels

were lower in the treated plants (pCLCrVA: GhWOX4_A01) than

in the control plants (pCLCrAVA). These results indicated that

FIGURE 7
Physiological traits and enzyme activity in control and GhWOX4-A01 silenced plants under control conditions and after 10 days of drought
treatments. (A) CAT, (B) POD, (C) H2O2, (D) MDA, (E) ion leakage percent, (F) chlorophyll content, (G) extracted leaf water lost, and (H) relative leaf
water content percent. Each experiment was carried out three times. The error bar represents the standard deviation of the three biological
replicates. The significant difference was indicated by different letters at p < 0.05.

Frontiers in Genetics frontiersin.org11

Muhammad Tajo et al. 10.3389/fgene.2022.928055

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.928055


GhWOX4_A01 might increase cotton tolerance to drought by

maintaining homeostasis of ROS.

Conclusion

This study provides a genomic framework for the cotton

WOX gene family, and 39, 40, 21, and 20 WOX genes were

identified in G. hirsutum, G. barbadense, G. arboreum, and G.

raimondii. Moreover, gene loss events occurred in theWOX gene

family in G. hirsutum and G. barbadense during the

hybridization of two progenitors. Phylogenic analysis showed

that all the WOX genes could be classified into the ancient,

intermediate, and WUS clades. The WOX gene family in cotton

was highly conserved at the DNA and protein levels. Most of the

WOX gene expression level was up-regulated in germinating

hypocotyls and callus. GhWOX4_A01 was highly expressed in

embryonic callus than in regular callus. The silenced plants

(pCLCrVA: GhWOX4_A01) have accumulated more oxidants

and were more sensitive to drought treatment. Taken together,

our results can enhance our understanding of the role of the

WOX gene family in tissue regeneration and abiotic stress, and

provide a reference for future molecular analysis.
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