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Neural network analyses of circulating miRNAs have shown potential as non-invasive
screening tests for ovarian cancer. A clinically useful test would detect occult disease
when complete cytoreduction is most feasible. Here we used murine xenografts to
sensitize a neural network model to detect low volume disease and applied the model
to sera from 75 early-stage ovarian cancer cases age-matched to 200 benign adnexal
masses or healthy controls. The 14-miRNA model efficiently discriminated tumor bearing
animals from controls with 100% sensitivity down to tumor inoculums of 50,000 cells.
Among early-stage patient samples, the model performed well with 73% sensitivity at 91%
specificity. Applied to a population with 1% disease prevalence, we hypothesize the model
would detect most early-stage ovarian cancers while maintaining a negative predictive
value of 99.97% (95% CI 99.95%-99.98%). Overall, this supports the concept that
miRNAs may be useful as screening markers for early-stage disease.

Keywords: ovarian cancer, screening, microRNA, xenograft, neural networks
INTRODUCTION

In the United States, over 22,000 women annually are diagnosed with ovarian cancer and over
14,000 die of their disease (1). Currently, most ovarian cancers are detected at an advanced stage,
where 5-year survival rates average 25-30% (2). In contrast, stage I ovarian cancers have 5-year
survival rates in excess of 90% (3). Detection of more ovarian cancers at an earlier stage would
therefore be expected to improve long-term survival (4). Prior efforts to screen for ovarian cancer
have included 2 large randomized controlled trials utilizing the serum biomarker CA-125 and pelvic
ultrasound; unfortunately, both of these trials failed to show a survival benefit (5–7). This is likely
because neither CA-125 nor pelvic ultrasound is sufficiently sensitive to detect low volume
disease (8).

In a prior report, we described a neural network model which used 14 serum microRNAs
(miRNAs) to predict the presence of ovarian cancer (9). miRNAs are small non-coding RNAs
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(18-24 nucleotides) which modify gene expression through post-
transcriptional regulation. A growing body of evidence suggests
that miRNAs are aberrantly expressed in ovarian cancer (10–19).
Other groups have similarly suggested circulating miRNAs
might be useful as non-invasive diagnostic or prognostic tools
(20, 21). However, the applicability of these miRNA models to
small tumor volume and early tumor stage is uncertain. Both
tumor volume and the relative isolation of the human ovaries
from circulation are challenges for ovarian cancer early
detection. This reflects the relative disconnect between stage
and tumor volume in ovarian cancer staging, e.g., a palpable 30
cm tumor may be Stage I while an occult 3 mm peritoneal
implant may impart Stage III. This poses problems when
creating animal models to test early detection biomarkers. The
mouse ovary contains a bursa surrounding the tubo-ovarian
interface, whereas the human tubo-ovarian interface is
continuous with the peritoneal cavity. Injection of small
volume disease in the mouse peritoneum accurately reflects
some aspects of early onset human disease, i.e. metastasis early
in disease development, but it cannot account for the
immunologic sequestration of very early tumors within the
ovary or fallopian tube. Similarly, intra-ovarian injection of
tumor cells fails to account for the exposure of the human
ovary to the peritoneal cavity.

Here, we use a xenograft model to improve our early
detection signature with respect to both challenges. First, we
improve our existing ovarian cancer prediction model by using
an animal model to sensitize the neural network to low volume
disease. Next, after recalibrating the model to focus on low tumor
volume, we show that these same miRNAs can be used to
construct a diagnostic model that performs well for identifying
patients with early-stage disease.
MATERIALS AND METHODS

Ethics Statement
All clinical investigationswere conducted according toDeclarationof
Helsinki principles. Sera fromcases andbenignmasseswere collected
under the Pelvic Mass Protocol (Brigham and Women’s Hospital
Institutional Review Board Protocol 2000-P-001678) and the New
England Case Control Study (Dana-Farber Cancer Institute
Institutional Review Board Protocol 05–060) (22). Samples for the
present studywerecollectedbetween2001and2016.All subjectswere
enrolled after signing written informed consent.

