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Modeling Oil Recovery for Mixed 
Macro- and Micro-Pore Carbonate 
Grainstones
Ye Xu, Qiuzi Li & Hubert E. King

In general, modeling oil-recovery is a challenging problem involving detailed fluid flow calculations 
with required structural details that challenge current experimental resolution. Recent laboratory 
experiments on mixed micro- and macro-pore suggest that there is a systematic relationship 
between remaining oil saturation (ROS) and the fraction of micro-pores. Working with experimental 
measurements of the pores obtained from X-ray tomography and mercury intrusion capillary 
pressure porosimetry, we define a digital rock model exemplifying the key structural elements of 
these carbonate grainstones. We then test two fluid-flow models: invasion percolation model and 
effective medium model. Although invasion percolation identifies the important impact of macro-pore 
percolation on permeability, it does not describe the dependence of ROS on micro-pore percentage. We 
thus modified the effective medium model by introducing a single-parameter descriptor, reff. Oil from 
pores r ≥ reff is fully removed, while for the remaining pores with r < reff, their contribution is scaled by 
(r/reff)2. Applying this straightforward physics to pore size distributions for the mixed-pore grainstones 
reproduces the experimental ROS dependence.

As is well recognized, oil recovery from a rock having a heterogeneous pore size distribution is typically poor 
when compared to that from one with a homogeneous pore size distribution1. Conceptually this observation fits 
our picture of how an immiscible sweep fluid, such as water, will be diverted into connected pathways of larger 
pores (higher permeability) characteristic of the heterogeneous pore size distribution. The result is significant 
bypass of oil. It would be desirable to understand the controls on this geometric-controlled sweep efficiency as it 
can be anticipated to be important in the many carbonates that contain micro-pores.

Heterogeneity of pore size in carbonates is well known. An important class of such rocks exhibit abundant 
micro-pores in the same rock where macro-pores are present2–7. The microporosity of such reservoir rocks has 
been an area of extensive study for many years. Recent work has summarized findings from that literature and 
complemented that with a substantial data set taken over a broad range of Phanerozoic age carbonates8–10. This 
work has identified key structural characteristics and shown their impacts on permeability and recovery factors 
for water and gas floods. One key finding is that limestone microporosity is hosted in a matrix consisting of 
low-magnesium calcite micro-crystals with diameters of 0.5 to 9 µm9. These crystals are the result of diagenesis, 
i.e. dissolution and recrystallization. Recently Hasiuk et al.10 presented a large geochemical dataset that is con-
sistent with simple burial diagenesis. Important for the present study is that the flow characteristics are directly 
related to the textural characteristics and crystal size. Kaczmarek et al.9 identified three petrophysical types (I, II, 
III) consisting of progressively lower porosity, reduced crystal sizes and smaller pore-throat radii. Utilizing data 
from microporosity-dominated rocks, they find a systematic porosity-permeability trend, across the entire range, 
going from higher to lower permeability for Types I to III. Therefore for a purely microporous carbonate rocks, 
the flow characteristics are determined by the micro-pore size. We make use of this fact in our analysis of mixed 
porosity.

Focusing on Type I microporous carbonates, Fullmer et al.8 studied the oil recovery characteristics when 
macro-pores are also present. Utilizing a typical petrographic microscope examination of thin sections, they seg-
ment the pore space, dividing the sample porosity into micro and macro components. The macro-porosity cut-off 
is ~10 μm diameter. Supplemented by a bulk determination of porosity (i.e. helium porosimetry), microporosity 
is then calculated from the difference. This is Total Pore System (TPS) analysis 11. Fullmer et al.8 noted several key 
features in the Type I carbonates. First, as microporosity increases, oil recovery increases, (i.e., lower remaining 
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oil saturation, ROS, determined at 1/99 oil/water flow for steady-state relative permeability). As the microporosity 
percentage approaches 100%, a minimum ROS value is observed. This relationship is shown in Fullmer et al.8. 
Figure 16 (the experimental data are reproduced here in Section: Effective Medium Model). In another measure-
ment, the minimum oil saturation, determined by primary imbibition measurements via water-oil centrifugal 
capillary pressure experiments (Fullmer et al.8. Figure 14B), also decreases as microporosity increases. A third 
key observation is that overall sample permeability shows a two decade increase for microporosity <80% percent 
(Fullmer et al.8 Figure 10). Fullmer et al.8 distinguish between regimes of micro-pore and mixed-pore dominated 
flow at that value.

