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Abstract: In early autumn 2011, three dogs died after they had been exposed to a 

Microcystis aeruginosa bloom on Lake Amstelmeer, The Netherlands. The cyanobacterial 

scum from the lake contained up to 5.27 × 103 μg g−1 dry-weight microcystin, the vomit of 

one of the dogs contained on average 94 µg microcystin g−1 dry-weight. In both cases, 

microcystin-LR was the most abundant variant. This is the first report of dog deaths 

associated with a Microcystis bloom and microcystin poisoning in The Netherlands. 

Keywords: bathing water; cyanobacterial scum; cyanotoxins; microcystin; LC-MS/MS; 

swimming ban 

 

1. Introduction 

Eutrophication of surface waters has many undesirable effects and has become the major water 

quality issue in many freshwater and coastal systems world wide [1]. Cyanobacterial blooms are one 

symptom of eutrophication. These blooms present a serious threat to the environment and the health of 

wildlife, cattle, pets and humans because of the ability of cyanobacteria to produce potent toxins [2,3]. 

Numerous animal poisonings associated with cyanobacterial blooms have been documented and 

among these are several cases of dog deaths [4]. Dogs seem to be attracted by the odors produced by 

cyanobacteria and might swallow substantial amounts of floating mats accumulated on leeside 

shorelines [5]. Indeed, many dog fatalities have been attributed to consumption of benthic 

OPEN ACCESS



Toxins 2013, 5 557 

 

 

cyanobacterial mat material, mostly dominated by Oscillatoria and Phormidium spp. [6–9]. In these 

cases, anatoxin-a or homoanatoxin-a poisoning was identified as the most likely causal factor. In line 

with those findings, the death of three dogs that ingested Phormidium mat material that had been 

washed ashore at Lake IJmeer (The Netherlands) in spring 2011, seemed also to be caused by 

(homo)anatoxin-a poisoning [10]. However, blooms of pelagic cyanobacteria are also linked to dog 

poisonings: dogs deaths associated with Nodularia blooms have been described from the Australian 

lake Alexandrina [11] and the Baltic Sea [12,13]. In addition, three dogs died of possible Microcystis 

poisoning in Baptist lake, Northern Alberta [14] and a representative of the same genus was held 

responsible for the death of six dogs in Qu’Apelle Lake, Saskatchewan [15]. 

Some months after the dog deaths in spring 2011 in Lake IJmeer [10], another incident led to the 

death of three dogs that had been swimming in the Dutch Lake Amstelmeer. At the time of the dog 

fatalities, Lake Amstelmeer experienced a massive bloom of the cyanobacterium Microcystis aeruginosa. 

This species is one of the most frequently encountered bloom-forming cyanobacteria in freshwater 

bodies all around the world [16,17]. The most notorious toxins produced by toxigenic M. aeruginosa 

strains are microcystins (MC), which are microbial non-ribosomal processed cyclic heptapeptides [18]. 

We analyzed cyanobacterial samples from Lake Amstelmeer, and the vomit of one of the deceased 

dogs, a Labrador Retriever, for microcystins and report on microcystin poisoning as a plausible cause 

of the dogs’ death. 

2. Results and Discussion 

On 29 September 2011, a Labrador Retriever of about 30 kg and a 16 weeks old Jack Russell pup 

were brought to the regional veterinary hospital (Veterinair Centrum Holland Noord, Slootdorp, The 

Netherlands) after they had been walked on the shore of Lake Amstelmeer (The Netherlands). The 

Labrador Retriever had consumed cyanobacterial scum material that had been washed on the shore. 

The dog vomited severely, became lethargic, showed difficulties in breathing and died after four to 

five hours. The vomit of this dog was collected. The Jack Russell pup had not been eating from the 

scum material on the shore, but had been swimming in the scum. Also this dog vomited and died after 

12 to 16 h. A few days later, a second Labrador Retriever was brought to the veterinary hospital. Also 

this dog had been swimming in Lake Amstelmeer, after which it lost appetite, became lethargic, 

showed difficulties in moving, signs of abdominal pain, indications of gastro-intestinal bleedings and 

shallow breathing before it died. The haematocrit level of this dog (26.5%) was strongly reduced 

compared to baseline levels in Labrador Retrievers, which is approximately 44% [19]. 