Animals
Animal experiments were conducted in accordance with the
Dana-Farber Cancer Center Animal Resource Facility Ethics
Guidelines (IACUC protocol 13-043). All animals were 8-week
old female NOD-SCID-Gamma (NSG) immunocompromised
mice obtained from the Jackson Laboratory (Bar Harbor, Maine).

Development of Engrafted Murine Models
Three luciferized human high-grade serous ovarian cancer
(HGSOC) cell lines (COV362, Kuramochi, and OVSAHO) were
grown in DMEM-F12 medium with 5% fetal bovine serum and
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1% penicillin/streptomycin at 37° Celsius with 5% CO2. Prior to
injection, lineswere tested formycoplasma infection via theMouse/
Rat Comprehensive Clear Panel (Charles River Research Animal
Diagnostic Services, Wilmington, Massachusetts). Cell line
identities were confirmed by short tandem repeat loci testing
(ATCC, Manassas, Virginia). Ten NOD-SCID-Gamma (NSG)
immunocompromised mice were obtained from the Jackson
Laboratory (Bar Harbor, Maine) and divided in 4 groups for
injection. Three mice received COV362 cells, 3 mice received
Kuramochi cells and 3 mice received OVSAHO cells injected
with the technique as described below. These mice were injected
with a total of 5 million tumor cells. One mouse served as a control
mouse in eachcageanddidnot receive tumor cells.All animalswere
routinely monitored for signs of poor condition and euthanized
according to animal staff recommendations.

On day 1 of the experiment, the control mouse underwent
peritoneal injection with 200uL of a 1:1 mixture of Matrigel®

Matrix (Corning) and DMEM F12 media. The other mice were
injected with 200uL of a 1:1 mixture of Matrigel and 5 million
HGSOC cells. On day 8 all mice underwent injection with 200uL
of 30mg/mL D-luciferin and images were acquired starting 10
minutes after luciferin injection. Immunofluorescence imaging
data was collected at this time point to verify tumor engraftment.
Mice were then euthanized. Tissue samples were harvested via
micro-dissection techniques. Tissues were then plated with
Beetle Luciferin (15.0 mg/mL) at a 1:100 dilution with media
and then imaged with a plate reader for 2 minutes to identify
microscopic tumors. Additional tumor-bearing tissues were then
embedded in optimal cutting temperature compound (OCT) and
snap frozen for histologic analysis. These OCT-embedded tissues
were then cut via a cryotome and then placed on slides for
hematoxylin and eosin staining and immunohistochemistry for
PAX8 antibodies to further confirm tumor engraftment.

Identification of Serum miRNA From
Engrafted Human HGSOC in a Low-
Volume Murine Model
After confirming that the HGSOC cell lines engrafted in mice, the
same human HGSOC cell lines (COV362, Kuramochi, and
OVSAHO) were used to model low-volume disease and collect
murine serum for analysis. The experiment was repeated twice for a
total of 10 mice in each treatment group (40 mice total). Mice
underwent a baseline submandibular blood collection prior to
tumor inoculation. On day 1 of the experiment, 5 control mice
per experimentunderwent intraperitoneal injectionwith 200uLof a
1:1mixture ofMatrigel®Matrix (Corning) andDMEMF12media.
In parallel, 5 experimental mice per group per experiment were
injectedwith 200uL of a 1:1mixture ofMatrigel and 500,000 cells of
COV362 cells, Kuramochi cells, or OVASHO cells. On day 5, the
mice underwent another submandibular blood collection and
injection with 200uL of 30mg/mL D-luciferin. Images were
acquired starting 10 minutes after luciferin injection. The
immunofluorescence data was collected at this time point to
verify tumor engraftment. On day 28 another round of
immunofluorescent imaging was completed identically to the day
5 procedure and themice underwent another submandibular blood
collection. Mice were monitored for tumor growth and general
April 2022 | Volume 12 | Article 786154
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health and then euthanized on day 28, unless moribund earlier. All
animals were routinely monitored for signs of poor condition and
euthanized per animal staff recommendations.