Grainstones are the focus in the case study by Fullmer et al.8, and here, we consider their geometry to gain 
insight into the possible geometric controls on flow. A wide range of carbonate grain types can undergo diage-
netic alteration to microporosity9. As there are two inherent types of pores, inter-particle and intra-particle, such 
carbonate rocks can be expected to exhibit a mixed pore size. Following deposition, there are primary interpar-
ticle macro-pores. These are altered by diagenetic processes. For example, burial reduces inter-grain porosity 
due to mechanical and chemical compaction12. In general, inter-particle porosity will decrease with diagenesis. 
On the other hand, diagenesis of the grains themselves drives transformations that lead to micro-pores form-
ing within the grain bodies9. For example, see the study by Fabricius13 of burial diagenesis for chalk sediments. 
As this proceeds the intra-particle pores become more interconnected and homogeneous in size, dominated 
by inter-crystalline space between micro-crystals. An example of the resulting texture is shown in Figure 4 
of Fullmer et al.8. Although mineralogical and textural characteristics of the original grains can influence micr-
oporosity formation, the grainstones under study exhibit porosities for grains that produce about 20% micropo-
rosity, typical of Type I.

These diagenetically driven variations will alter the pore geometry in a systematic manner. Here, we will 
address the question of how these geometric changes will affect oil recovery. Because pressure capillary data 
suggest there is no significant change in wettability14, geometric changes most likely drive the recovery factor 
changes. Consideration of a simple grainstone model allows us to create an ensemble of possible geometric var-
iations. Working within those bounds, we can then examine how oil recovery factor is affected by the geometry 
of the pore system. Such a study is valuable because the acquisition of experimental data is time consuming. In 
addition, with a generalized numerical model we can rapidly identify favorable geometries for high reservoir 
quality, recognizing high quality zones using geometric descriptors alone. Our aim is to identify the key structural 
parameters and to determine the sensitivity of ROS to variations in this geometry.

In the present work, we first utilize X-ray tomography to analyze the pore size distribution for two carbonate 
samples, for which ROS has been previously determined. Then, guided by these observations, we generalize the 
results through creation of a digital rock model that encompasses the key structural information for mixed poros-
ity grainstones, i.e. inter-grain macro-pores and inter-grain micro-pores. We then explore how changing the 
proportion of each pore type affects predicted ROS. Guided by void percolation modelling15, 16, we anticipated 
macro-pore percentage would have significant impact on flow. Therefore, the first model uses straightforward 
invasion percolation of the 3D digital rock, exploring how inter-grain void percolation affects swept volume. 
Finding agreement with an increase in permeability at microporosity = 80%, this model was inadequate to model 
ROS. Working from an assumption that there is a critical pore size, reff, above which all oil is produced, the second 
model utilizes an effective medium theory. This single parameter reff, determined uniquely from the pore size 
distribution, along with an assumption of flow controlled by (r/reff)2, gives a model that accurately describes the 
experimental ROS.

Experimental Procedures and Results
Sample Selection. Samples came from the Fullmer et al.8 case study on rock cores from a large Cretaceous 
offshore oil reservoir. This study was designed to produce high quality flow data (Special Core Analysis SCAL) 
aligned with structural data defining the rock types14. Recognizing the heterogeneity of carbonate rocks, the 
study developed a unique plugging and companion rock sampling strategy to insure consistency within a given 
sample category. It is well known that the rock’s wettability will affect flow properties. Carbonate studies are 
particularly challenged for these rocks, as there is no recognized manner to restore reservoir state wettability17, 18 
Consequently, a sampling strategy that included benign coring fluid and sample preservation coating was pursued 
to insure that all measurements were performed on native state core material. Fluid contact was limited to native 
reservoir fluids. Although there is some variation, the pressure capillary data (see Fig. 4, Gao et al.14) suggest most 
samples tend to be oil wet. Our two samples were selected to represent a micro-pore and a mixed-pore system, 
properties are summarized in Table 1. As detailed in previous publications8, 14, careful SCAL tests were conducted 
on these samples using reservoir fluids to establish measures of oil recovery. As these will be the basis for com-
parison with our models, we show several measures in Table 1. Columns 3 and 4, show the remaining oil (RO) 
at water breakthrough. In these cases the native state core plug is first saturated with reservoir oil up to residual 
water saturation. Then formation brine is flooded through the core plug. For RO-USS (unsteady state water 
flood), this value is obtained by water flooding up to the point of first water appearance at the exit face. For RO-SS 
(steady state oil/water flood), the steady-state breakthrough value is a calculated property from Johnson-Bossler-
Naumann analysis of steady-state relative permeability data14, 19, 20. In Column 5, the value for ROS-SS is the 
end-point saturation for continuous flooding during steady state permeability measurement. This is determined 
at a fractional oil/water flow of 1/99 as reported by Fullmer et al.8 with experimental details given in Gao et al.14.