The water and scum samples from Lake Amstelmeer contained the cyanobacterium  

Microcystis aeruginosa, which was identified microscopically and by 16S rRNA analysis 

(Supplementary Information 1). The vomit of the first Labrador Retriever also contained Microcystis 

like cells and small multi-celled Microcystis aggregates, as determined by light microscopy. Because 

the cyanobacterial bloom consisted of Microcystis, the cyanobacterial samples and the vomit were 

subjected to microcystin (MC) analysis. Chromatograms of a calibration standard and an undiluted 

vomit sample are shown in Figure 1.  
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Figure 1. Chromatogram of (A) a calibration standard containing eight microcystins and 

nodularin and (B) an undiluted sample of dog vomit. Transitions for the same compounds 

are shown in the same color, transition for the quantifier ion are represented by a bold line, 

transitions for the qualifier ions are represented by a normal line. 

 

MC data for each sample and variant are listed in Supplementary Information 2 and are summarized 

in Figure 2. All samples contained MCs, the total MC concentration in water samples from Lake 

Amstelmeer was different in different locations, it ranged from 17 to 2.92 × 103 µg L−1 (Figure 2A). 

The scum material that was collected at the shore contained on average less MCs (1.71 × 103 µg g−1  

dry-weight) than the scums collected from the water surface (4.04 × 103 µg g−1 dry-weight, Figure 2B). 

The vomit of the dog contained roughly 5% (94 µg g−1 dry-weight) of the MC content of the shore 

scums (Figure 2C). None of the samples contained detectable amounts of NOD. 
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Figure 2. Concentrations of eight microcystin variants in (A) water samples collected at 

eight different sites in Lake Amstelmeer, The Netherlands; (B) scum material collected at 

the shore and from the surface of the lake and (C) vomit of a Labrador retriever that died 

after ingesting scum material. Each part of each column represents the average of three 

analytical replicates, full data are presented in Supplementary Information 2. 

 

The samples contained all eight analyzed MC variants and in all cases MC-LR was most abundant, 

on average it made up 73% of the total MC content (Figure 2). MC-RR was on average present in 

7.5%, MC-LW in 6.6% and dm-7-MC-LR in 6.0% of the total identified MCs (Figure 2).  

The variant profiles of the shore scum and the dog’s vomit were similar, with MC-LR being slightly 

more abundant in the vomit (Figure 2). As the dog had ingested cyanobacterial material from the 

shore, this similarity of the variant profiles was expected. The variation in variant composition of the 

water samples and the water scums was larger than for the shore scums and the dog vomit (Figure 2). 

These larger variations seem not to be caused by analytical differences, since all samples consist of the 

same type of matrix, so matrix effect are expected to be the same between these samples. Instead, it is 

more likely that these differences are caused by spatial heterogeneity of the cyanobacterial bloom. 
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Within one lake, cyanobacterial abundance and species composition change in time and space and a 

bloom can consist of different genotypes of the same species, which may produce different MC 

variants but cannot be distinguished by microscopy [20,21]. Moreover single genotypes can alter the 

relative abundances of the MC variants they produce as a response to locally changing availability of 

nutrients [22]. 

The more hydrophobic variants MC-LW and MC-LF were present in lower concentrations than 

MC-LR, but recent in vitro studies indicate that these two variants might be more toxic [23–25].  

So although the combined average abundance of MC-LW and MC-LF was 12% of that of MC-LR, 

their assumed higher toxicity (the most conservative estimate from [25] is 6.8 times that of MC-LR) 

makes their contribution to the total toxicity at least of the same order of magnitude as that of MC-LR, 

but possibly higher. 