Serum from each collection time point was aliquoted into a 96-
well PCR plates and subsequently all serum was analyzed using
oligonucleotide probes to miRNAs using the Fireplex platform
(Abcam, Cambridge, MA). This assay involves extracting miRNAs
from crude biofluid followed by hybridization to target-specific
probes embedded in barcoded hydrogel particles. The labeled
miRNAs then undergo one-step RT-PCR with a biotinylated
primer. PCR products are then re-hybridized to the original
particles and are incubated with a reporter for detection. A flow
cytometer is then used to detect the particles. Signals generated are
proportional to the average amount of fluorescent target bound to
the particles. The miRNAs investigated in this experiment were
based on the 14 predictive miRNAs and 9 miRNAs with relatively
stable serum levels (“normalizers”) identified previously by Elias,
et al. (9). The predictive miRNAs were: miR-23b-3p, miR-29a-3p,
miR-32-5p,miR-92a-3p,miR-150-5p,miR-200a-3p,miR-200c-3p,
miR-203a, miR-320c, miR-320d, miR-335-5p, miR-450b-5p, miR-
1246 and miR-1307-5p. Controls included miRNAs from other
species to correct for background fluorescence, spike-in positive
controls, and no specimen blanks.

The experimented was then repeated with a distinct HGSOC
cell line, OVCAR8. A total of 30 mice were used (15 controls and
15 xenografts). The xenograft mice were divided into 3 groups: 5
mice received an injection of 50,000 cells, 5 mice received an
injection of 500,000 and 5 animals were injected with 5 million
cells. Mice were randomized among cages using a random
number generator (www.random.org). Similar to the prior
experiments, baseline, day 5 and day 28 submandibular blood
samples were collected, and bioluminescent imaging was
obtained. Serum samples in triplicate were randomized onto
plate locations for analysis using a random sequence generator
(www.random.org), with technical replicates randomized from
another. Investigators were blinded to the treatment allocation
during the interpretation of the bioluminescent images and the
analysis of the serum samples. Experimental group identities
were assigned using a coded key once the analysis was complete
to construct the receiver operating characteristic curves.
Multilayer Perceptron Neural
Network Design
To design a model to distinguish between murine control and
tumor-bearing serum samples, a multilayer perceptron model
(MLP) was employed. This is an artificial neural network
consisting of, in our case, 3 layers of nodes: an input layer, a
hidden layer and an output layer. Serum samples were allocated
to training (used for model development) and testing (used to
evaluate training, overfitting and cut-off calibration) sets. The
testing and training sets were derived from the experiment
utilizing 500,000 cells of COV362, Kuramochi and OVSAHO
lines. In total, 40 animals were used: 10 controls and 10
inoculated with cells of each of the three cell lines, with serum
samples processed in triplicates. The serum from this experiment
was randomly assigned using a random number generator
Frontiers in Oncology | www.frontiersin.org 3
(www.random.org): 25% to the test set and 75% to the training
set. An independent validation set then consisted of the serum
data from the OVCAR8 experiment as described above (30 mice:
15 controls, 15 inoculated with tumor cells). Expression of 9
normalizer miRNAs, previously described in Elias et al., was
assayed simultaneously to the 14 predictive miRNAs (9).
Analysis was then conducted on 15,000 models with the top 15
models evaluated manually. The previously defined 14 miRNAs
were normalized to the top two most stable miRNAs in the
FirePlex assay (miR-222 and miR-181a) (23). The MLP model
was created with an empirically optimized number of neurons in
the hidden layer and empirically selected linking functions. Once
created, the network was refined by removing miRNAs starting
with those classified as least useful for network performance in
terms of overall error of classification. This allowed for an
empirically optimized number of neurons in the hidden layer
and empirically selected linking functions. This process was
repeated until no further miRNAs could be removed. The final
model included: miR-150, miR-200a, miR-200c, miR-203a, miR-
320d, miR-335 and miR-405b.

