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Abstract

Background: This study was performed to characterize a gene-addition transgenic mouse
containing a BAC (bacterial artificial chromosome) clone spanning the human CYP2C18&19 genes
(tg-CYP2C18&19).

Methods: Hemizygous tg-CYP2CI8&19, || week old mice were compared with wild-type
littermates to obtain information regarding clinical status, clinical pathology and anatomical
pathology. After one week of clinical observations, blood samples were collected, organs weighed,
and tissues collected for histopathology.

Results: In males, the tissue weights were lower in tg-CYP2C18&19 than in wild-type mice for
brain (p < 0.05), adrenal glands (p < 0.05) and brown fat deposits (p < 0.001) while the heart weight
was higher (p < 0.001). In female tg-CYP2CI18&19, the tissue weights were lower for brain (p <
0.001) and spleen (p < 0.001) compared to wild-type females. Male tg-CYP2C18&19 had increased
blood glucose levels (p < 0.01) while females had decreased blood triglyceride levels (p < 0.01).

Conclusion: Despite the observed alterations, tg-CYP2C18&19 did not show any macroscopic or
microscopic pathology at the examined age. Hence, these hemizygous transgenic mice were
considered to be viable and healthy animals.

Background

The human cytochrome P450 enzymes from the 2C sub-
family (CYP2C) are fairly well characterized and are
known to metabolise many clinically important drugs.
Four members belonging to the CYP2C family are found
in man, namely CYP2C8, CYP2C9, CYP2C18 and
CYP2C19 [1]. The anticancer drug paclitaxel is metabo-
lised by CYP2C8 and the 6-hydroxylation of this com-
pound is commonly used as a marker for this enzyme [2].
CYP2C9 metabolises many drugs, for example the

hypoglycaemic drug tolbutamide [3], the anticonvulsant
phenytoin [3,4], the anticoagulant warfarin [5] and a
number of nonsteroidal anti-inflammatory drugs includ-
ing diclofenac and ibuprofen [6], which have all been
used as marker substrates. The CYP2C18 protein has not
yet been found in detectable amounts in any tissues [7],
and its in vivo function is, to date, unknown. CYP2C19
stereo-selectively metabolises the S-enantiomer of the
anticonvulsant mephenytoin to the metabolite 4-
hydroxy- (S)-mephenytoin [8], and this metabolite is
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commonly measured to determine CYP2C19 activity in
vitro. The 5-hydroxylation of R-omeprazole is selectively
performed by CYP2C19 [9] and this reaction is also occa-
sionally used as marker reaction for CYP2C19. A variety of
other substrates are known to be metabolised by
CYP2C19, such as the biguanide antimalarials [10], cer-
tain barbiturates [11], the B-blocker propranolol [12], the
anxiolytic diazepam [13] and the antidepressant imi-
pramine [14].

In contrast to the relatively small human CYP2C family,
the mouse Cyp2c family is one of the largest and most
complex, with 15 members published to date [1](for an
update, see http://drnelson.utmem.edu/
CytochromeP450.html). Cyp2c29 was the first mouse
Cyp2c member identified [15], followed by Cyp2c37,
Cyp2c38, Cyp2c39, Cyp2c40 [16], Cyp2c44 [17],
Cyp2c50, Cyp2c54 and Cyp2c55 [18]. Six additional
murine Cyp2c enzymes have thereafter been identified;
Cyp2c65, Cyp2c66, Cyp2c67, Cyp2c68, Cyp2c69 and
Cyp2c70 [1]. Their metabolic preferences are poorly char-
acterized but their organ distribution is partially known
[16-19].

Murine CYP2C enzymes are involved in the metabolism
of arachidonic acid, but the products formed differ
between the isoforms. Human CYP2C19, on the other
hand, is inhibited by the presence of arachidonic acid
[20].

The transgenic mouse presented in this paper contains, in
addition to all mouse Cyp2c enzymes, human CYP2C18
and CYP2C19. The inserted human CYP2C18 and
CYP2C19 genes are expressed at the mRNA and protein
levels, and the inserted CYP2C19 genes have been shown
to be functional in vitro in metabolism studies using the
CYP2C19 substrates S-mephenytoin and R-omepra-
zole)[21].