X-ray Tomography. We used X-ray tomography to characterize the macro-pore size distribution (also see 
Supplementary Material). CT data were acquired using an X-Tek HMX-160 microCT scanner. This X-ray unit 
operates with fan-beam geometry and produces broad-spectrum radiation. We utilize a copper filter to remove 
softer parts of the spectrum. Typical operating conditions are 160 keV and 50 µA impinging on a spot target of 
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0.5 mm diameter. Samples are scanned at a 30 µm pixel pitch. However, to improve signal to noise, these data are 
rescaled to 60 µm resolution through use of the ImageJ macro Image/Scale.

The X-Tek vendor software CT-Pro was used to apply beam hardening corrections and for tomographic 
reconstruction.

Segmentation and Pore Size Analysis. Unlike conventional XMT analysis, our method uses calibrated 
X-ray attenuation coefficients measured for each individual voxel21. The XMT volumes consist of a 3D matrix of 
gray scale values representing linear attenuation, Ii, which we analyze voxel by voxel.

To analyze the pore size distribution, voxels are segmented into three populations: calcite, micro-pore, and 
macro-pore using two thresholds denoted as, Ipore, which is the threshold between micro-pores and macro-pores, 
and Irock, which is the threshold between micro-pores and calcite.

After the segmentation, the gray scale value of each voxel, φn, is rescaled so that for voxels with Ii > Irock, 
φ = 0n , representing solid rock with zero porosity; for voxels with < φ =I I , 1i pore n , representing macro-pores 
with 100% porosity; and for voxels with ≤ ≤ φ = − −I I I , (I I )/(I I )pore i rock n rock i rock pore , representing micro-
porosity. The total porosity and the percentage of microporosity of the sample can then be calculated from local 
porosity of each individual voxel. Specifically, the total porosity, Φ, is calculated using

φ
Φ = ∑

N (1)
n

where N is the total number of voxels in the sample, and the percentage of microporosity, Φs, is calculated using

φ φ
Φ = − ∑ ∈ =

Φ
= −

ΦN
N
N

1 ( 1) 1 (2)S
n n open

where Nopen is the number of macro-pore voxels with 100% porosity.
The two thresholds, Ipore, and Irock are selected so that the total porosity and percentage of microporosity are 

consistent with the values measured by TPS analysis8.
After segmentation, the positions and sizes of all open pores are determined. Therefore, we analyze the size 

distribution of open pores using MATLAB Image Processing Toolbox22. Specifically, connected voxels that belong 
to the “open pore” category are grouped into “clusters”. The volume of each cluster, Vi,open, is recorded by simply 
summing up the number of voxels that belong to this cluster. As a measure of size, we calculate the equivalent 
radius of each open pore cluster, Ri,open, as

=R V /2 (3)i open i open, ,3

We then obtain the size distribution of open pores as dV/dR vs. R in a semi-log plot shown in Fig. 1. We find 
the size distribution of open pores in Sample 1 and Sample 2 are well described by the familiar log-normal distri-
bution, e.g. Eqn (4), shown as the solid lines in the figure. The fitting parameters are µ= . = .a m s56 45 , 0 680 0  for 
Sample 1 and µ= . = .a m s148 1 , 0 690 0  for Sample 2. Because the pore sizes are relatively large compared to the 
voxel size, we show in the Supplementary Material that the values are not sensitive to our choice of voxel 
resolution.