For the human samples, the neural networks were
constructed similarly. Samples were randomized 3:1:1 to
training, testing, and validation sets using a random number
generator (www.random.org). We built over 100000 neural
networks based on the 14 signature miRNAs and retained the
best one in terms of performance in properly assigning cases to
classes in the test set. The networks were built in a semi-
automated way. Their structure was of a multilayer perceptron
with a number of neurons in the hidden layer iteratively
optimized from (n variables)/3 to (n variables)*1.5 to avoid
overfitting. Admissible linking functions between the neuron
layers were linear, logistic, hyperbolic tangential, and
exponential. Neuron weights were calculated using the BFGS
(Broyden-Fletcher-Goldfarb-Shanno) algorithm and the
network was trained in each epoch using an error back-
propagation algorithm to optimize weights in each pass. The
code files for the neural networks used for all analyses are
available in the Supplementary Materials.

Human Samples
Serum samples were collected fresh in 13 × 75 mm BDVacutainer
Plus Plastic Serumtubes (BDLife Sciences, Franklin Lakes,NJ)with
spray-coated silica. Samples were allowed to clot 1 hour at room
temperature beforeprocessing, thenspundownbycentrifugationat
1300 x g x 10 min, aliquoted into 1.5 ml vials and stored at – 80 C.
Samples were thawed and aliquoted for the current study and then
refrozen. There was no overlap of subjects between the current
study and our prior report (9). For each study subject, pathology
reports were re-reviewed to confirm clinical information and to
accurately stage patients according to the most recent staging
guidelines from the International Federation of Gynecology and
Obstetrics (FIGO) (24).

Next Generation Sequencing
Sample preparation, library construction, and miRNA sequencing
were performed by Qiagen, Inc. (Frederick, MD). 500 ml of
human serum from each sample were analyzed in duplicate.
April 2022 | Volume 12 | Article 786154
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Total RNA from each serum sample was isolated using the
manufacturer’s protocol optimized for serum. The quality of the
isolated RNAwas checked using qPCR. Total RNAwas converted
into microRNA NGS libraries using the NEBNEXT library
generation kit (New England Biolabs Inc., Ipswich, MA).
Adaptors were ligated to its 3’ and 5’ ends and converted into
cDNA. cDNA was pre-amplified with specific primers containing
sample-specific indices. After 18 cycles of pre-PCR the libraries
were purified on QiaQuick columns and the insert efficiency
evaluated by a Bioanalyzer 2100 instrument on a high sensitivity
DNA chip (Agilent Inc., Lexington, MA). The microRNA cDNA
libraries were size fractionated on a LabChip XT (PerkinElmer
Waltham, MA) and a band representing adaptors and a 15–40 bp
insert excised. Samples were then quantified using qPCR and
concentration standards. Based on the quality of the inserts and
the concentration measurements, the libraries were pooled in
equimolar concentrations, quantified again with qPCR, and the
optimal concentration of the library pool used to generate the
clusters on the surface of a flowcell before sequencing using v3
sequencing methodology according to the manufacturer
instructions (Illumina Inc., Dedham, MA). Samples were
sequenced on the Illumina NextSeq 500 system (Illumina Inc.,
Dedham, MA) using a single-end read length of 50 nucleotides at
an average of 10 million reads per sample. On the raw reads,
adapter trimming and filtration was performed (using fastp tool
https://github.com/OpenGene/fastp). Preprocessed reads were
further mapped to the miRbase (version 22, http://www.
mirbase.org/) using bowtie mapper (version 1.2.3). Feature
counts were converted to tags per million (TPM) without
correction for the library size.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

