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The etiology of neuroinflammation is complex and comprises multifactorial, involving
both genetic and environmental factors during which diverse genetic and epigenetic
modulations are implicated. Curcumin (Cur) and valproic acid (VPA), histone deacetylase
1 inhibitor, have neuroprotective effects. The present study was designed with an aim to
investigate the ability of co-treatment of both compounds (Cur or VPA, 200 mg/kg) for
4 weeks to augment neuroprotection and enhance brain recovery from intra-peritoneal
injection of (250 μg/kg) lipopolysaccharide-stimulated neuroinflammatory condition on rat
brain cortex. Cortex activation and the effects of combined treatment and production of
proinflammatory mediators, cyclooxygenase-2 (COX-2), APE1, and nitric oxide/inducible
nitric oxide synthase (iNOS) were investigated. Neuroinflammation development was
assessed by histological analyses and by investigating associated indices [β-secretase
(BACE1), amyloid protein precursor (APP), presenilin (PSEN-1), and PSEN-2)]. Furthermore
we measured the expression profile of lethal-7 (let-7) miRNAs members a, b, c, e, and
f in all groups, a highly abundant regulator of gene expression in the CNS. Protein and
mRNA levels of neuroinflammation markers COX-2, BACE1, APP, and iNOS were also
attenuated by combined therapy. On the other hand, assessment of the indicated five let-7
members, showed distinct expression profile pattern in the different groups. Let-7 a, b, and
c disappeared in the induced group, an effect that was partially suppressed by co-addition
of either Cur or VPA.These data suggest that the combined treatment induced significantly
the expression of the five members when compared to rats treated with Cur or VPA only as
well as to self-recovery group, which indicates a possible benefit from the synergistic effect
of Cur-VPA combination as therapeutic agents for neuroinflammation and its associated
disorders.The mechanism elucidated here highlights the particular drug-induced expression
profile of let-7 family as new targets for future pharmacological development.
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INTRODUCTION
Lipopolysaccharide (LPS) is the most abundant component within
the cell wall of Gram-negative bacteria that has been extensively
used in models studying inflammation. LPS initiates cellular
receptor transduction through Toll-like receptor 4 (TLR4), bind-
ing of LPS to TLR4 elicits a signaling network including the
activation of NF-κB through multiple mediators (Bode et al.,
2012). NF-κB plays a crucial role in regulating the transcription
of genes related to innate immunity and inflammation responses
and several studies indicate its activation is controlled by reac-
tive oxygen species (ROS) in immune modulation in monocytes
(Asehnoune et al., 2004 and Park et al., 2004). Oxidative stress
is associated with virtually all central nervous system pathogen-
esis, infectious, inflammatory, or degenerative in nature. Since
brain homeostasis largely depends on integrity of blood–brain
barrier (BBB) and oxidative stress associates BBB permeability
alteration, brain is endowed in numerous antioxidant effectors via
orchestrated actions of immune cells, vascular cells, and neurons
that constitute neuroinflammation, that control and prevent the

detrimental formation of ROS generated via different metabolic
reactions (Dasuri et al., 2013; Xanthos and Sandkühler, 2014).
Curcumin (Cur) has been shown to exhibit activity against vari-
ous neurologic diseases; it is a potent inhibitor of reactive astrocyte
expression and thus, prevents hippocampal cell death induced by
kainic acid (Shin et al., 2007). Recent studies indicate that low
doses of Cur is effectively disaggregate beta amyloid protein as well
as prevents fibril and oligomer formation and hence has protective
effect in treating Alzheimer’s disease (AD; Kulkami et al., 2009).
Recent experimental researchers have shown protective effect of
Cur in animal models of seizures (Du et al., 2009), and experi-
mental model of epileptogenesis (Jyoti et al., 2009). Recently, Cur
possess antidepressant activity and can modulate the release of
serotonin and dopamine. Cur enhances the level of neurotrophic
factors such as brain derived neurotrophic factor (BDNF; Wang
et al., 2008)