The aim of the present study was to characterize the
humanized CYP2C18&19 mouse model as a basis for
upcoming pharmacokinetic and toxicological studies.

http://www.actavetscand.com/content/50/1/47

Hemizygous humanized CYP2C18&19 mice (tg-
CYP2C18&19) were compared with wild-type littermates
to obtain information regarding clinical status, body
weight, clinical pathology, anatomy and morphology of
this particular mouse model.

Methods

Generation of BAC transgenic mice

The transgenic CYP2C18&19 mice characterized in this
article were generated as previously described)[21]. In
brief, a BAC (bacterial artificial chromosome) clone
named BAC RP11-466]14, which contains the CYP2C18
and CYP2C19 genes was purified. BAC DNA was injected
into C57BL/6JOlaHsd (C57BL/6) eggs. Founders were
identified by genotyping of DNA extracted from tail or ear
biopsies.

Genotyping

For PCR detection of the inserted gene segment, gDNA
was extracted from tail or ear biopsies either by using
established protocols [22] or commercially available kits
(DNeasy® Tissues, Qiagen). The gDNA was amplified in a
20 pL reaction mixture containing 10 pL HiFi PCR Master-
Mix (ABgene House, Surrey, UK), primers (250 nM of
each primer for males or, alternatively, 500 nM of each
primer for females) and 1 pL of gDNA. The four different
specific primer pairs used are listed in Table 1. Cycling
conditions were 94°C for 2 minutes (denaturation) and
then 30 cycles of 94°C for 10 seconds, 60°C for 20 sec-
onds, and 68°C for 45 seconds, followed by a 3 minutes
extension at 70°C. The amplification products were ana-
lyzed on 1% agarose gels and the amplicons visualized
with ultraviolet light.

Animal husbandry

The hemizygous tg-CYP2C18&19 and the C57BL/
6JOlaHsd (C57BL/6) wild-type littermates used were gen-
erated by crossing hemizygous tg-CYP2C18&19 males
with C57BL/6JOlaHsd (C57BL/6) wild-type female mice.
Wild-type littermates were used as controls. Attempts were
also performed to generate homozygous mice by crossing

Table I: Sequences of primers used for genotyping of the mice (to detect the 466)J14 BAC clone containing human CYP2CI18 and

CYP2Cl19)
Primer Primer sequence (5'-3") PCR product length (bp)
BACS5'endF TAACATTAGCAGGTGAAGCCCAAA 706
BAC5'endR CAATCTGTTCCATGATGGTTGATG
BAC3'endF AGACTGTGCTATCATGGGAACCAA 480
BAC3'endR GTTTTCTTGGGCTGAATGTCCTCT
2C18intronéF GGCAAGAAACACTTCATGAGCACT 429
2C|8intronéR ATTCAGTTAAGGCCTCCCTTTTCC
2C19intron5F CAAGATGGGCCTTATAAAGTTGGC 727

2C19intron5R GAAGAAATTGGAACCCTCATGTCC
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hemizygous tg-CYP2C18&19 males and females, but the
offspring died within a few days from birth.

For logistic reasons, the male and female groups were
housed at different sites, but all mice were kept under con-
ventional conditions and had free access to standard
rodent diet (Males: R&M 1.E. SQC, pelleted diet, supplied
by Special Diets Services Ltd, England; Females: RM3
Extended Breeding, supplied by Special Diets Services Ltd,
England) and tap water. The animal husbandry and exper-
imental conditions were approved by the Swedish Animal
Welfare Agency.

Analysis of weight gain and food consumption

All mice were observed for one week prior to necropsy at
an age of approximately 11 weeks. During that week, any
adverse clinical signs observed on ocular inspection were
recorded and the body weight gain and food consump-
tion were measured. Individual body weights were
recorded four and six days before necropsy for males and
three and six days before necropsy for females. Six males
and six females from each genotype (wild-type and tg-
CYP2C18&19) were examined.