Human miRNAs Associated With Ovarian
Cancer Are Detectable in the Serum of
Murine Ovarian Cancer Xenografts
Inour prior report,wepresented apanel of 14miRNAswhich could
distinguish women with ovarian cancer from those with benign
pelvic masses or healthy controls (9). To test the feasibility of
measuring these same miRNAs in the circulation of xenografts, we
inoculated immunocompromised mice with intraperitoneal
tumors using three human ovarian cancer cell lines (Kuramochi,
COV362, andOVSAHO) known to generate small tumor implants
(25). Tumors were identified by microdissection and ex vivo
bioluminescent imaging with a high sensitivity charge-coupled
device (CCD) camera. This technique allowed identification of
tumors less than1mmindiameter,which couldbe identified in all 3
cell lines (Figure 1A). The small volume implants were then
confirmed by histologic examination and immunohistochemical
staining using theMullerian carcinomamarker PAX8 (Figure 1B).
Mice were inoculated with 500,000 cells per mouse or PBS control
(n=10 per cell line or control), and then assessed serially by
bioluminescent imaging over 28 days (Figure 1C). Whereas
serum miRNA levels remained stable in control animals, tumor
growthwas associatedwith a progressive increase in serum levels of
several tumor-associated miRNAs (Figure 1D).

The sera from themice were then randomly divided into training
and test sets. Following our previously described method, a neural
network in the form of a multilayer perceptron (MLP) was trained
using the 14 miRNAs. The model had good performance, with an
AUC of 0.88 (95%CI 0.81-0.95; Figure 1E). There was little evidence
A

B

D

E F

C

FIGURE 1 | Low volume disease model of ovarian cancer growth. (A) Photograph (l) and bioluminescent images (r) of explanted organs showing sub-millimeter
tumor growth at 1 week post-implantation. (B) Micrographs of miliary lesions as seen by hematoxylin and eosin (l) and immunohistochemical staining for the serous
carcinoma marker PAX8 (r). (C) Bioluminescent images of mice taken 28 days post-injection with 500,000 tumor cells. (D) Serial miRNA levels among control (n = 5)
vs. tumor bearing (n = 15) mice. p-values for trend from baseline to 28 days. (E) Receiver operating characteristic curve for the neural network using the full
14 miRNA signature (AUC = 0.88) or (F) a reduced set of 7 miRNAs (AUC = 0.85).
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of overfitting with overall accuracy being similar for the training set
and the test set. In the training and test sets, sensitivity, specificity and
accuracy equaled: 82.6%/84.1%/83.3% and 76.9%/93.8%/86.2%,
respectively. To refine the model, we performed a global sensitivity
analysis, removing the miRNAs that contributed the least to model
performance.This reduced set consistedof only7miRNAs:hsa-miR-
150,hsa-miR-200a,hsa-miR-200c,hsa-miR-203a,hsa-miR-335,hsa-
miR-450b, andhsa-miR-320d.The simplermodelhada similarAUC
of 0.85 (95%CI0.77-0.93;Figure1F) but reliedon fewermarkers. For
the training and testing sets the sensitivity, specificity, and overall
accuracy of the reducedmodel were 73.9%/86.4%/80.0% and 76.9%/
87.5%/82.8%, respectively. The rowmeasurements in duplicates and
group assignments are available in Supplementary Data Sheet 1
(experiments 1 and 2).

miRNAs Identify Mice Bearing Unrelated
Tumors Regardless of Tumor Volume
Notably, Kuramochi, COV362, andOVSAHOall bearmutations in
BRCA1 or BRCA2. To validate the performance of the model in a
non-BRCAmutated cell line, as well as to test the sensitivity of the
model to low volume disease, we examined murine xenografts
implanted with a fourth ovarian cancer cell line, OVCAR8 (n=30),
not used to train the previousmodels and known to bewild-type for
BRCA1 and BRCA2. Mice received a logarithmic dose range of
tumor cells: 50,000, 500,000, or 5 million cells injected
intraperitoneally. Tumor injection volumes or PBS placebo
injection assignments were randomized among the cages
(Figure 2A). Bioluminescent imaging and serum miRNA
measurements were performed blinded to the inoculum groups.
The serummiRNAprofiles distinguished tumor-bearingmice from
controls, butprofilesdidnot clusterby tumor inoculum(Figure2B).
This suggests that over the course of the study serummiRNA levels
Frontiers in Oncology | www.frontiersin.org 5
reached a steady-state. Consistent with this hypothesis, the 7-
miRNA neural network produced 100% sensitivity at 86.7%
specificity for discriminating tumor-bearing mice from control
mice (overall accuracy of 93.3%) (Figure 2C). Although there
were two false-positives, the model correctly identified all tumor-
bearing mice regardless of the original tumor inoculum. The row
values of themeasurements for this part of the analysis are available
in Supplementary Data Sheet 2 (experiment 3).

