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ABSTRACT Here, we describe the complete genome of Methanothermobacter sp.
strain KEPCO-1, a thermophilic and hydrogenotrophic methanogen that was isolated
from an anaerobic digester in Seoul, Republic of Korea. The genome of KEPCO-1
shares 96.98% of its sequence with Methanothermobacter marburgensis strain DSM
2133 and consists of 1,741,029 bp, with 1,822 protein-coding genes, 44 noncoding
RNAs, and a GC content of 48.47%. The development of this genome will facilitate
future genomic studies of KEPCO-1.

Power-to-gas (P2G) is an electrical storage system (1) that has recently been con-
sidered as an approach to addressing load fluctuations associated with renewable

energy (2, 3). Using this system, surplus electricity from renewable sources can be
converted by water electrolysis into hydrogen, which can then be utilized in methane
production with carbon dioxide by using the methanation process (3).

Here, we describe the isolation of Methanothermobacter sp. strain KEPCO-1 and the
generation of its complete genome. KEPCO-1 grows optimally at 60°C with a pH of 7.0
to 7.5 and produces methane under pressurized conditions (approximately 150 to 200
kPa), using CO2 and H2 (4). The isolation process was conducted through sequential
subculturing using general agar (4, 5). The strain was identified by 16S rRNA gene
sequencing using the following primers: 40F (5=-GAT TAA GCC ATG CAA GTC GAA
CGA-3=), 450F (5=-CTT CTG GAA TAA GGG CTG GGC A-3=), 765R (5=-CAT CGT TTA CGG
CCA GGA CTA C-3=), and 1430R (5=-CTC CTC AAA GAA CCC AGA TTC GAC-3=). Once the
strain was identified, whole-genome sequencing was performed.

KEPCO-1 was grown in basal medium at 60°C and 200 kPa for 7 days, and genomic
DNA was extracted using the DNeasy UltraClean microbial kit (Qiagen Korea Ltd., Seoul,
Republic of Korea) (6). The KEPCO-1 genome was analyzed using the PacBio RS II
platform (PacBio single-molecule real-time sequencing) at Macrogen Co. Ltd. (Seoul,
Republic of Korea), and the library was prepared using the SMRTbell template prepa-
ration kit (7). The raw data were assembled de novo by RS HGAP v3 and polished using
Quiver v1 in SMRT Portal v2.3.0 (8).

During the preassembly step, filtering and assembly were conducted using
preAssembler Filter v1 and preAssembler v2. Default parameters were used for all
software unless otherwise specified. After the genome was assembled, gene functions
were annotated via the NCBI Prokaryotic Genome Annotation Pipeline (https://www
.ncbi.nlm.nih.gov/genome/annotation_prok).
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The filtered data included a total of 1,099,392,337 bases. There were 81,220 post-
filtered reads, encompassing 964,138,339 sequenced bases. The mean subread and N50

read lengths were 7,204 bases and 10,409 bases, respectively. The genome is composed
of a single chromosome (1,741,029 bp), with an average reference coverage of 421�.
One contig was generated and the two ends of the contig overlapped, which indicates
that the genome is circular. Genome annotations identified a total of 1,866 genes, of
which 1,822 were predicted to contain coding sequences, 37 were tRNAs, and 7 were
rRNAs. The GC content was 48.75%.

The most closely related strain for KEPCO-1 was Methanothermobacter marburgensis
DSM 2133 (9, 10), and the average nucleotide identity of KEPCO-1 with respect to the
nucleotide sequence of DSM 2133 was 96.98% (11, 12). Furthermore, genes that were
involved in energy production and conversion represented the largest proportion of
genes in the KEPCO-1 genome (12). The number of genes and the proportion were 169
and 8.9%, respectively. This category is related to genes that are involved in the
synthesis of enzymes, coenzymes, and prosthetic groups that are involved in CO2 and
H2 utilization to produce methane (12).

Data availability. This whole-genome project (in GenBank format) and the corre-
sponding raw files (in fastq format) have been deposited under GenBank accession
numbers CP042937 and SRR10298064, respectively.
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