Apurinic/apyrimidinic endonuclease (APE1) is essential for cell
survival in mammalian cells, APE1 is also essential in early embry-
onic development (Meira et al., 2001; Izumi et al., 2005). APE1 is
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the second repair enzyme in base excision repair (BER)-pathway
and hydrolyses the phosphodiester backbone immediately 5′ to an
AP site to produce 3′ OH group and 5′deoxyribose-5-phosphate
(Levin and Demple, 1990). APE1 knockdown in neurons accumu-
lates significant oxidative DNA damage without efficient repair,
which demonstrates that APE1 is essential for repair of oxidative
DNA damage in neurons (Yang et al., 2010). In neurons, BER is
the predominant mechanism for repair of oxidative DNA lesions.
The major pathological features of AD are extracellular amyloid
beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs).
Moreover it has been reported that Aβ level differentially mod-
ulates APE1, a key enzyme in BER pathway, expression which
may contribute to selective neuronal vulnerability in AD (Mantha
et al., 2012). We have previously reported that APE1 expression is
significantly reduced during neuroinflammation progression and
restored by resveratrol treatment (Zaky et al., 2013).

Histone deacetylase inhibitors (HDAC inhibitors) promote
the acetylation of histones, which are generally associated with
transcriptional activation. HDACs inhibitors also increase the
acetylation status and modulate the activity of a wide range of
histone as well as non-histone proteins. HDAC inhibitors have
been shown to confer neuroprotection in experimental mod-
els of various neurodegenerative diseases (Camelo et al., 2005;
Gardian et al., 2005; Petri et al., 2006) even though the exact
mechanisms underlying their neuro-protective actions are still
elusive.

Moreover, valproic acid (VPA; 2-propylpentanoic acid sodium
salt), a drug commonly used to treat seizures, has been shown
to exert neuro-protective effect at therapeutic levels in cellular
and animal models. In cultured neurons, VPA protects from
glutamate-induced excitotoxicity, thapsigargin-induced endoplas-
mic reticulum stress, and LPS-induced dopaminergic neuronal
death (Phiel et al., 2001; Kanai et al., 2004). Recently, VPA was
shown to inhibit LPS-induced, microglia-mediated inflammation
in midbrain neuron-glia cultures as described by inhibition of
TNF-α secretion and NO production (Peng et al., 2005).

Alzheimer’s disease pathology is characterized by an accumu-
lation of extracellular amyloid plaques composed of Aβ peptide
fragment and intracellular NFTs composed of hyperphosphory-
lated protein tau, as well as neuronal loss in the hippocampus,
temporal, and frontal lobes, increased inflammation, and oxidative
stress (Serrano-Pozo et al., 2011)

MirSVR is a new machine learning method for ranking
microRNA (miRNA) target sites by a down-regulation score. In a
large-scale evaluation, miRanda-mirSVR is competitive with other
target prediction methods in identifying target genes and predict-
ing the extent of their down-regulation at the mRNA or protein
levels. Importantly, the method identifies a significant number
of experimentally determined non-canonical and non-conserved
sites (Betel et al., 2010).

Altered biogenesis and/or function of miRNA are implicated
in the various pathological processes including inflammation and
neurodegeneration. In Alzheimer’s, miRNA profiling experiments
have identified disease-specific miRNAs. Moreover a number of
studies have linked differential miRNAs expression to pathology
in AD such as deposition of amyloid plaques and NFTs, as well
as more specific pathway interactions and regulatory functions

of the amyloid pathway, including regulation of amyloid protein
precursor (APP) and beta-site APP cleaving enzyme 1 (β-secretase,
BACE1; reviewed in Gustaw-Rothenberg et al., 2010; Geekiyanage
et al., 2012).

The aim of our study is to investigate the protective/therapeutic
potential of Cur alone and in combination with histone deacety-
lase 1 (HDAC1) inhibitor, VPA, in LPS-induced rats. Also we are
interested in studying the expression profiles of lethal-7 (let-7)
miRNAs family members as signaling molecules in regulation of
inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible
nitric oxide synthase (iNOS).