Because the micro-pores are typically < 10 µm, their presence is detected by voxel attenuation 
≤ ≤I I Ipore i rock . From this we obtain quantification of their contribution to the voxel porosity as well as their 

spatial location (i.e. distribution of similar Ii values). However, the size distribution is under constrained. In this 
Section, we make the assumption of one micro-pore per voxel. Relaxing that constrain, and exploring the sensi-
tivity to micro-pore distributions in latter Sections indicates this to have minimal effect on our conclusions.

Invasion Percolation Model for Digital Rock. The XMT images of Sample 1 and Sample 2 represent only 
two examples of carbonate rocks having different percentages of microporosity. To systematize this variation, a 
digital rock model was created to produce well-defined pore space, and to allow exploration of the variation of 
macro- to micro-pore.

We use a packing of monodisperse and overlapping spheres to simulate the grainstone. We use a simulation 
box with a size of 400 × 400 × 600 pixels, and start by randomly placing 8-pixel-radii spheres inside the box. At 
each step, we compute the volume occupied by the spheres and continue to add spheres until the fraction of 
sphere-occupied volume reaches a pre-set value. As a result, we generate multiple digital rock models where the 

Porosity1 Microporosity, %2
RO at Breakthrough 
USS, PV3

RO at Breakthrough 
SS, PV4

ROS Rel.
Perm SS, PV5

Sample 1 17.4 95 0.34 0.37 0.29

Sample 2 29.3 70 0.61 0.55 0.45

Table 1. Porosity, Microporosity and Remaining Oil Saturation values measured on companion core plugs. 
1Helium porosimetry. 2From TPS analysis8. 3Remaining oil at water breakthrough for unsteady state water flood, 
PV = pore volume. 4Remaining oil at water breakthrough calculated from steady-state relative permeability data 
through use of the familiar Johnson‐Bossler‐Naumann (JBN) analysis14, 19, 20. 5Remaining oil saturation, defined 
as oil content of core plug after steady-state relative permeability flooding to 1/99 oil/water fraction.
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volume occupied by spheres represents solid grains, with the remaining volume being interparticle pores. We 
generated digital rock models with various solid volume fractions, φgrain, ranging from 90% to 99%, correspond-
ing to rocks with interparticle pore volume fraction ranging from 10% to 1%. For each solid volume fraction, 10 
realizations of that digital model are generated. We determined the void percolation volume fraction through use 
of the digital flooding algorithm (see below). Our value of ~5% (Fig. S2) is in reasonable agreement with previous 
literature15, 16.

By considering the previously discussed geological mechanism of forming macro-pores and micro-pores in 
carbonate rocks9, the digital rock model interparticle pores will represent the inter-grain, macro porosity in the 
carbonate rocks. Indeed, the size distribution of inter-particle pores resembles those from the XMT analysis. In 
Fig. 1, we have excluded digital rocks above the percolation threshold because the inter-particle pores in those 
rocks form large percolating clusters. It appears that the overlapping sphere model captures the essential character 
of the macro-pores in the example carbonate rocks.

We next added microporosity to the digital rock models. The distribution of voxel grey scale values, Ii, suggests 
that the micro-pores are uniformly distributed throughout the sample, with no evidence of clustering or localiza-
tion near the grain boundaries. Therefore we incorporate microporosity by randomly assigning gray scale values 
between 0 and 1 to each voxel belonging to the initially solid grain. We determine the distribution function of 
those gray scale values from a log-normal distribution of the size of micro-pores.

The volume distribution density function of micro-pores, f(r), is given by
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where r is the radius of a micro-pore, and a1 and s1 are parameters for the log-normal distribution.
We make the assumption that each voxel contains one micro-pore, then the local porosity for voxel n, 
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The number distribution density of voxels with φ is then expressed as
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where Nt is the total number of voxels inside the solid grain part of the digital model.
There is an additional constraint for the possible distribution of micro-pores. To approximate the porosity of 

the carbonate rock example, we require the total volume of micro-pores to be 20% of that volume occupied by the 
grains, i.e. φ φ= . ∗0 2micro grain. Therefore, the mean of φ, will equal 0.2. This constraint determines the possible 
combinations of a1 and s1 for the micro-pore distribution. We select a distribution width, = .s 0 251 ,which approx-
imates that of the Mercury Intrusion Capillary Pressure (MICP) data. This gives µ= .a m6 51 , corresponding to a 
mean radius of 6.7 um. It is slightly larger than the average micro-pore size from the example rock, but because it 
is well separated in size from the macro-pore size, this has no significant effect.