The results of this study point towards MC poisoning as the cause of the dogs’ deaths. Water 

samples, scum samples and vomit of one of the ceased dogs all contained Microcystis and MCs. 

Furthermore, the dogs symptoms, such as vomiting, becoming lethargic, signs of abdominal pain and 

neurological disorders, resemble those that have been described for patients from a dialysis center in 

Brazil who had been exposed to MC contaminated dialysis water [26]. 

The M. aeruginosa from Lake Amstelmeer contained very high concentrations of MCs. The highest 

value found for one of the surface scums was 5.27 × 103 µg MC g−1 dry-weight, placing it among the 

highest MC concentrations measured in scums worldwide (Table 1). The water samples showed a 

substantial variation in MC concentrations (17–2.92 × 103 µg L−1), which might reflect considerable 

spatial heterogeneity in Microcystis abundance [27,28]. Moreover, the bloom occurred end of 

September–beginning of October, illustrating that high MC concentrations caused by Microcystis 

blooms in temperate regions of Europe are not restricted to the summer months July and August [29,30]. 

Table 1. Microcystin (MC) concentrations of cyanobacterial bloom material from different 

sites and studies. 

Lake (country) MC Concentration (µg g−1 dry-weight) reference 

Lake Baringo (Kenya) 19800 [31] 
Bautzen Reservoir (Germany) 14700 [32] 
Beaver Dam Lake 2 (USA) 12800 [33] 
Lake Winnebago 1 (USA) 10240 [33] 
Lalla Takerkoust (Morocco) 8800 [34] 
Fish pond S2 Wuhan (China) 7280 [35] 
River Guadiana (Portugal) 7100 [36] 
Not specified (Germany) 5595 [37] 
Lake Amstelmeer (Netherlands) 5265 This study 
Lake Grand-Lieu (France) 5060 [38] 
Lake Oubeira (Algeria) 4590 [39] 
Laguna de Bay (Philippines) 4049 [40] 

In conclusion, three dogs likely died as a result of exposure to MCs from a M. aeruginosa bloom in 

Lake Amstelmeer. This is the first report of MC poisoning of dogs in The Netherlands. 
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3. Experimental Section  

Lake Amstelmeer is located in the northwest of The Netherlands (52°52'N 4°54'E). The 650 ha lake 

was created after damming the former estuary in 1930 and subsequently deepened by sand excavation 

giving it a maximum depth of 18 m. The water is light brackish (580–1600 mg chloride L−1) and 

suffers regularly from cyanobacterial blooms [41]. Just after the dog fatalities at Lake Amstelmeer end 

September–beginning October 2011, scum material was collected at various locations on the water 

surface and at the shoreline and water samples were taken at eight different sites in the lake. Vomit 

(403 g wet weight) was collected from a Labrador Retriever of about 30 kg who died September 29th 

2011 after ingesting cyanobacterial scum material. 

The cyanobacterial samples and the vomit of the Labrador Retriever were inspected microscopically 

using a Nikon light microscope at 750× magnification. Freeze dried cyanobacterial material was send 

to Baseclear BV (Leiden, The Netherlands) for 16S rRNA analysis. About 700 base pairs of the 16S 

rRNA gene were amplified and sequenced on both strands. Sequence was analyzed using the Integrated 

Database Network System (IDNS) SmartGene 16S rRNA eubacteria database (Baseclear BV).  

Vomit and scum material were prepared for microcystin (MC) analysis by freeze-drying. From each 

sample/location, aliquots of 5 mg freeze-dried material were transferred in triplicate to 2 mL 

Eppendorf vials (biological replicates). MCs were extracted three times at 60 °C in 0.5 mL 75% 

methanol-25% Millipore water (Billerica, MA, USA) (v/v). Extracts were dried in a Speedvac (Thermo 

Scientific Savant SPD121P, Asheville, NC, USA) and reconstituted in 600 μL methanol. The 

reconstituted samples were transferred to 2 mL Eppendorf vials with a cellulose-acetate filter (0.2 μm, 

Grace Davison Discovery Science, Columbia, SC, USA) and centrifuged for 5 min at 16,000 × g 

(VWR Galaxy 16DH, Boxmeer, The Netherlands). Filtrates were transferred to amber glass vials 

before analysis. 

