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ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged
in 2019 and has resulted in millions of deaths worldwide. Certain populations are at
higher risk for infection, especially staff and residents at long-term care facilities
(LTCF), due to the congregant living setting and high proportions of residents with
many comorbidities. Prior to vaccine availability, these populations represented large
fractions of total coronavirus disease 2019 (COVID-19) cases and deaths in the United
States. Due to the high-risk setting and outbreak potential, staff and residents were
among the first groups to be vaccinated. To define the impact of prior infection on
the response to vaccination, we measured antibody responses in a cohort of staff
members at an LTCF, many of whom were previously infected by SARS-CoV-2. We
found that neutralizing, receptor-binding domain (RBD)-binding, and nucleoprotein
(NP)-binding antibody levels were significantly higher after the full vaccination course
in individuals that were previously infected and that NP antibody levels could discrimi-
nate individuals with prior infection from vaccinated individuals. While an anticipated
antibody titer increase was observed after a vaccine booster dose in naive individuals,
a boost response was not observed in individuals with previous COVID-19 infection.
We observed a strong relationship between neutralizing antibodies and RBD-binding
antibodies postvaccination across all groups, whereas no relationship was observed
between NP-binding and neutralizing antibodies. One individual with high levels of
neutralizing and binding antibodies experienced a breakthrough infection (prior to the
introduction of Omicron), demonstrating that the presence of antibodies is not always
sufficient for complete protection against infection. These results highlight that a his-
tory of COVID-19 exposure significantly increases SARS-CoV-2 antibody responses fol-
lowing vaccination.

IMPORTANCE Long-term care facilities (LTCFs) have been disproportionately impacted
by COVID-19, due to their communal nature, the high-risk profile of residents, and
the vulnerability of residents to respiratory pathogens. In this study, we analyzed the
role of prior natural immunity to SARS-CoV-2 in postvaccination antibody responses.
The LTCF in our cohort experienced a large outbreak, with almost 40% of staff mem-
bers becoming infected. We found that individuals that were infected prior to vacci-
nation had higher levels of neutralizing and binding antibodies postvaccination.
Importantly, the second vaccine dose significantly boosted antibody levels in those
that were immunologically naive prior to vaccination, but not in those that had prior
immunity. Regardless of the prevaccination immune status, the levels of binding and
neutralizing antibodies were highly correlated. The presence of NP-binding antibod-
ies could be used to identify individuals that were previously infected when prevac-
cination immune status was not known. Our results reveal that vaccination antibody
responses differ depending on prior natural immunity.
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible
for coronavirus disease 2019 (COVID-19), has resulted in over 400 million infections

worldwide, with 78 million occurring in the United States (1). Infections in staff and res-
idents of long-term care facilities (LTCFs) account for ;2 million of those infections
and represent 16% of all COVID-19 deaths in the United States (2). LTCFs are high-risk
environments due to their congregant living setting and high proportions of residents
with multiple comorbidities, including diabetes and lung and heart disease (3–5).
Because of this, LTCFs have been at the forefront in surveillance testing to detect infec-
tions in staff and residents before they spread and cause outbreaks (6, 7). Additionally,
staff and residents at LTCFs were prioritized as one of the first groups to receive vac-
cines once available, and as of February 2022, over 80% of staff and residents were
fully vaccinated nationally (2).

Due to the high numbers of cases in LTCFs prior to vaccines and other preventative
measures, many staff and residents became infected during 2020 and 2021, with some
facilities reporting infection and seroprevalence rates as high as 40% (8–11). Therefore,
there were two immunologically distinct populations of individuals receiving vaccines:
those that were naive, with no evidence of a prior infection (seronegative), and those
with preexisting immunity, having either a documented prior infection or serological
evidence of prior infection (seropositive). Early work examined the role of preexisting
immunity in the levels of binding antibodies up to 4 weeks following a single dose of
an mRNA vaccine (both Pfizer and Moderna) and found that the levels were higher in
those that were seropositive (12). Additional work has evaluated longer-term responses
after two vaccine doses and similarly found that those with prior infections generated
higher levels of binding antibodies (13–15). Most of these studies did not measure poly-
clonal antibody neutralization of live SARS-CoV-2 virus and instead used pseudotyped
virus or receptor blocking assays as surrogates of true neutralization.