Table 2: Tissues sampled at necropsy

http://www.actavetscand.com/content/50/1/47

Pathological evaluation, total body weight and tissue
weights

The total body weight of each mouse was determined, to
the nearest 0.1 g, prior to necropsy and animals were
killed by exsanguination of the common carotid artery
under enflurane and nitric oxide anaesthesia. During
necropsy, the organs were examined macroscopically and
weights of a standard set of tissues (Table 2) were meas-
ured, to the nearest mg, prior to fixation. For bilateral
organs, the total weight of the pair was recorded.

Forty-eight tissues (Table 2) from each mouse were col-
lected and fixed. Eyes were fixed in MFAA (Methanol, For-
malin, Acetic Acid); testicles and epididymides were fixed
in Bouin's solution and all other tissues in 4% buffered
formaldehyde. All tissues preserved were dehydrated,
embedded in paraffin and cut into 4 pm sections before
they were stained with haematoxylin and eosin for micro-
scopic evaluation.

Clinical pathology parameters and analytical methods

Blood samples for haematology (EDTA tubes) and blood
chemistry (lithium heparin tubes) were collected from the
orbital plexus under enflurane and nitric oxide anaesthe-
sia, prior to necropsy. Animals were not fasted at the time
of blood sampling but the genotype groups were necrop-
sied with every second animal being wild-type and every

Tissue Weighed at necropsy

Tissue Weighed at necropsy

Adrenal glands Yes
Aorta (thoracic)

Bone and bone marrow (sternum)

Brain Yes
Brown fat deposit? Yes
Cervix

Epididymides

Epididymal fat deposit Yes
Oesophagus?

Eyes

Femur/femoro-tibial joint?

Harderian gland?

Heart Yes
Intestine-duodenum

Intestine-jejunum

Intestine-ileum

Intestine-colon

Intestine-caecum

Intestine-rectum

Kidneys Yes
Liver with gallbladder Yes
Lungs Yes

Lymph node-mandibular
Lymph node-mesenteric?

Muscle-skeletal

Nerve-sciatic

Optic nerves?

Ovaries Yes
Pancreas

Parathyroid glandsP

Pituitary gland

Prostate gland-ventral Yes
Retriperitoneal fat deposit Yes
Salivary gland-parotid

Salivary gland-submaxillary/lingual

Seminal vesicles

Skin

Spleen2 Yes
Spinal cord-lumbar and cervical

Stomach

Testes Yes
Thymus Yes
Thyroid glandst

Tongue

Trachea

Urinary bladder

Uterus Yes
Vagina

a/Tissue lost during processing in 1-2 animals and was not evaluated histologically.
b/Tissue lost during processing in all females but one per genotype. The tissue was present on slides from all male mice.
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second being transgenic in order to minimize daytime
variations in glycogen content between the groups. At
necropsy, one femur was taken for bone marrow analysis.
Haematology analysis was performed with an ADVIA® 120
Haematology System (Bayer Corporation, Diagnostic
Division, Tarrytown, US) using standard methodology.
Blood chemistry parameters were analysed using a Cobas
Integra 400 analyser (Roche Diagnostics Instrument Cen-
tre, Switzerland), and appropriate kits. Parameters meas-
ured in haematology and blood chemistry are listed in
Table 3.

The bone marrow differentials were determined by flow
cytometry as described by Saad et al [23] and the total
nucleated cell count, the myeloid: erythroid ratio and the
proportion of lymphoid, myeloid, erythroid and nucle-
ated cells were determined. In addition, the proportion of
cells staining positive for LDS-751 (laser dye styryl-751)
was determined.

Statistical analysis

The statistical comparisons between the transgenic and
wild-type groups were performed, using a computerized
statistical program (Sigma Stat, version 2.03). All varia-
bles were compared with a t-test. Organ weights were
compared both as absolute weights and as relative weights
(relative to brain and relative to total body weight, data
not shown). Box plots in figures were generated using
Sigma Plot, 2001 and the plots show the median (line
within each box), the 25%/75th percentile (outer bounda-
ries of each box) and the 10th/90t% percentiles (whiskers
above and below each box). In addition the minimum
and maximum are marked with dots.