Figure 1. Comparison of macro-pore size distribution for experimentally-determined values (Sample 1 and 2) 
and those for overlapping-sphere digital rock. Void content indicates sample volume fraction of macro-pores. 
We avoid the contribution of large, sample-spanning clusters by restricting analysis to samples below void 
percolation. Solid lines are log-normal fits to the experimental data (see text).

http://S2
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After determining a1 and s1, we use a random number generator in MATLAB to generate Nt number of gray 
scale values between 0 and 1, which follow the required distribution density function, N(φ). These are randomly 
assigned to voxels that belong to the solid grain part. The 2D slice of resulting digital rock is shown in Fig. 2. The 
2D slices of sample digital rock with A) 20.6% total porosity and 96% microporosity and B) 25.2% total porosity 
and 74% microporosity exhibit a mixture of macro- and micro-pores. These images show good agreement with 
thin section images from actual carbonate rock samples (see for example Fullmer et al.8 Figs 4 and 5).

Analyzing Connectivity: Digital Flood. To analyze the connectivity of the pore space in digital rock mod-
els, we perform digital flooding using a method introduced in Dunsmuir et al.21. Specifically, exact Euclidean 
distances to the nearest surface of the open pore space are calculated for voxels belonging to the “open pore” cat-
egory, while the voxels that belong to the “microporosity” category keep their local porosity values. In each step, 
a “flooding porosity”, Rflood, is set. Starting from the top slice, all connected voxels with Euclidean distance (open 
pore) or local porosity (micro-pore) values equal or larger than Rflood are counted towards the “flooded pores”, 
whose volume is calculated by summing up the pore volume of each flooded voxel. Once the connected network 
of “flooded pores” reaches the bottom slice, we call it the “breakthrough point”. Afterwards, cumulative flooded 
pore volume can be plotted as a function of Rflood. In Fig. 3 we show those “digital flooding” curves for two digital 

Figure 2. 2D slice of sample digital rock with (a) 20.6% total porosity and 96% microporosity and (b) 25.2% 
total porosity and 74% microporosity showing a mixture of macro- and micro-pores. This shows good 
agreement with thin section images from actual carbonate rock samples (see for example Fullmer et al.8 Figs 4 
and 5).

Figure 3. Total cumulative flooded pore volume(black) as a function of the “flooding porosity” for two digital 
rock models: (a): 1% interparticle pores, 96% microporosity and (b): 7% interparticle pores, 74% microporosity. 
Resolved pore and unresolved pore components shown as green and red curves. For (a), micro-pores are 
necessary for percolation (Φc), In the inset, a 2D slice from the 3D volume shows the flooded (blue) volume is 
uniformly distributed throughout the sample whereas for (b), percolation occurs at a flooding porosity equal 
unity, i.e. open pore percolation, The resulting tenuous connected pathway bypasses the micro-pores. Indicated 
is our measure of RO, which is flooded volume at 90% Φc.
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rock examples, above and below the void percolation limit, 1% and 7% interparticle pores. Clearly, those two 
digital rocks show very different breakthrough points. For the digital rock with 1% interparticle pores, the break-
through happens when Rflood is around 0.25, indicating the micro-pores are needed for a percolation network to 
form. By contrast, the breakthrough Rflood in the digital rock with 7% interparticle pores is exactly 1.0, indicating 
that open pores alone are enough for a percolation network. Since we have the knowledge on the whether the 
contribution of flooded pore volume comes from the open pore or micro-pore, we can further decouple the 
curves into the resolved pore and unresolved pore parts, shown as green and red curves in Fig. 3. Similar results 
are obtained for the XMT volumes from actual rock Samples 1 and 2. Specifically, for Sample 1 which has 95% 
microporosity, the breakthrough Rflood ~0.5 while that for Sample 2 with 70% microporosity Rflood = 1.0.