Staff at a local long-term care facility (LTCF), in parallel with their weekly SARS-CoV-
2 nasal surveillance quantitative reverse transcriptase PCR (qRT-PCR) testing, provided
blood samples for antibody analyses (8). This facility experienced a SARS-CoV-2 out-
break in September 2020 prior to vaccine availability, resulting in infection and sero-
conversion of almost 35% of the staff members (8). In January 2021, a Pfizer vaccine
clinic was provided at their workplace, with the second dose provided 3 weeks later in
early February. Vaccines were not required at that time, though vaccination is now
required with rare exceptions (16). As of 30 January 2022, 96% of staff and 97% of resi-
dents at this facility were fully vaccinated, slightly higher than Colorado statewide aver-
ages (92% of staff and 93% of residents, respectively) (2). We collected and analyzed
sera from staff at this facility from August to December 2020 (8). We found that during
an outbreak at the facility, many staff (;30%) became infected and subsequently sero-
converted, generating neutralizing, spike-binding, and RBD-binding antibodies. Here,
we report serum antibody levels detected in samples collected from February through
September 2021 to examine humoral immune response duration. We characterized
antibody neutralization and binding to the receptor-binding domain (RBD; contained
within the spike protein component of the vaccine) and nucleocapsid (NP; not present
within the mRNA vaccines). We found that individuals with a prior SARS-CoV-2 infec-
tion had higher postvaccination neutralizing and RBD- and NP-binding antibodies than
those that were seronegative prior to vaccination and that individuals that were never
infected with SARS-CoV-2 did not harbor anti-NP seroreactivity.

RESULTS
Neutralizing serum antibodies increase following vaccination regardless of

prevaccination immune status. By February 2021, the neutralizing antibody levels of
most individuals increased following one or two doses of vaccine. By mid-March 2021,
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almost all participating staff had detectable neutralizing antibody levels (Fig. 1a).
Based on prior surveillance testing and antibody analyses (8), we stratified individuals
based on their December 2020 immune status as either seropositive (immune), sero-
negative (naive), or unknown. On average, immune individuals had higher levels of
neutralizing antibodies than those that were seronegative (Fig. 1b). Not all individuals
within this cohort were vaccinated, and in those that were not, the neutralizing anti-
bodies detected resulted from natural infection and not vaccination. We next focused
on vaccinated individuals and analyzed the neutralizing antibody response based on
time post-first vaccine dose (ranging from December 2020 to August 2021). When ana-
lyzed by days post-first vaccine dose, we demonstrated a rapid increase of neutralizing
antibody levels (Fig. 1c). When stratified by prevaccination immune status, individuals
that were previously infected had higher levels of neutralizing antibodies postvaccina-
tion than individuals that were seronegative prior to vaccination (Fig. 1d).

RBD- and NP-binding antibody levels after vaccination.We next measured recep-
tor binding domain (RBD)- and nucleoprotein (NP)-binding antibody levels following vac-
cination in our cohort participants. RBD-binding antibodies reached their maximum levels
in all individuals by day 70 postvaccination and gradually decreased over the next
6 months (Fig. 2a). Seropositive individuals had slightly higher RBD absorbance values
than those that were immunologically naive prior to vaccination, though this enhance-
ment was not as marked as that of neutralizing antibody levels (Fig. 2b). Participants in
our cohort received either the Pfizer or Moderna mRNA vaccine, both of which encode
the viral spike protein (which contains the RBD). Therefore, as expected, participants with
NP-reactive antibodies (Fig. 2c) were previously infected with SARS-CoV-2 (Fig. 2d).

Postvaccination antibody levels are higher in individuals with preexisting im-
munity. When compiling all samples collected postvaccination (including those after
only the first dose), we saw that seropositive prevaccination individuals had

FIG 1 Postvaccination serum neutralizing levels vary by prior infection. (A to D) Neutralization titers (PRNT50) for each serum sample are
shown by blood sample collection date (92 participants, 260 samples total) (A, B) or by days post-first vaccine dose (68 participants, 226
samples total) (C, D). (B, D) Serum sample data are labeled based on participants’ prevaccination immune status. (B) Pink, seropositive, 23
participants, 86 samples; orange, seronegative, 38 participants, 127 samples; purple, unknown immune status, 31 participants, 47 samples. (D)
Pink, seropositive, 16 participants, 70 samples; orange, seronegative, 32 participants, 121 samples; purple, unknown immune status, 20
participants, 35 samples. Dashed lines represent the limit of detection (PRNT50 = 20). Samples without neutralization detected are plotted at
half the limit of detection (PRNT50 = 10).
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significantly higher (P , 0.0001) levels of neutralizing and RBD-binding antibodies
than seronegative individuals (Fig. 3a and b). Since there is no nucleoprotein compo-
nent in the vaccine, it is not surprising that only individuals that experienced a SARS-
CoV-2 infection prior to vaccination had detectable NP antibodies (Fig. 3c). From these
results, we can presume that individuals with unknown prevaccination immune status
(Fig. 3c, purple) with detectable NP-binding antibodies (three participants each with a
single sample) had experienced a SARS-CoV-2 infection prior to vaccination.