Serum miRNAs Can Distinguish Human
Cases of Early-Stage Ovarian Cancers
From Benign Masses or Healthy Controls
Having shown experimentally that the serum miRNA neural
network is relatively insensitive to tumor volume, we next
assessed the performance of the model among specifically
early-stage cases (FIGO stage I-IIIA2). Small RNA sequencing
was used to generate serum miRNA profiles of 275 study subjects
comprising 75 cases, 100 benign adnexal masses, and 100 healthy
controls (Table 1). Cases, benign masses, and controls were
matched for age (mean 57, 55, and 55 years, respectively). The
mean CA-125 among cases was 401 IU/ml (range 2-3725), with
19 cases (25.3%) having a CA-125 < 35 IU/ml, which is the upper
limit of normal in a post-menopausal woman, and 42 cases
(56%) having a CA-125 < 200 IU/ml, which is the upper limit of
normal in a pre-menopausal woman. Among the cases, 44
(58.7%) were high-grade histologies.

In univariate analysis of themiRNA profiles, the components of
the miRNA serum signature were well-represented (Figure 3A).
However, aswehavedescribed inprior reports, univariatemeasures
of serum miRNA expression were insufficient to classify samples
based on hierarchical clustering (Figure 3B). The samples were
then divided into training, testing, and validation sets in
A

B

C

FIGURE 2 | Validation of the low volume disease model in an independent cell line across tumor volumes (n = 30). (A) Bioluminescent images of mice taken 28 days
post-injection. Groups were randomized among the cages. (B) Unsupervised hierarchical clustering using only the 14 miRNAs previously reported in the serum
neural network. (C) Predicted probability of cancer in the serum samples at 28 days using a neural network model. The cut-off for a positive test was set at 50%.
April 2022 | Volume 12 | Article 786154
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proportions of 3:1:1 for calibration of the animal model to the
human samples. For the validation set, the model had an AUC of
0.87 (95%CI 0.84-0.94; Figure 3C). Using a predicted probability
for cancer of 50% as the cut-off for a positive test result, the model
had 73% sensitivity at 91% specificity for distinguishing early-stage
ovarian cancers from benign adnexal masses or healthy controls.

Notably, ovarian cancer has a low prevalence in an unselected
general population. Therefore,wemodeledhow the performance of
themiRNAclassifierwould vary based ondisease prevalence. Based
on these results, we hypothesize that application of the test would
require a population with an underlying disease prevalence of at
least 1% (Figure 3D). Among such a population, a positive test
result would indicate an almost 8-fold increased risk of ovarian
cancer, which could then prompt further evaluation, while
maintaining a negative predictive value of 99.71%.
DISCUSSION

In this study, we investigated the effects of two variables which
might impact a neural network based on serummiRNAs, namely
Frontiers in Oncology | www.frontiersin.org 6
disease volume and disease stage. In our animal model, the
miRNAs were able to detect tumors below the threshold of
bioluminescent imaging and at tumor volumes not visible to the
human eye. The predictive capacity for the model translated well
to a large cohort of early-stage human samples, covering a variety
of histologies and clinical presentations.