Table 3: Parameters measured in clinical pathology

http://www.actavetscand.com/content/50/1/47

Results

Weight gain and food consumption

All male mice either retained or increased their weight
during the in vivo part of the study. In the female groups
most of the mice gained weight. Two wild-type females
and two tg-CYP2C18&19 females decreased in weight, but
the weight loss in all cases was < 0.6 g. No significant dif-
ferences in food consumption were recorded.

Pathological evaluation

At necropsy, all mice were in good nutritional condition.
On macroscopical examination, small white foci were
found in the eyes of one wild-type female and two tg-
CYP2C18&19 females. These macroscopical changes, and
the recorded weight differences between groups, did not
correlate to any changes on the histopathological level.
Minimal perivascular infiltration of neutrophils was
found on microscopic examination in the epididymal fat
in one tg-CYP2C18&19 male and minimal alveolar histi-
ocytosis was present in one tg-CYP2C18&19 female. All
these changes were considered to belong to the spontane-
ous background pathology observed in laboratory mice of
the C57BL/6JOlaHsd strain.

Total body weight and tissue weights

Weight distributions for all tissues within the different
genotype and sex groups are shown in Table 4 and the sta-
tistically significant organ weight alterations are shown in
Figure 1. Organ weights were compared between geno-
types, both as absolute weights, relative to brain weight
and relative to the total body weight. The relative data are
not presented, since the same organs showed statistically
significant weight differences between genotypes regard-
less of which comparison was used. The only exception
was the brain weight relative to total body weight in male

Haematology

Blood chemistry

Basophils (Baso)

Erythrocytes (RBC)

Eosinophils (Eosn)

Hematocrit (Hct)

Haemoglobin (Hgb)

Large unstained cells (LUC)
Leucocytes (WBC)

Lymphocytes (Lymp)

Mean corpuscular haemoglobin (MCH)
Mean corpuscular haemoglobin concentration (MCHC)
Mean red cell volume (MCV)
Monocytes (Mono)

Neutrophils (Neut)

Platelets (Plt)

Red cell distribution width (RDW)
Reticulocytes (Retc)

Albumin (Alb)

Albumin/globulin ratio (A/G)
Alkaline aminotransferase (ALT)
Alkaline phosphatase (ALP)
Aspartate aminotransferase (AST)
Bilirubin (total) (Bil)

Calcium (Ca)

Cholesterol (Chol)

Creatinine (Cre)

Glucose (Glu)

Potassium (K)

Sodium (Na)

Total protein (TP)

Triglycerides (TG)

Urea (Urea)
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Figure |

Comparison of tissue weights between CYP2C18&19 transgenic and wild-type mice. The figure shows the absolute
tissue weights for tissues with statistically significant differences between genotypes. Each group contains 6 animals. Asterisks

indicate significant differences between groups, *p < 0.05, ***p <

0.001. wt: wild-type C57BL/6 mice, tg: hemizygous transgenic

mice containing human CYP2C|8&19. The box plots are presented as described in materials and methods.

mice, which did not show any statistical difference
between the transgenic and the wild-type groups.

In both male and female mice, the brain weight was lower
in tg-CYP2C18&19 than in wild-type mice (p < 0.05 and p
<0.001 for males and females respectively). The adrenal
glands (p < 0.05) and brown fat deposits (p < 0.001) were
smaller, while the heart weight was larger (p < 0.001) in
the tg-CYP2C18&19 males than in wild-type males. The
spleen weight was lower in female tg-CYP2C18&19 than

in wild-typefemales (p < 0.05). All other organ weight
comparisons (lung, liver, kidney, thymus, retriperitoneal
fat deposits, testis, prostate, epididymal fat deposits,
uterus and ovaries) showed no significant differences
between the genotypes.