Impact of second vaccine dose on antibody levels is dependent on prevaccina-
tion immune status. A subset of the cohort with known serostatus prior to vaccination
provided blood samples following both their first and second vaccine doses. We com-
pared the levels of neutralizing, RBD-binding, and NP-binding antibodies across these
two time points and cohorts and looked at relative changes in antibody levels (Fig. 4). In
individuals that were immunologically naive prior to vaccination, neutralizing and RBD-
binding antibody levels increased significantly between the first and second doses
(P, 0.001) (Fig. 4a and b). Importantly, some individuals did not have detectable neutral-
izing antibodies until after their second dose. In contrast, in previously infected individu-
als, neutralizing and RBD-binding antibody levels did not increase significantly following
their second dose (Fig. 4a and b). Additionally, vaccination did not alter NP-binding anti-
body levels regardless of prevaccination immune status (Fig. 4c). In seronegative individu-
als, following the second vaccine dose, neutralizing and RBD-binding antibody levels
increased significantly (average increases of 17-fold and 1.5-fold, respectively) (Fig. 4d
and e). Conversely, in prevaccination seropositive individuals, on average, neutralizing,
RBD-binding, and NP-binding antibody levels did not change following the second vac-
cine dose (0.7-, 1-, and 0.9-fold changes, respectively) (Fig. 4d, e, and f).

Relationship between neutralizing and binding antibodies in vaccinated indi-
viduals. We next compared the relationship between neutralizing and binding (both
RBD and NP) antibodies in vaccinated individuals (including samples collected after just

FIG 2 Postvaccination receptor-binding domain (RBD)- and nucleoprotein (NP)-binding levels are higher in previously infected individuals. (A
to D) RBD-binding (A, B) and NP-binding (C, D) levels for each serum sample are shown by days post-first vaccine dose (68 participants, 178
samples total). (B, D) Serum sample data are labeled based on participants’ prevaccination immune status. Pink, seropositive, 17 participants,
61 samples; orange, seronegative, 31 participants, 87 samples; purple, unknown immune status, 20 participants, 30 samples. Dashed line
represents background level for each assay. OD490, optical density at 490 nm.
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the first dose), stratified by prevaccination immune status. We saw a strong relationship
(r . 0.75) between neutralizing titer and RBD-binding antibody absorbance regardless of
immune status (Fig. 5a). Because NP-binding antibodies are only found in individuals that
experienced a natural SARS-CoV-2 infection, the relationships with NP antibodies (both
50% plaque reduction neutralization titer [PRNT50] versus NP, and RBD versus NP) were
poorly correlated (r, 0.45) in postvaccination serum samples (Fig. 5b and c).

Breakthrough infection in a vaccinated individual with high levels of antibod-
ies. As part of mandated Centers for Medicare & Medicaid Services (CMS) surveillance

FIG 3 Prevaccination immune status impacts postvaccination antibody levels. (A to C) All postvaccination neutralization titers (A) and RBD-
binding (B) and NP-binding (C) values were aggregated and stratified based on prevaccination immune status. Pink, seropositive, n = 90; orange,
seronegative, n = 63; purple, unknown immune status, n = 25. (A) Dashed line represents the limit of detection. Samples without neutralization
detected are plotted at half the limit of detection (PRNT50 = 10). (B, C) Dashed line represents the background level for each assay. Tukey’s
multiple-comparison one-way analysis of variance (ANOVA) was used to determine statistical significance. **, P , 0.01; ****, P , 0.0001; ns, not
significant.