Water samples were glass-fiber filtered (Whatman GF/C, Buckinghamshire, UK) and stored 

overnight at −20 °C. The frozen filters were extracted and processed as described in [30].  

Calibration standards for all analyzed compounds were obtained from DHI LAB products 

(Hørsholm, Denmark, Table 2).  

Table 2. Calibration standard details for microcystins (MC) and nodularin (NOD) and 

composition of the amino acids on position 2 and 4. 

Compound Position 2 Position 4 

dm-7-MC-RR 1 Arginine Arginine 
MC-RR Arginine Arginine 

NOD n.a. n.a. 
MC-YR Tyrosine Arginine 

dm-7-MC-LR 1 Leucine Arginine 
MC-LR Leucine Arginine 
MC-LY Leucine Tyrosine 
MC-LW Leucine Tryptophan 
MC-LF Leucine Phenylalanine 

1 dm = desmethylated. 
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LC-MS/MS analysis was performed on an Agilent 1200 LC and an Agilent 6410A QQQ 

(Waldbronn, Germany). The compounds were separated on an Agilent Zorbax Eclipse XDB-C18 

(Santa Clara, CA, USA) 4.6 × 150 mm, 5 μm column by Millipore water with 0.1% formic acid (v/v, 

eluent A) and acetonitrile with 0.1% formic acid (v/v, eluent B). Elution program was 0–2 min 30% B, 

6–12 min 90% B, with a linear increase of B between 2 and 6 min and a 5 min post run at 30% B. 

Injection volume was 10 µL, flow 0.5 mL min−1, column temperature was 40 °C. The LC-MS/MS was 

operated in positive mode with an ESI source, nitrogen was used as drying and collision gas. For each 

compound, two transitions were monitored in MRM mode. The first quadrupole was operated in unit 

mode, the second quadrupole was operated in widest mode. Dwell time was 50 ms. Eight MC variants 

and nodularin (NOD) were analysed, MS/MS settings are shown in Table 3.  

Table 3. MS/MS settings for microcystin (MC) and nodularin (NOD) analysis. 

Compound 
Retention 

time (min) 

Precursor 

ion (m/z) 

Fragmentor 

(V) 

Quantifier 

ion (m/z) 

CE 1 quantifier 

(V) 

Qualifier 

ion (m/z) 

CE 1 

qualifier (V) 

Ratio 2 

(%) 

dm-7-MC-RR 6.93 512.8 135 135.1 26 70.1 85 1.2 

MC-RR 7.62 519.8 151 135.1 30 70.1 75 2.7 

NOD 8.03 825.5 220 135.1 70 70.1 95 44.2 

MC-YR 8.16 523.3 102 911.5 5 135.1 6 103.6 

dm-7-MC-LR 8.21 491.3 88 847.6 5 135.1 6 84.0 

MC-LR 8.24 498.3 88 135.1 6 482.3 6 56.7 

MC-LY 9.67 868.4 170 163.0 35 136.1 75 29.0 

MC-LW 10.22 891.5 146 163.0 31 159.0 75 26.9 

MC-LF 10.47 852.5 140 163.0 31 120.1 79 39.1 
1 collision energy, 2 ratio between abundance of the qualifier and quantifier ion. 

Recovery of sample workup and analysis was determined by spiking a cyanobacterial matrix in 

triplicate and was between 54% for MC-LW and 105% for NOD (Table 4). Each sample was injected 

in triplicate (technical replicates). Samples were quantified against a calibration curve in methanol and 

subsequently corrected for recoveries. When necessary, samples were diluted in methanol until they 

fell within the calibration range. Limit of detection (LOD) in calibration standards was defined as the 

lowest injected concentration with a signal-to-noise (S/N) ratio of both product ions of at least 3:1. 