MATERIALS AND METHODS
ANIMALS AND ESTABLISHMENT OF NEUROINFLAMMATION
EXPERIMENTAL MODEL
Fifty five male adult Sprague–Dawley (80–150 g) rats were used
for the present study. The animals were supplied and main-
tained at medical research institute in which the European
principles of laboratory animal ethics care were followed in all
experimental protocols. Rats were maintained under controlled
temperature (25 ± 2◦C) and constant photoperiodic condi-
tions (12:12-h daylight/darkness). The dams had free access to
water and standard commercial chow containing 20% protein,
54% carbohydrate, 4.5% fiber, 4% lipids, 7% ash, and 10%
moisture.

Neuroinflammation induction was established by LPS injec-
tion. Experimental design and rats classifications as indicated in
Figure 1, included the following groups: (1) mock-treated rats
(mock-Trx) that received empty vehicle, (2) LPS-induced rats that
received intra-peritoneal (IP) injection of 250 μg/kg LPS five times
per week for 4 weeks, (3) Co Cur rats that received oral admin-
istration of 200 mg/kg Cur during LPS induction, (4) Co-VPA
that were orally administered 200 mg/kg VPA in parallel to LPS.
Treatment protocol involved oral administration of 200 mg/kg
of Cur (Trx-Cur), VPA (Trx-VPA), or their combination (Trx-
Cur + VPA) four times per week for 4 weeks. The Cur-VPA treated
rats were administered the two doses at the same time. Moreover
a group of LPS-induced rats were left untreated for the duration
of 4-weeks in parallel to treated ones and referred as self-recovery
to promote self-healing mechanism.

Samples collection
Blood was collected from each group at time intervals of 2 and
4 weeks of LPS administration and after treatment by retro-orbital
bleeding or during sacrifice. From each group 4–6 rats were killed

FIGURE 1 | Experimental design and groups classifications.
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by cervical dislocation and sera were collected and stored at −80◦C
for further analyses. Brain tissues were removed, washed with cold
0.9% NaCl and dissected into different lobes; mid brains were
stored in RNA later for extraction of total RNA and the remain-
ing section was rapidly frozen with liquid nitrogen and stored
at −80◦C for preparation of total and nuclear extracts (NEs),
and enzyme assays. A whole brain was removed for histochemical
studies by fixation with 10% buffered-saline formalin.

Histopathological analysis
Formalin fixed brains were processed and cortex tissues were
stained with hematoxylin and eosin (H&E) and examined for any
histopathological changes. Pathological diagnosis of each brain
specimen was assessed and analyzed by specialized histopatholo-
gist.

DETERMINATION OF OXIDATIVE STRESS MARKERS
Sera total antioxidant capacity
Blood was collected without using an anticoagulant, allowed to
clot for 30 min at 25◦C then centrifuged at 3000 rpm for 15 min
at 4◦C. Serum was collected and stored at −80◦C if not assayed
on the same day. The assay was preformed according to method
described before (Koracevic et al., 2001).

Reduced glutathione (GSH) level
Dissected parts of the brain cortex tissues (10% w/v) were washed
with saline solution minced and homogenized in ice cooled
homogenization buffer (1.15% KCl, 0.01 M sodium phosphate
buffer pH 7.4). The homogenates were centrifuged at 10,000 rpm
for 20 min at 4◦C and the supernatants were used for determi-
nation of glutathione (GSH) and protein contents. GSH contents
were determined as described by Ellman (1959). Briefly, Ellman’s
reagent [5,5′, dithiobis (2-nitrobenzoic acid), DTNB ] reacts with
GSH to give 2-nitro-5-thiobenzoic acid, a yellow colored product
with a maximum absorbance at 412 nm, GSH level is expressed as
mg/g. tissue.

Lipid peroxidation
Frozen sections of brain tissues (10% w/v) were washed with saline
solution, minced, and homogenized in ice cooled buffer (50 mM
potassium phosphate pH 7.5), the homogenates were centrifuged
at 10,000 rpm for 20 min at 4◦C and the supernatants were used for
the assay. Levels of lipid peroxidation were determined according
to Ohkawa et al. (1979) colorimetric method. Thiobarbituric acid
(TAB) reacts with malondialdehyde (MDA) in acidic medium at
95◦C for 30 min to form TAB reactive product to give pink color
that is measured at 534 nm and MDA content is expressed in
nmol/g tissue.