FIG 4 A second vaccine dose only increases antibody levels in seronegative individuals. (A to C) Neutralization titers
(A) and RBD-binding (B) and NP-binding (C) values of serum samples from individuals following their first and second
vaccine doses (3 weeks after the first dose and 7 weeks after the second dose), stratified by prevaccination immune
status (seropositive, n = 9; seronegative, n = 18). (D to F) Fold changes between neutralization titers (D) and RBD-
binding (E) and NP-binding (F) values relative to levels following participants’ first vaccine doses. (A) Dashed line
represents the limits of detection. Samples without neutralization detected are plotted at half the limit of detection
(PRNT50 = 10). (B, C) Dashed line represents the background level for each assay. Mann-Whitney test was used to
determine statistical significance. ***, P , 0.001; ****, P , 0.0001; ns, not significant.
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testing (16), staff and residents were tested weekly for SARS-CoV-2 viral RNA via nasal
swabs (Fig. 6a). During the study time period, there were seven positive tests from five
unique individuals among staff. Each of these infections occurred during a time when
no residents tested positive, suggesting that the staff members were not infected at
work (Fig. 6b). Two of these individuals were unvaccinated at the time of their infec-
tion, and one had unknown vaccine status (Fig. 6b). Two individuals in the cohort
experienced a breakthrough infection (vaccinated at time of infection); however, only
one provided sera samples for antibody analyses (Fig. 6b). This individual was seroneg-
ative prior to vaccination (no evidence of neutralizing antibodies, nor had they ever
tested positive during weekly surveillance testing) and received both vaccine doses in
early 2021. In May 2021, this individual experienced an asymptomatic acute break-
through infection prior to the introduction of the Omicron variant (Fig. 6c). There was
no evidence that their antibody levels had waned prior to infection (Fig. 6d and e).
Their neutralizing antibody levels increased rapidly following infection (Fig. 6d),
whereas their RBD-binding antibodies did not (Fig. 6e). The detection of anti-NP anti-
bodies confirmed the breakthrough infection (Fig. 6f).

DISCUSSION

Early following SARS-CoV-2 vaccine approval, it was unclear whether both doses of
the mRNA vaccine would be necessary for individuals that had previously been infected
to achieve full protection (17). It was predicted that the first dose would boost humoral
immunity acquired from a natural infection. Multiple studies have demonstrated that in
previously infected, seropositive individuals, a single vaccine dose is sufficient to generate
robust immune responses (both humoral and cellular), often to levels higher than in naive
individuals that received two vaccine doses (18–20). Our data confirm that individuals

FIG 5 Vaccine-elicited antibody levels are similarly correlated regardless of immune status. (A to C)
Postvaccination serum samples were compared by neutralization versus RBD binding (A), neutralization
versus NP binding (B), and RBD binding versus NP binding (C). Serum sample data are labeled based on
prevaccination immune status. Pink, seropositive, 17 participants, 61 samples; orange, seronegative, 33
participants, 91 samples; purple, unknown immune status, 18 participants, 26 samples. (A) Dashed line
represents the limit of detection. Samples without neutralization detected are plotted at half the limit of
detection. (B, C) Dashed line represents the background level for each assay. Spearman r values for each
group (seropositive, seronegative, and unknown) are noted.
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with a prior infection generate a robust neutralizing antibody response that is not further
increased upon a second dose. These results have led to calls for a single-dose vaccine
regimen in previously infected individuals to stretch vaccine supplies, improve worldwide
vaccine access, and increase vaccine uptake among hesitant COVID-19 survivors (21–24).

Conversely, in seronegative individuals, antibody levels increased significantly
following a second vaccine dose (18–20). Three individuals in our cohort did not
generate neutralizing antibodies until after the second vaccine dose, and one indi-
vidual never seroconverted following vaccination. It is therefore critical that individ-
uals without prior infection receive the full vaccination course to ensure maximum
immune response (25).

Neutralizing and binding antibody levels are being investigated as possible corre-
lates of protection, as they are highly correlated with vaccine efficacy across diverse
cohorts and vaccine platforms (26–28). There are reports describing breakthrough
infections postvaccination, likely due to reduced/waning antibody levels and timing
postvaccination (29–32). The breakthrough infection that occurred in our cohort was in
an individual with high neutralizing antibody levels, similar to other recent reports (33,
34). These data suggest that while antibody levels may be broadly predictive of vaccine
efficacy, they are not sufficient as a singular correlate of protection in all individuals.