Clinical pathology parameters
Comparisons of all clinical pathology variables (between
the genetic and sex groups) are shown in Table 5. Clinical
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Table 4: A comparison of absolute tissue weights between CYP2C18&19 transgenic and wild-type mice

d ?
Tissue Wt Tg Wt Tg
Body (g) 223+ 15 222+ 13 214+05 21.0+£0.6
Brain (mg) 446 £ | 1.4 427 £ 16.6* 472 £9.93 444 £ | | .gFkx
Heart (mg) 130 +7.39 149 + 8.06™+ 139 + 6.80 139 + 6.05
Lung (mg) 148 + 15.4 145 £ 5.61 159 £ 12.8 157 £ 18.9
Liver (mg) 1286 + 76.2 1267 £ 102 1325 + 89.7 1271 £ 54.2
Kidney (mg) 291 £ 189 286 + 18.8 328 £ 9.51 315+ 129
Adrenal glands (mg) 9.83 +3.25 5.83 + |.47* 9.33£242 7.67 £2.16
Spleen (mg) 64.2 + 74| 61.0 £ 10.6 88.8 £ 3.49 75.0 £ 6.75%%*
Thymus (mg) 41.2 £7.3I 377132 60.5 +7.45 68.0 % I1.1
Retriperitoneal fat (mg) 69.7 £259 61.5 £ 8.07 258+ 115 263 7.6l
Brown fat (mg) 95.0+ 11.0 482 £ 7.9+ 66.3 £ 135 60.2 + 123
Testes (mg) 209 + 19.3 210+ 121
Prostate (mg) 393+ 125 492 £9.11
Epididymal fat (mg) 306 + 80.0 287 + 37.0
Uterus (mg) 89.5+£43.0 112 £47.0
Ovaries (mg) 10.8 + 6.68 13.3 £ 6.35

The table shows the average absolute tissue weights for each group +/- standard deviations. The statistical comparisons were performed as
described in materials and methods. *p < 0.05, **p < 0.001. wt: wild-type C57BL/6 mice, Tg: hemizygous transgenic mice containing human

CYP2CI18&19.

pathology parameters with significant differences (p <
0.05) between the genotypes are shown in Figure 2.

The blood glucose levels were altered in male tg-
CYP2C18&19 mice, which had higher levels than wild-
type males (p < 0.01). The level of circulating triglycerides
in the blood was decreased in female tg-CYP2C18&19
compared to the wild-type females (p < 0.01).
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Figure 2

All other haematology parameters and blood chemistry
parameters measured showed no significant differences
between the genotypes (See Table 3). There were no signif-
icant differences between the genotypes in any of the bone
marrow parameters measured (total nucleated cell count,
myeloid: erythroid ratio and the proportion of lymphoid,
myeloid, erythroid and nucleated cells). The bone marrow
parameter results are shown in Table 6.
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Comparisons of clinical pathology parameters between CYP2C18&19 transgenic and wild-type mice. The figure
shows the blood chemistry parameters with statistically significant differences between genotypes. Each group contains 6 ani-

mals. Asterisks indicate significant differences between groups, **p < 0.01. wt: wild-type C57BL/6 mice, tg: hemizygous trans-

genic mice containing human CYP2C|8&19. The box plots are presented as described in materials and methods.
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Table 5: Comparisons of haematology and blood chemistry parameters between genotypes of both sexes

Page 7 of 9

Haematology d Q Blood chemistry Q
parameter parameter
Wt Tg Wt Tg Wt Tg Wt Tg

RBC (*10'2/L) 8.89 £ 0.213 8.72 £ 0.200 9.78 + 0.496 9.54 £ 0.286 GLU (mmol/L) 12.2 £ 0.708 13.9 + 0.88** 15.3 £0.97 14.0 £ 1.33

HGB (g/L) 136 + 1.51 134 + 1.97 148 + 8.80 146 + 4.90 UREA (mmol/L)  7.10 £ 1.58 6.62 + 1.20 858+ I.16 8.03 £ 1.33

Hct (%) 43.0 £ 0.894 42310816 48.0 £ 1.79 473 1+ 1.21 TP (g/L) 49.2 + 1.47 48.2 £ 0.75 46.3 £ 1.21 45.7 £ 1.21

MCV (fL) 485+ 1.18 48.7 £ 0.853 49.2 £ 0.809 49.6 £ 0.501 ALB (g/L) 28.0 + 1.27 27.5 + 0.548 29.8 + 0.983 295+ 1.23