Superoxide dismutase activity (SOD)
Brain tissue was homogenized in ice cooled buffer (100 mM
potassium phosphate, pH 7.0 containing 2 mM EDTA) per gram
tissue. Superoxide dismutase activity (SOD) was assayed accord-
ing to Nishikimi et al. (1972). The assay depends on the ability
of the enzyme to inhibit the phenazine methosulphate-mediated
reaction of nitroblue tetrazolium dye. Phenazine methosul-
phate (0.1 mM/L) was diluted 500 times immediately before
use in distilled water. In addition to working reagent was

freshly prepared by mixing phosphate buffer (50 mM/L) pH 8.5,
nitroblue tetrazolium (1 mM/L), and NaOH (1 mM/L) in ratio
of 10 + 1 + 1. Reaction mixture prepared by mixing the work-
ing reagent and samples, then initiated by addition of diluted
phenazine methosulphate according to the protocol indicated
ratios.

TOTAL RNA ISOLATION AND REVERSE TRANSCRIPTASE POLYMERASE
REACTION (RT-PCR)
Total RNA was extracted from frozen brain tissues according to
Chomczynski and Sacchi (1987) using GStractTM RNA Isola-
tion Kit II Guanidinium Thiocyanate Method (Maxim Biotech
Inc., USA). Quality of RNA preparations were confirmed by cal-
culating 260/280 ratio for detection of protein contamination
and by running samples on agarose to confirm that the samples
are DNA-free. Alterations in the target mRNA levels of genes
relevant to microglia activation and neuroinflammation were
determined using either semi-quantitative reverse-transcriptase
PCR (semi-qRT-PCR) or quantitative real time RT-PCR
(qRT-PCR).

Semi-quantitative RT-PCR
Semi-quantitative RT-PCR was performed using one-step RT-PCR
(RT/PCR Master Mix Gold Beads, BIORON). The cDNA was
synthesized and used for amplification of target gene(s). Briefly,
total RNA (1–3 μg) and random primer (3 μM) mixture were
denatured at 70◦C for 5 min and placed on ice. The incubated
mixture was added to the RT/PCR Gold mix that contains all
the components necessary for cDNA synthesis and amplifica-
tion in one tube. The cDNA synthesis reaction was performed
at 42◦C for 60 min then 5 min at 94◦C for RTase inactivation.
The primers then subjected to PCR cycles, each cycle consisting of
denaturation, annealing, and extension. Annealing temperature
and time was optimized for each primer/template combination.
We investigated the expression of neuroinflammatory markers
APP, BACE1, γ-secretase (presenilin; PSEN-1 and PSEN-2) and
iNOS expressions using the following primers sets: APP; F-
AGAGGTCTACCCTGAACTGC- R- ATCGCTTACAAACTCAC-
CAAC (154 bp), BACE1; F-CGGGAGTGGTATTATGAAGTG-
R-AGGATGGTGATGCGGAAG (320 bp), PSEN-1; F- GGATGGG
CAGCTAATCTATAC- R- CCTTCAGCCATATTCACCAAC (576),
PSEN-2; F-GAG CAG AGC CAA ATC AAA GG- R-
GGGAGAAAGAACAGCTCGTG (188 bp), iNOS; F-GTGTTC
CACCAGGAGATGTTG- R-CTCCTGCCCACTGAGTTCGTC
(576 bp) and for validation we used β-actin: F-GGC ATC
CTG ACC CTG AAG TA- R-GCCGATAGTGATGACCTGACC
(565 bp). Products of RT-PCR were separated on agarose gel,
visualized and documented using ChemiDoc-It®2 Imager then
analyzed with VisionWorksLS Acquisition and Analysis Software
for determinations of relative bands intensity.