Our work, along with that of others (35–37), describes the use of nucleoprotein anti-
body detection as a tool to identify natural infection using serum collected postvacci-
nation. This assay could be used to further define and refine correlates of protection or
to generate a better predictor of breakthrough risk by stratifying data from postvacci-
nation serum samples according to whether the donors had or had not been

FIG 6 Breakthrough infection in a vaccinated individual. (A) Total surveillance testing on staff and residents at the LTCF each week. (B)
Number of staff and residents that tested positive each week. Blue asterisks indicate staff members that were unvaccinated at time of
infection (brackets show positive tests from the same individual). Red asterisks indicate staff members that were vaccinated prior to infection.
Green asterisk represents a staff member with unknown vaccine status at time of infection. Detailed data for individual represented by
symbol with red outline are given in panels C to F. (C) qRT-PCR surveillance testing for three viral targets from the individual with a
breakthrough infection that was seronegative prior to vaccination. (D to F) Neutralization titers (D) and RBD-binding (E) and NP-binding (F)
values postvaccination and pre- and post-breakthrough infection. Red lines correspond to date of positive qRT-PCR surveillance testing. (C, D)
Dashed lines represent limits of detection. (E, F) Dashed line represents the background level for each assay.
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previously infected. Importantly, this strategy is only effective in individuals that
received a vaccine without a nucleocapsid component (Pfizer, Moderna, etc.), as
opposed to inactivated-whole-virus vaccines (or other similar vaccine platforms) con-
taining nucleocapsid, such as Sinovac.

There remain many unknowns regarding the immune response following COVID-19
infection, vaccination, booster, and breakthrough infection (38–40). Boosters, which
have been widely accessible in the United States, combat waning immunity by boost-
ing preexisting adaptive immunity (both humoral and cellular), furthering protection
against severe disease (41). There is relatively high booster uptake among staff and res-
idents of LTCFs in Colorado (76% and 40% of residents and staff with boosters, respec-
tively), with slightly higher rates in the facility described in this paper (80% residents,
44% staff) (2). Despite high vaccination and booster rates, the Omicron variant seems
to efficiently evade vaccine-elicited immunity (42, 43). These results suggest that addi-
tional boosters and variant-specific boosters might be required to maintain long-term
immunity against SARS-CoV-2 (44).

MATERIALS ANDMETHODS
Human specimens. This study was approved by the Colorado State University Institutional Review

Board under protocol number 20-10057H. Participation in providing blood samples was voluntary.
Participants gave consent and were enrolled and informed of test results. Staff represented a range of
job classifications, including those in direct patient care roles (e.g., nurses) and nondirect patient care
roles (e.g., administrative). Participation in the antibody component of the study was entirely voluntary,
and approximately 55% of staff members provided serum samples at least once during the study.

Serum sample collection. Whole blood was collected in BD Vacutainer blood collection tubes and
allowed to clot at room temperature for at least 30 min. The tubes were spun at 1,300� g for 10 min to sep-
arate sera from clotted blood. Sera were aliquoted, heat inactivated at 56°C for 30 min, and stored at 4°C.

Viruses and cells. Vero cells (ATCC-81) were maintained in Dulbecco modified Eagle medium
(DMEM) with 10% fetal bovine serum (FBS) and 1% antibiotic/antimycotic at 37°C and 5% CO2. SARS-
CoV-2 virus (2019-nCoV/USA-WA1/2020 strain) was used to infect Vero cells for 3 days, and supernatant
was harvested, centrifuged at maximum speed for 10 min to pellet cell debris, aliquoted into single-use
aliquots, and stored at 280°C until use.

Neutralization assay. A standard plaque reduction neutralization test (PRNT) was performed as pre-
viously described (8). Briefly, diluted serum samples were mixed with virus, incubated for 1 h at 37°C,
added to a Vero cell monolayer, incubated for an additional hour at 37°C, and then overlaid with traga-
canth medium and incubated for 2 days. Cells were fixed and stained with ethanol and crystal violet,
and plaques counted manually.

RBD and NP ELISA. Binding assays were performed as described previously (8). Briefly, 96-well plates
were coated with SARS-CoV-2 protein (RBD and NP from Sino Biological) and blocked with nonfat dried
milk, and diluted serum was added. Plates were washed, and a secondary anti-human IgG–horseradish
peroxidase-conjugated secondary antibody was added. Plates were developed and read at 490 nm on a
spectrophotometer.

Surveillance qRT-PCR testing.Mandatory surveillance testing was performed on staff and residents
as previously described (8, 9). Briefly, nasal swabs were collected and processed, viral RNA extracted, and
quantitative reverse transcriptase PCR (qRT-PCR) performed using the Thermo Fisher Scientific TaqPath
COVID-10 combo kit, under U.S. FDA Emergency Use Authorization (45).
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