Furthermore, the ratio of the qualifier ions to the quantifier ion should be within a 20% relative range 

of the expected value (Table 3). Limit of quantification (LOQ) was defined as the lowest injected 

concentration with a S/N ratio of the quantifier ion of at least 10:1. Furthermore, the ratio of the 

qualifier ion to the quantifier should again be within the accepted range, and the S/N ratio of the 

qualifier ion should at least be 3:1. For some variants, the LOD then equaled LOQ (Table 4) because 

the conditions for the ratio of the qualifier ions to the quantifier ion or for the S/N of the qualifier ions 

were sometimes only met at a concentration where the S/N ratio of the quantifier ion is at least 10:1. 

Detection limits and calibration curve range are shown in Table 4. The calibration curves of  

dm-7-MC-RR and MC-RR were slightly quadratic. 
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Table 4. Quantification details of microcystins (MC) and nodularin (NOD) LC-MS/MS analysis. 

Compound LOD 1 (fmole inj−1) LOQ 2 (fmole inj−1) 
Calibration curve 

range (μg L−1) 
Curve shape 

Recovery 

(%) 

dm-7-MC-RR 132 132 14–338 Quadratic 100 

MC-RR 92 92 10–949 Quadratic 96 

NOD <17 17 1–368 Linear 105 

MC-YR <10 10 1–518 Linear 75 

dm-7-MC-LR <12 12 1–589 Linear 78 

MC-LR <19 19 2–921 Linear 79 

MC-LY 165 165 16–824 Linear 73 

MC-LW 77 154 16–791 Linear 54 

MC-LF 37 37 4–900 Linear 64 
1 Limit of detection, 2 Limit of quantification. 

Repeatability was determined by ten subsequent injections of the same calibration standards, results 

are shown in Table 5. 

Table 5. Repeatability of microcystins (MC) and nodularin (NOD) LC-MS/MS analysis, 

expressed in relative standard deviations (%), n = 10. 

Compound Retention time Peak area 1 Ratio 2 

dm-7-MC-RR 0.6 5.4 5.8 
MC-RR 0.1 6.6 6.1 

NOD 0.1 3.7 1.5 
MC-YR 0.0 1.3 0.9 

dm-7-MC-LR 0.1 1.5 1.4 
MC-LR 0.0 1.4 2.8 
MC-LY 0.1 1.6 7.2 
MC-LW 0.1 3.4 11.2 
MC-LF 0.0 4.9 7.4 
1 area of the quantifier ion; 2 ratio between abundance of the qualifier and quantifier ion. 

For dm-7-MC-RR and MC-RR, the ratio between the quantifier ion and the qualifier ion as listed in 

Table 3 was not constant, in calibration standards it increased with increasing concentration, and in the 

presence of a matrix, it increased up to 40%. As this also occurred when cyanobacterial samples were 

spiked with these compounds, ratios between those listed in Table 3 and 40% were accepted in 

samples. Finally, the ratio between the quantifier ion and the qualifier ion of MC-LY was increased in 

concentrated samples (Figure 1B). When samples were diluted, the ratio returned to the expected 

value. If necessary, the presence of MC-LY was therefore confirmed in diluted samples. 

4. Conclusions  

A Microcystis aeruginosa bloom in Lake Amstelmeer (The Netherlands) contained very high 

microcystin (MC) concentrations up to 5.27 × 103 µg g−1 dry-weight in material accumulated on the 

water surface and shores.  
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As vomit of one of the deceased dogs contained MCs and all casualties had ingested accumulated 

Microcystis material or had been exposed to it, the three dogs likely died as a result of exposure to 

MCs from the M. aeruginosa bloom in Lake Amstelmeer.  

This is the first report of MC poisoning of dogs in The Netherlands. 