We now use these results to investigate how void fraction affects remaining oil for an invasion percolation 
model. This digital flood simulates the volume invaded by a non-wetting fluid (consistent with the oil-wet nature 
of these rocks), and we equate the swept pore volume with the produced oil from an initially oil-saturated rock. 
To simulate an end point for the flooding and calculate remaining oil, we take the breakthrough as an important 
marker. At that point in an actual immiscible flood experiment, the high-efficiency 1:1 volume displacement ends. 
After that, oil production with further flooding exhibits an asymptotic approach to a final saturation state, often 
described by the familiar Johnson-Bossler-Naumann (JBN) analysis14, 20. We approximate remaining oil for the 
digital flooding by selecting Rflood equal to 90% of the Rflood at the breakthrough point. Unlike the remaining oil 
exactly at breakthrough, which is highly sensitive to the geometry of an individual digital rock realization and not 

Figure 5. Examples of pore size distributions for the bi-modal pore size function (Equation 9). The 
microporosity percentage is varied by changing the relative amplitude of each component, leaving the other 
defining parameters fixed. The following parameters are used: macro-pore a0 = 125.3 μm, s0 = 0.62 and micro-
pore a1 = 5.848 μm, s1=0.4. Solid green, dashed-blue and dashed red lines correspond to microporosity 
percentage 94%, 74% and 45% respectively.

Figure 4. Demonstration of change in remaining oil for digital rock model after crossing over void percolation 
limit. Jump in magnitude for remaining oil is due to bypass of micro-pores. These results are compared with two 
experimental measures of remaining oil at water breakthrough: one from unsteady-state flooding (USS) and one 
derived from steady-state flooding (SS) using Buckley-Leverett analysis.
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reproducible, this remaining oil value is robust for all individual realizations. We take the average over 10 realiza-
tions of the model at each void fraction and these values along with ± one standard deviation are plotted in Fig. 4.

Fullmer et al.8 had observed that above 80% microporosity there is a significant decline in permeability with 
an accompanying improvement in oil recovery. These results suggest this is due to the void percolation limit. This 
is denoted by the green line in Fig. 4. Void percolation is rather insensitive to details of the grain shape, or poly-
dispersity15, 16. Thus, we can expect this to be a common feature for grainstones having a void content above 
approximately 5 percent. However, the value of microporosity percentage is not uniquely defined because grains 
themselves contribute to the total porosity. We quantify the relationship between void percolation and micropo-
rosity in the Supplementary Material. With void percolation at 0.05 volume fraction, our assumption of grains 
having 20% microporosity gives the transition here at 79% microporosity, i.e. φ φ = − ./ (1 0 05)m
∗ . . + − . ∗ .0 2/(0 05 (1 0 05) 0 2).

To compare with experimental results we plot the two values of RO at breakthrough from Table 1. At high 
microporosity, there is remarkably good agreement between the digital flooding values and both experimental 
values. Here the USS and SS values are in good agreement because the assumption of a uniform sweep, inherent 
in the JBN analysis, is a good approximation. For the mixed-pore sample there is less agreement between exper-
imental values, undoubtedly due to flow fingering for the USS experiment. Invasion percolation captures the 
physics of this fingering flow and our digital flooding results are in closer agreement with this data point.

Although this invasion percolation model provides a plausible explanation for increased sweep efficiency 
above 80% microporosity, it is unsuitable to simulate the mixed-water/oil fluid flow regime above breakthrough. 
There, one will observe an asymptotic approach to final residual oil, and it is those ROS values which are reported 
by Fuller et al. to be directly related to microporosity percentage. For that reason, we need another model, and in 
the next section we utilize one based on effective medium theory.

Effective Medium Model. In this part of the paper, we consider a pore geometry derived from a random 
spatial distribution of micro-pores and macro-pores and apply an effective medium model23–25 to predict the ROS 
in these heterogeneous carbonate samples. The effective medium model is one of the most successful analytical 
treatments of the transport properties of composite materials due to its mathematical and conceptual simplicity25. 
It has been demonstrated that the predictions of effective medium model provides reasonable estimates of the 
effective transport properties and are in excellent agreement with many observations in the literature25–27. In our 
particular case, the validity of the effective medium model is justified by the random distribution of micro-pores 
and macro-pores as is evident in examining the pore geometry of actual grainstones as well as our digital rock 
model (see Fig. 2). More importantly, our predicted ROS values agree very well with the experimental measure-
ment without involving any arbitrary fitting parameters, which further validates our effective medium approach. 
In addition, the sensitivity analysis, as shown in Fig. 7, demonstrates the robustness of our effective medium 
model. Finally, in the Supplementary Materials, we show that there is a simple mapping between the digital rock 
model and the effective medium model based on pore size distribution by comparing the micro-pore volume to 
macro-pore volume ratios.