MCH (pg) 15.3 £0.273 15.4 £ 0.303 15.1 £0.293 15.3 £ 0.341 A/G ratio 1.33 £0.121 1.33 £ 0.0516 1.80 £+ 0.0632 1.85+0.176

MCHC (g/L) 316 £ 4.50 316 £ 4.41 307 £ 831 308 £ 6.05 Na 148 + 1.03 147 + 1.38 146 £ 0.516 147 + 0.837
(mmol/L)

PLT (*10'2/L) 1.18 £ 0.0394 1.18 £ 0.0299 1.04 £ 0.0714 1.07 £ 0.0659 K (mmol/L) 4.42 £ 0.475 43210313 3.90 £ 0.329 3.83 £ 0.344

WBC (*10°%/L) 521 £ 1.95 4.37 £ 1.05 284+ 1.28 232 +£0.792 ALT (U/L) 792 £ 254 63.2 + 189 60.3 £ 18.3 45.0 £ 3.35

Neutr (*106/L) 823 + 752 470 + 220 597 £ 646 483 + 402 AST (UIL) 108 + 62.1 77.0 £ 189 110 + 58.5 93.5 +34.2

Lymp (*109/L) 3.99 + 1.46 3.65 +£0.975 2.04 £ 0.972 1.71 £ 0.589 ALP (U/L) Il +8.98 113+ 11.3 122 + 13.6 134+ 16.2

Mono (*10¢/L) 260 + 237 86.7 £ 24.2 137 £ 95.8 66.7 + 30.1 TBil (umol/L) 7.66 £ 1.97 6.83 + 1.33 11.7 £3.33 102+ 1.72

Eosn (*106/L) 107 + 35.0 127 + 62.8 63.3 £ 55.7 46.7 £ 35.0 Crea (umol/L) 833+ 1.86 8.50 + 1.52 7.83 + 1.47 7.00 + 0.894

Baso (*106/L) 6.67 £ 10.3 333816 10.0 £ 16.7 0+0 Ca 2.50 + 0.0565 2.50 + 0.0446 2.37 £ 0.0681 234+ 0.0186
(mmol/L)

LUC (*108/L) 300+ 21.0 300 11.0 6.67 £ 10.3 0+0 Chol (mmol/L) 242 +0.117 243 £ 0.163 1.70 £ 0.179 1.67 £0.197

Reti (*10°/L) 283 £ 275 288 £+ I5.1 271 = 36.7 295 £ 30.7 TG (umol/L) 795 + 327 848 + 372 555 £ 509 408 + 83.3%*

RDV (%) 12.6 £ 0.147 12.6 £ 0.261 12.9 £ 0.388 12.6 £0.210

(page number not for citation purposes)

The table shows the average haematology and blood chemistry values for each group +/- standard deviations. The statistical comparisons were performed as described in materials and methods,
and the abbreviations used are explained in Table 3. **p < 0.01.
wt: wild-type C57BL/6 mice, Tg: hemizygous transgenic mice containing human CYP2C18&19.
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Discussion

The regulation and functions of the members of the
CYP2C family are complex with large variations in expres-
sion within, and between, different tissues. The human-
ized mouse model characterized in this paper may
facilitate the study and understanding of the functions of
the human CYP2C enzymes. The demonstrated altera-
tions in organ weights and clinical chemistry parameters
cannot all be explained with the current knowledge of the
CYP2C enzymes.

Arachidonic acid is metabolised in human brain paren-
chymal tissue to epoxyeicosatrienoic acid, which acts as a
potent dilator of cerebral vessels [24]. In rats, this metab-
olism is carried out by CYP2C11 in the brain [25] and it is
therefore possible that other members of the CYP2C sub-
family, together with members of other cytochrome
P450s subfamilies present in astrocytes, also participate in
the metabolism of arachidonic acid in other species. The
mouse Cyp2c enzymes are also involved in the metabo-
lism of arachidonic acid and the murine isoforms metab-
olize arachidonic acid to regio- and stereospecific
products[18]. This metabolism could be altered by the
insertion of human CYP2C18&19 genes in the mouse
model presented and, thereby, influence cerebral blood
flow and possibly also the brain weight. The activities of
the CYP2C enzymes in the central nervous system have
also been proposed to influence the action of neurotrans-
mitters, such as dopamine, which utilize fatty acid metab-
olites as intracellular mediators [26].