Acknowledgments 

E.J.F. was supported by grant 817.02.019 from the Netherlands Organization for Scientific 

Research (NWO). Conny Byma and veterinarian Frank Dijkhuizen of the Veterinary Centre of Holland 

Noord are thanked cordially for providing information and material of the deceased dog. Gert van Ee 

(Regional Water Authority Hollands Noorderkwartier) and Marjolein Hoyer (Waterproef) are thanked 

for the cyanobacterial material from Lake Amstel.  

Conflict of Interest 

The authors declare no conflict of interest.  

References 

1. Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. 

Evol. 2009, 24, 201–207.  

2. Codd, G.A.; Morrison, L.F.; Metcalf, J.S. Cyanobacterial toxins: Risk management for health 

protection. Toxicol. Appl. Pharmacol. 2005, 203, 264–272. 

3. Dittmann, E.; Wiegand, C. Cyanobacterial toxins—Occurrence, biosynthesis and impact on 

human affairs. Mol. Nutr. Food Res. 2006, 50, 7–17. 

4. Stewart, I.; Seawright, A.A.; Shaw, G.R. Cyanobacterial poisoning in livestock, wild mammals 

and birds—An overview. Adv. Exp. Med. Biol. 2008, 619, 613–637. 

5. Codd, G.A.; Edwards, C.; Beattie, K.A.; Barr, W.M.; Gunn, G.J. Fatal attraction to cyanobacteria? 

Nature 1992, 359, 110–111. 

6. Edwards, C.; Beattie, K.A.; Scrimgeour, C.M.; Codd, G.A. Identification of anatoxin-a in benthic 

cyanobacteria (blue-green algae) and in associated dog poisonings at Loch Insh, Scotland. 

Toxicon 1992, 30, 1165–1175. 

7. Gugger, M.; Lenoir, S.; Berger, C.; Ledreux, A.; Druart, J.-C.; Humbert, J.-F.; Guette, C.; 

Bernard, C. First report in a river in France of the benthic cyanobacterium Phormidium favosum 

producing anatoxin-a associated with dog neurotoxicosis. Toxicon 2005, 45, 919–928. 

8. Wood, S.A.; Selwood, A.I.; Rueckert, A.; Holland, P.T.; Milne, J.R.; Smith, K.F.; Smits, B.; 

Watts, L.F.; Cary, C.S. First report of homoanatoxin-a and associated dog neurotoxicosis in New 

Zealand. Toxicon 2007, 50, 292–301. 

9. Puschner, B.; Hoff, B.; Tor, E.R. Diagnosis of anatoxin-a poisoning in dogs from North America. 

J. Vet. Diagn. Investig. 2008, 20, 89–92. 

10. Faassen, E.J.; Harkema, L.; Begeman, L.; Lurling, M. First report of (homo)anatoxin-a and dog 

neurotoxicosis after ingestion of benthic cyanobacteria in The Netherlands. Toxicon 2012, 60, 

378–384. 



Toxins 2013, 5 565 

 

 

11. Francis, G. Poisonous Australian lake. Nature 1878, 18, 11–12. 

12. Nehring, S. Mortality of dogs associated with a mass development of Nodularia spumigena 

(Cyanophyceae) in a brackish lake at the German North Sea coast. J. Plankton Res. 1993, 15, 

867–872. 

13. Simola, O.; Wiberg, M.; Jokela, J.; Wahlsten, M.; Sivonen, K.; Syrjä, P. Pathologic findings and 

toxin identification in cyanobacterial (Nodularia spumigena) intoxication in a dog. Vet. Pathol. 

2012, 49, 755–759. 

14. O’Donoghue, J.G.; Wilton, G.S. Algal poisoning in Alberta. Can. J. Comp. Med. 1951, 15,  

193–198. 

15. Senior, V.E. Algal poisoning in Saskatchewan. Can. J. Comp. Med. 1960, 24, 26–31. 

16. Sivonen, K.; Jones, G. Cyanobacterial Toxins. In Toxic Cyanobacteria in Water. A Guide to Their 

Public Health Consequences, Monitoring and Management; Chorus, I., Bartram, J., Eds.; E&FN 

Spon: London, UK, 1999; pp. 41–111. 