A. Effective Medium Theory. For any random, heterogeneous system, the effective hydraulic conductivity can be 
calculated using effective medium theory by solving the following equation:

Figure 6. (a) Remaining oil saturation (ROS) versus micro-pore fraction φm/φ. (b) Micro-pore sweep efficiency 
(Sm) vs. micro-pore fraction Black lines are the model predictions. The following parameters are used: Macro-
pore a0 = 125.3 μm, s0 = 0.62 and micro-pore a1 = 5.848 μm, s1 = 0.4. Green dots are experimental waterflood 
data from Fullmer et al.8 Figure 15.
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where the effective pore size reff is related to effective conductivity σeff of the system.
To obtain the remaining oil saturation, we propose that oil in pores with sizes larger than reff is completely 

displaced, 100% sweep. It then follows that the fraction of oil that can be displaced in pores with size r < reff is 
proportional to the velocity ratio =v r v r r r( )/ ( ) /eff eff

2 2 , with v(r) being the flow velocity in pore size r. Thus, we see 
that, in contrast to our void percolation model, here pores of all sizes contribute to the recovered oil.

B. Bimodal Pore Size Distribution Function. We now consider the impact of a specific bi-modal pore size dis-
tribution denoted as f(r). We use a log-normal distribution to describe the pore size distribution29, and note that 
other distributions will produce similar results:
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with ws being the volume fraction of micro pores; a1 and a0 are radii for the micro and macro pores, respectively; 
s1 and s0 are the corresponding standard deviations of micro and macro pore size distributions.

This distribution satisfies the normalization condition,

∫ =
∞

f r dr( ) 1
(10)rmin

This condition ensures that the volume fractions in this Section are all normalized to the total porosity and 
are reported as a fraction of the pore volume. Void percolation, which is defined as a void fraction relative to the 
sample volume cannot be directly analyzed here.

To calculate the volume fraction of macro-pores and micro-pores we introduce a lower bound cutoff for the 
pore size distribution, rmin, and a length scale separating the macro and micro pore size denoting as rs. Therefore, 
the volume fraction of micro-pores is given by

∫
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Figure 7. (a) Demonstration of ROS variation for different micro-pore radius. For all curves the following 
model parameters are fixed s1 = 0.4, macro-pore µ= . = .s a m0 61728 and 125 3040 0 . Black, red, blue and green 
lines are for respectively a1 = 5.848 μm, 10 μm, 0.5 μm and 0.05 μm; (b) Demonstration of ROS variation with 
changes in the standard deviations of the micro-pore distribution. For all curves the following model 
parameters are fixed, a1 = 5.848 μm, macro-pore µ= . = .s a m0 61728 and 125 3040 0  Black, red, blue and green 
lines are for s1 = 0.4, 0.1, 0.3, and 0.6.
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where for the example shown rmin ~4 nm. The choice of rmin does not affect the final results as long as rmin  a1.
To make connection with our rock model, the length scale for our f(r) is rs = 15 μm. Note that this cutoff is 

only needed to calculate the microporosity percentage, and should not be confused with reff, which is the key value 
that determines sweep characteristics for the pores. The final results are insensitive to the choice of rs as long as 
f(rs) is close to zero at that point or equivalently saying that the micro and macro pore sizes are well separated, 
which is indeed true for the rock samples of our interests. Under this condition, it can be shown that φ φ = w/m s.

The parameters for the f(r) used in our example were obtained by considering the results from the digital 
rock pore structure for macro pores combined with MICP data for 100% Type I micro-pore rocks. The follow-
ing parameters are used in our calculations: Macro-pore a0 = 125.3 μm, s0 = 0.62 and micro-pore a1 = 5.848 μm, 
s1 = 0.4.

C. Remaining Oil Saturation. The procedure for determining ROS goes as follows. We first utilize the pore 
size distribution, equation (9), along with the constraint imposed by equation (8) to solve for reff, which has a 
unique value for a given pore size distribution. It can be larger or smaller than rs depending on the microporosity 
percentage.