miRNAs have been studied extensively in both ovarian cancer as
well as other solid tumor disease sites. Due to the stability ofmiRNAs
in serum, miRNAs are particularly attractive as diagnostic
biomarkers for early-stage disease. For example, Tang, et al.
compared miRNAs from 36 early-stage gastric cancer patients to
those from 12 healthy individuals and described how a subset of the
miRNAs could serve as potential non-invasive biomarkers for early
diagnosis of gastric cancerwithAUCof up to 0.786 (26). Similarly, in
prostate cancer, Fredsoe, et al. published a study utilizing 753patients
including those with benign prostatic hyperplasia, localized prostate
cancer, advanced prostate cancer, and non-cancer controls. The
authors were able to build a model based on 4 miRNAs in
combination with clinical factors that outperformed PSA alone
with AUC 0.84 (27). Among gynecologic malignancies, the role of
miRNAs has also been studied in endometrial adenocarcinoma.
Wang et al. recently published a machine-learning model using
TCGA atlas data which identified 9 miRNAs as diagnostic markers
with overall correct rates of distinguishing benign from tumor tissue
of > 95% (28). 5 miRNAs were then used to construct a prognostic
model which identified patients at high risk of mortality more
accurately than clinical stage (28). Non-coding RNAs appear to
play an essential role in endometrial cancer pathogenesis, and non-
coding RNAs may prove to be useful prognostic biomarkers for risk
stratification of patients (29, 30).

ThemiRNAs utilized in themachine learningmodels presented
in this study were chosen based on prior reporting suggesting that
thesemiRNAs could distinguish ovarian cancer cases fromcontrols
(9). The miRNAs utilized in this model have been associated with
many different functions. miR-150 has been associated with
promoting ovarian cancer cell motility as well as enhancing
apoptotic and anti-tumor effects of paclitaxel (31, 32). miR-200a
has been shown in recent work to promote malignant behaviors
through regulation of PCDH9aswell as invasion andmetastasis via
the ZEB axis (33, 34). Additional work has suggested this miRNA
may promote cell invasion and migration through the PTEN
pathway (35). A key feature of the neural network approach is
that it can account for miRNAs that are either downregulated or
upregulated. For example, miR-200c appears to be associated with
anti-tumor properties (36).miR-203a has been shown to hinder the
proliferation, migration and invasion of ovarian cancer cells
through modulation of the AkT/GSK-3b/Snail signaling pathway
(37). miR-335 has been studied both as a prognostic marker and in
association with cisplatin sensitivity with several studies suggesting
that this miRNA may be associated with a favorable prognosis
through its actions within the BCL2 pathway (38–41). Utilizing the
neural network approach allows a more comprehensive summary
of various biologic processes which together may collectively point
towards tumor growth.

The current study builds upon the prior report by showing
that the serum miRNAs previously used to develop a general
TABLE 1 | Early-stage case-control cohort.

Characteristic N=275

Age, y, median, (range) 55 (24.0 – 84.0)
CA-125 (IU/ml), median (range) 28 (2 - 3725)
Diagnosis, n (%)
• Healthy Control
• Benign mass
• Endometrioma
• Serous cystadenoma
• Cancer

• 100 (36.4)
• 100 (36.4)
• 25 (9.1)
• 75 (27.3)
• 75 (27.3)

Cancer Histology, n (%)
• Serous
• Endometrioid
• Clear Cell
• Carcinosarcoma
• Transitional Cell
• Mucinous

18 (24.0)
29 (38.7)
23 (30.7)
2 (2.7)
2 (2.7)
1 (1.3)

Cancer FIGOA Stage, n (%)
• IA
• IB
• IC
• IIA
• IIB
• IIIA1
• IIIA2

25 (33.3)
3 (4.0)

22 (29.3)
14 (18.7)
8 (10.7)
2 (2.7)
1 (1.3)

Cancer Grade, n (%)
• Borderline
• 1
• 2
• 3

2 (2.7)
20 (26.7)
9 (12.0)
44 (58.7)