17. De Figueiredo, D.R.; Azeiteiro, U.M.; Esteves, S.M.; Gonçalves, F.J.M.; Pereira, M.J. 

Microcystin-producing blooms-a serious global public health issue. Ecotoxicol. Environ. Saf. 

2004, 59, 151–163.  

18. Doekel, S.; Marahiel, M.A. Biosynthesis of natural products on molecular peptide synthetases. 

Metab. Eng. 2001, 3, 64–77. 

19. Steis, J.E.; White, J.C. Respiratory alkalosis and primary hypocapnia in Labrador Retrievers 

participating in field trials in high-ambient-temperature conditions. Am. J. Vet. Res. 2008, 69, 

1262–1267. 

20. Pobel, D.; Godon, J.J.; Humbert, J.F.; Robin, J. High-frequency monitoring of the genetic 

diversity and the potential toxicity of a Microcystis aeruginosa bloom in a French shallow lake. 

FEMS Microbiol. Ecol. 2012, 79, 132–141. 

21. Hotto, A.M.; Satchwell, M.F.; Berry, D.L.; Gobler, C.J.; Boyer, G.L. Spatial and temporal 

diversity of microcystins and microcystin-producing genotypes in Oneida Lake, NY. Harmful 

Algae 2008, 7, 671–681. 

22. Van de Waal, D.B.; Verspagen, J.M.H.; Lürling, M.; van Donk, E.; Visser, P.M.; Huisman, J.  

The ecological stoichiometry of toxins produced by harmful cyanobacteria: An experimental test 

of the carbon-nutrient balance hypothesis. Ecol. Lett. 2009, 12, 1326–1335. 

23. Feurstein, D.; Holst, K.; Fisher, A.; Dietrich, D.R. Oatp-associated uptake and toxicity of 

microcystins in primary murine whole brain cells. Toxicol. Appl. Pharmacol. 2009, 234, 247–255.  

24. Feurstein, D.; Stemmer, K.; Kleinteich, J.; Speicher, D.; Dietrich, D.R. Microcystin congener- and 

concentration-dependent induction of murine neuron apoptosis and neurite degeneration. Toxicol. 

Sci. 2011, 124, 424–431. 

25. Fisher, A.; Hoeger, S.J.; Stemmer, K.; Feurstein, D.J.; Knobeloch, D.; Nussler, A.; Dietrich, D.R. 

The role of organic anion transporting polypeptides (OATPs/SLCOs) in the toxicity of different 

microcystin congeners in vitro: A comparison of primary human hepatocytes and OATP-transferred 

HEK293 cells. Toxicol. Appl. Pharmacol. 2010, 245, 9–20. 

26. Carmichael, W.W.; Azevedo, S.M.F.O.; An, J.S.; Molica, R.J.R.; Jochimsen, E.L.; Lau, S.; 

Rinehart, K.L.; Shaw, G.R.; Eaglesam, G.K. Human fatalities from cyanobacteria: Chemical and 

biological evidence for cyanotoxins. Environ. Health Perspect. 2001, 109, 663–668. 



Toxins 2013, 5 566 

 

 

27. Otten, T.G.; Xu, H.; Qin, B.; Zhu, G.; Paerl, H.W. Spatiotemporal patterns and ecophysiology of 

toxigenic Microcystis blooms in Lake Taihu, China: Implications for water quality management. 

Environ. Sci. Technol. 2012, 46, 3480–3488.  

28. Pobel, D.; Robin, J.; Humbert, J.-F. Influence of sampling strategies on the monitoring of 

cyanobacteria in shallow lakes: Lessons from a case study in France. Water Res. 2011, 45,  

1005–1014. 