Alterations in the metabolism of arachidonic acid could
possibly also explain the increased heart weight in the
male tg-CYP2C18&19 mice. The CYP2C enzymes
expressed in the cardiovascular system play a crucial role
in the modulation of vascular homeostasis [27]. CYP
products such as epoxyeicosatrienoic acids and reactive
oxygen species have been implicated in the regulation of
intracellular signalling cascades and vascular cell prolifer-

http://www.actavetscand.com/content/50/1/47

ation [28]. Preliminary behavioural studies show an ini-
tial increase in locomotor activity for male tg-
CYP2C18&19 mice compared to wild-type controls when
the mice are put in activity boxes. The increased activity of
the transgenic mice could possibly also contribute to the
increased heart weight (data not shown).

When focusing on lipid and glucose metabolism, the
interactions are even more complex. In the present study,
male tg-CYP2C18&19 mice had decreased brown fat
deposits compared to wild-type mice and female tg-
CYP2C18&19 had decreased levels of circulating triglycer-
ides. The glucose levels were increased in male tg-
CYP2C18&19 mice compared to wild-type males. Exoge-
nous glucose administration to rats has been shown to
decrease CYP2C6 and the male specific CYP2C11 activity
by altering hepatic lipids [29]. If a similar male specific
regulation occurs in the tg-CYP2C18&19 mice, this could
possibly explain the alterations in glucose levels, fat
deposits and blood triglyceride levels observed in this
study.

Despite the few organ weight and clinical chemistry alter-
ations observed, the hemizygous tg-CYP2C18&19 mice
are considered to be viable and healthy. The alterations
observed are also unlikely to cause any decrease in
lifespan of the strain since the few tg-CYP2C18&19 male
mice kept as breeders have reached an age of 2-3 years
(unpublished data).

Conclusion

In the present study a gene-addition transgenic mouse,
containing a BAC spanning the human CYP2C18&19
genes, has been characterized. Some alterations in organ
weight and clinical pathology parameters were observed.
Despite the alterations, no pathological changes were
observed macroscopically or histologically and these
hemizygous tg-CYP2C18&19 mice were considered to be
viable and healthy. Hopefully, this model could be used

Table 6: Comparisons of bone marrow parameters between genotypes of both sexes

Bone marrow parameter d Q
Wt Wt Tg

TNC (*10¢/femur) 8.78 + 0.995 9.27 £ 0.726 144 +2.71 11.7 £ 1.35
% Erythroid 37.8£2.89 38.2 £ 351 33.6 £3.76 348 £ 5.88
% Lymphoid 12.0 + 1.55 11.0 + 1.40 841 +1.70 10.2 + 1.48
% Myeloid 50.1 £ 3.38 50.6 £ 3.91 57.7 £ 48l 54.6 £ 5.55
Ratio M: E 1.34 £ 0.188 1.35 £ 0.259 1.75 £ 0.342 1.64 + 0.500
% LDS+ 85.2+2.19 85.7 + 3.01 90.1 +2.60 89.4 + .54

The table shows the average bone marrow values for each group +/- standard deviations. The statistical comparisons were performed as described

in materials and methods.

wt: wild-type C57BL/6 mice, Tg: hemizygous transgenic mice containing human CYP2C18&19. TNC: Total Nucleated Count, % Erythroid/

Lymphoid/Myeloid: Proportion (of total)

Erythroid/Lymphoid/Myeloid cells, Ration M: E: Myeloid: Erythroid ratio, %LDS+: percentage of (total) cells staining positive for the nucleic acid

stain LDC-751 (laser dye styryl-751).
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to investigate the roles of CYP2C18 and CYP2C19 in vivo
and extrapolation of results obtained from studies with
this model may be more predictive to humans than when
using traditional animal models.
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