Genetic testing among cases, n (%)
• n/aB

• negative
• BRCA1
• BRCA2
• RAD51C

50 (66.7)
21 (28)
1 (1.3)
2 (2.7)
1 (1.3)
AFIGO Stage – per International Federation of Gynecology and Obstetrics 2014 staging
guidelines. Bn/a – not available
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ovarian cancer diagnostic classifier can also be used to detect
low-volume disease, potentially below the threshold of imaging.
This may flag patients earlier in their disease course with
asymptomatic, lower-volume disease where primary
cytoreduction is closely linked to improved survival (42).
Another potential application of this serum miRNA signature
could be to apply it as a diagnostic tool for recurrences, although
we did not test that possibility. Currently ovarian cancer
recurrences are identified by rising CA-125 and or imaging
such as computed tomography or PET scan and can be
confirmed with biopsy as needed. A serum miRNA signature
might allow for a non-invasive, “liquid biopsy” test to confirm
recurrence without radiation or invasive biopsy.

We believe our study has several unique strengths. The neural
network was verified with an independent cell line not used in
the model creation and was tested over a range of tumor
inoculums. In the clinical dataset, we tested our model
specifically with early-stage patients, which are usually poorly
represented in screening studies. We did not restrict our clinical
dataset to only serous histology patients but rather reflected the
heterogeneity of early-stage ovarian cancers seen in clinical
practice. Even so, high grade histologies were well-represented.
Moreover, we showed that we can distinguish ovarian cancers
specifically from their benign histologic counterparts, which is a
higher bar of stringency than if we had included other types of
benign ovarian masses, such as simple cysts, benign teratomas, or
fibromas, which are easily classified as benign based on
sonographic imaging.

This study has several limitations as well. The cell line models
used to create the xenograft neural network all had homologous
repair defects (43). It is possible that BRCA-mutated ovarian
tumors have a distinct miRNA profile as compared to BRCA
Frontiers in Oncology | www.frontiersin.org 7
wild-type cells and therefore this work may not be as applicable
to women with BRCA wild-type tumors. However, the validation
cell line OVCAR8 does not have a BRCA mutation, which
implies that the neural network’s applicability is not restricted
to BRCA mutated tumors. Moreover, among the patient samples
we were agnostic to mutation status in most cases, and the model
performed similarly. Similarly, the patient dataset included both
tumors with favorable prognoses, such as Stage I, Grade 1
endometrioid adenocarcinomas, as well as tumors with
relatively poorer prognoses, such as Stage II, Grade 3 serous
adenocarcinomas. While one might argue that a tumor signature
should focus only on aggressive histologies, a model which
excludes other histologies risks providing false reassurance to
patients and causing these highly curable tumors to be diagnosed
at later stage, when the prognosis is similarly poor (44). Finally,
the utility of the current model appears to be limited to high-risk
populations, defined as those with an ovarian cancer prevalence
of at least 1%. This is notably much lower than the prevalence of
ovarian cancer in the general population, which is 0.07%. Clearly,
improvements to the model would be needed to move towards
general population screening. However, as no screening tools
currently exist even for BRCA1 mutation carriers, who have a
40% lifetime risk of ovarian cancer, we think that developing a
screening tool with high sensitivity and negative predictive value
in high-risk populations alone would already be a significant
step forward.

In conclusion, a neural network model derived from miRNA
serum signatures can identify either low volume or early-stage
tumors. Whether the model can identify tumors that are both
low volume and early stage will require larger human studies of
patients with low volume, early-stage disease. In future studies,
we hope to consider how a miRNA serum signature may be
A

B

D

C

FIGURE 3 | Testing the 14-miRNA signature in the early-stage ovarian cancer cohort (n = 275). (A) Volcano plot for all miRNAs in the samples. Selected miRNAs
from the neural network are highlighted. Values adjusted for multiple testing. (B) Unsupervised hierarchical clustering using only the 14 miRNAs previously reported in
the serum neural network. (C) Receiver operating characteristic curve for the neural network to distinguish early-stage cancer from benign masses or healthy controls
(AUC = 0.87). (D) Modeling the performance of the neural network classifier by disease prevalence among hypothetical populations.
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useful as an adjunct to other modalities to develop reliable
screening for women at high risk for ovarian cancer.
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