29. Sabart, M.; Pobel, D.; Briand, E.; Combourieu, B.; Salençon, M.J.; Humbert, J.F.; Latour, D. 

Spatiotemporal variations in microcystin concentrations and in the proportions of  

microcystin-producing cells in several Microcystis aeruginosa populations. Appl. Environ. 

Microbiol. 2010, 76, 4750–4759. 

30. Lürling, M.; Faassen, E.J. Controlling toxic cyanobacteria: Effects of dredging and  

phosphorus-binding clay on cyanobacteria and microcystins. Water Res. 2012, 46, 1447–1459. 

31. Ballot, A.; Pflugmacher, S.; Wiegand, C.; Kotut, K.; Krienitz, L. Cyanobacterial toxins in Lake 

Baringo, Kenya. Limnologica 2003, 33, 2–9.  

32. Jungmann, D.; Ludwichowski, K.-U.; Faltin, V.; Benndorf, J. A field study to investigate 

environmental factors that could effect microcystin synthesis of a Microcystis population in the 

Bautzen Reservoir. Int. Rev. Gesamten Hydrobiol. Hydrogr. 1996, 81, 493–501. 

33. McDermott, C.M.; Feola, R.; Plude, J. Detection of cyanobacterial toxins (microcystins) in waters 

of northeastern Wisconsin by a new immunoassay technique. Toxicon 1995, 33, 1433–1442. 

34. Oudra, B.; Loudiki, M.; Sbiyyaa, B.; Martins, R.; Vasconcelos, V.; Namikoshi, N.  

Isolation, characterization and quantification of microcystins (heptapeptides hepatotoxins) in 

Microcystis aeruginosa dominated bloom of Lalla Takerkoust lake-reservoir (Morocco). Toxicon 

2001, 39, 1375–1381.  

35. Zhang, Q.-X.; Carmichael, W.W.; Yu, M.-J.; Li, S.-H. Cyclic peptide hepatotoxins from 

freshwater cyanobacterial (blue-green algae) waterblooms collected in central China. Environ. 

Toxicol. Chem. 1991, 10, 313–321. 

36. Vasconcelos, V.M.; Sivonen, O.K.; Evans, W.R.; Carmichael, W.W.; Namikoshi, M. Hepatotoxic 

microcystin diversity in cyanobacterial blooms collected in Portuguese freshwaters. Water Res. 

1996, 30, 2377–2384. 

37. Fastner, J.; Neumann, U.; Wirsing, B.; Weckesser, J.; Wiedner, C.; Nixdorf, B.; Chorus, I. 

Microcystins (hepatotoxic heptapeptides) in German fresh water bodies. Environ. Toxicol. 1999, 

14, 13–22. 

38. Vezie, C.; Brient, L.; Sivonen, K.; Bertru, G.; Lefeuvre, J.-C.; Salkinoja-Salonen, M. Variation of 

microcystin content of cyanobacterial blooms and isolated strains in Lake Grand-Lieu (France). 

Microb. Ecol. 1998, 35, 126–135. 

39. Nasri, A.-B.; Bouaïcha, N.; Fastner, J. First report of a microcystin-containing bloom of the 

cyanobacteria Microcystis spp. in Lake Oubeira, Eastern Algeria. Arch. Environ. Contam. Toxicol. 

2004, 46, 197–202. 

40. Cuvin-Aralar, M.; Fastner, J.; Focken, U.; Becker, K.; Aralar, E.V. Microcystins in natural 

blooms and laboratory cultured Microcystis aeruginosa from Laguna de Bay, Philippines.  

Syst. Appl. Microbiol. 2002, 25, 179–182.  



Toxins 2013, 5 567 

 

 

41. Vreman, B.J. Zwemwaterprofiel Amstelmeer (Lutjestrand) 2007 t/m 2010. 2011, (in Dutch). 

Available online: http://www.hhnk.nl/aspx/download.aspx?File=/contents/pages/214671/250211_ 

definitief_zwemwaterprofiel_lutjestrand_actualisatie_2011.pdf (accessed on 23 December 2012). 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