Having determined reff, we then solve for the remaining oil saturation (ROS) using:

∫=
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The following equation can then be used to calculate the micro-pore sweep efficiency, which is a measure of 
how much oil from micro-pores contributes to produced oil.
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These functions are plotted in Fig. 6 and compared to experimental data. The ROS values are those from 
Fullmer et al.8 Figure 15. We calculate the Sm values from that same data as follows. Making the assumption that 
the volume of produced oil (1-ROS) consists of fully swept macro-pores and partly-swept micro-pores, we take 
the difference in volumes and normalize them to obtain = − − − Φ ΦS [(1 ROS) (1 )]/m s s, where Φs is the micr-
oporosity from TPS analysis.

The ROS function in equation (12) provides an excellent description of the observed dependence over the 
range of experimental microporosity. The Sm function (equation (13)) similarly closely matches the experimental 
data. It is remarkable that the only input needed for this calculation is the pore size distribution. Recall that the 
constraining equation (equation (8)) uniquely gives a reff value upon specification of f(r). This is the only param-
eter necessary to obtain ROS. As there is no void percolation limit explicitly considered here, there is no abrupt 
transition in ROS at 80% microporosity. However, there is clearly an increase in ROS with decreasing microporo-
sity, reaching a maximum at φm/φ ~ 0.65. Examining Fig. 6b, we find that this ROS increase is associated with an 
important change in the swept volume, with Sm reaching a minimum, i.e. micro-pores contributing little oil. Also, 
looking at the inset of that figure we see that this is where reff > rs. Recall that for pores with r > reff these pores 
are fully swept. Hence at this microporosity content, the produced oil will mostly come only from macro-pores. 
Therefore, although the transition is not so sharply defined as for the invasion percolation model, it leads to a 
similar condition as that for our void percolation model.

With further reduction in micro-pore content (macro-pore increase), ROS is predicted to show a decrease. 
This is expected because the pores are now dominated by macro pores and the system becomes more 
homogeneous.

D. Sensitivity Analysis. Fullmer et al.8 show in their Fig. 3 that the character of microporosity can vary across 
different carbonates. This variation changes the average pore size as well as the breadth of the distribution. In this 
section, we explore how these changes in the pore size distributions affect the model predictions. Through these 
results, we gain an understanding of the robustness of the conclusions to changes in pore size distribution.

There are several notable conclusions can be drawn from these sensitivity analyses: First, the overall shape of 
the ROS versus microporosity curve is preserved throughout these alterations, which suggests that the response 
to changing micro-pore content will be similar for most grainstones. This trend is supported by the experimental 
data on minimum oil saturation versus percent microporosity from a broad sample suite, Fullmer et al.8 Fig. 7(b). 
Second, the effective medium model predicts poorer ROS for a mixed pore rock when the micro-pores are very 
small. The model also predicts better ROS when the micro-pores are more uniform in size.

Conclusions
This work has demonstrated how we can create a digital rock model which exemplifies the key structural elements 
of the carbonate grainstone examples. The mechanism employed closely replicates the inter-grain and intra-grain 
pore types resulting from carbonate diagenesis. This generalization of the rock geometry allows exploration of a 
wider range of rock types than can be easily obtained from the field.

We explore the oil recovery from this model rock using two approaches. Recognizing that void percolation can 
be an important feature, we utilize an invasion percolation model to demonstrate how variation in microporosity 
content can drive a significant improvement in recovery efficiency above about 80% microporosity, as is observed 
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experimentally by Fullmer et al.8. While this model can predict a recovery factor increase at immiscible fluid 
flooding breakthrough, it cannot predict the ultimate recovery. For this, we utilize an effective medium model, 
showing that the recovery versus microporosity percentage is in quantitative agreement with experiments. This 
analysis shows that oil is produced from both micro- and macro-pores for the higher microporosity percentages 
typical of low ROS carbonate grainstones. As the microporosity percentage declines, the transition to poor ROS 
occurs more gradually than for the invasion percolation model. Significant micro-pore bypass and maximum 
ROS occurs close to ~65% microporosity. These results also suggest that an accurate analysis of the pore size 
distribution is sufficient to predict recovery factors. From analysis of the sensitivity of recovery to pore size dis-
tribution, we conclude that improved recovery can be realized if one can identify rocks having a narrow pore size 
distribution of micropores. As pointed out by Kaczmarek et al.9 there seem to be three characteristic petrophysical 
microporosity types (I, II, III), respectively exhibiting reduced crystal sizes and smaller pore-throat radii. Our 
sensitivity analysis allows a prediction on how these, combined with a macro-pores will affect oil recovery.
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