Quantitative RT-PCR assay
Quantitative real time RT-PCR was used to measure the mRNA
levels of APE1, let-7a, b, and c. analyses were performed using miS-
cript II RT Kit (Qiagen) according to the manufacture guidelines.
The primers for APE1 were F-GCTTGGATTGGGTAAAGGA, R-
TTCTTTGTCTGATGGAGCTG, COX-2; F- AGGCCTCCATTG
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ACCAGA- R- TCATGG TAGAGGGCTTTCAAC, β-actin; F-
CCGACAGGATGCAGAAGG-3′ and R-GGAGTACTTGCGCTCA
GGAG, let-7a; TGA GGT AGT AGG TTG TAT AGTT, let-7b;
TGA GGT AGT AGG TTG TGT GTTT, let-7c; TGAGGTAGTAG-
GTTGTATGGTT and U6; F-GGAACGATACAGAGAAGATTAGC,
R- AAATATGGAACGCTTCACGA. Gene expression results of
indicated genes and miRNAs were normalized to β-actin and U6,
respectively, fold difference calculated as described before (Livak
and Schmittgen, 2001).

PREPARATION OF CYTOSOLIC AND NUCLEAR EXTRACTS AND
WESTERN BLOTTING
The extraction of cytosolic and nuclear rich fractions was per-
formed according to Dignam et al. (1983) procedure. Briefly brain
tissues were homogenized using hypotonic buffer (10 mM HEPES
buffer, pH 7.5 containing 10 mM KCl, 3 mM NaCl, 3 mM MgCl2,
1 mM EDTA, 1 mM EGTA, 2 mM DTT, 2 mM PMSF, and protease
inhibitor cocktail) and kept on ice for 15 min. The supernatants
(cytoplasmic extracts) were collected by centrifugation then stored
at −80◦C and the pellets were washed in 200 μl of hypotonic buffer
and re-centrifuged. The pellets nuclei were re-suspended in 100 μl
of ice-cold NE buffer (20 mM HEPES buffer, pH 7.5 containing
25% glycerol, 500 mM KCl, 1 mM MgCl2, 1% NP-40, 1 mM
EDTA, 2 mM DTT, 2 mM PMSF, and protease inhibitor cocktail),
and incubated on ice for 20 min, with occasional mixing, then
centrifuged at 14,000 × g for 15 min at 4◦C. The resulting super-
natants, nuclear extracts, were collected and stored at −80◦C for
further analysis. Primary antibody to APE1 (sc-17774) and COX-2
(sc-7951) were used and equal loading was confirmed by probing
with β-Actin (sc-81178) monoclonal antibody.

STATISTICAL ANALYSIS
Experiments were repeated two or more times independently and
graphs are represented as mean ± SD. The difference between
groups was analyzed by one-way analysis of variance (ANOVA)
and the difference considered significant either at p < 0.01 or at
p < 0.001 when compared to mock-treated group.

RESULTS
HISTOLOGICAL ANALYSES
Brain tissues of mock-treated, LPS-induced, Co-treated, and
treated groups were examined using H&E staining as shown in
(Figure 2) for confirmation of progression to neuroinflammation.
The histopathology of cortex tissue from rats induced with LPS
and co-treated with VPA and Cur showed some protection effect
against neuroinflammation (Figures 2C,D). Although treatment
with VPA exerted inhibitory effect on neuroinflammation but Cur
showed more potent effect than VPA (Figures 3A,B). Interestingly
combination of both Cur and VPA induced strong synergistic
effect showing no significant neuroinflammation (Figure 3C)
compared to self-recovery group (Figure 3D), which is consistent
with the biochemical markers profile.

CURCUMIN COMBINATION WITH VALPROIC ACID AMELIORATES
LPS-INDUCED OXIDATIVE STRESS
Oxidative stress is a hallmark of inflammatory mechanism. Herein
we measured oxidative stress parameters represented by sera total

FIGURE 2 | Shows H&E (400X) staining of Cortex sections from

different experimental groups: (A) shows photographs of

mock-treated with normal parenchyma and architecture. (B) shows
lipopolysaccharide (LPS)-induced cortex sections featuring an aggregate of
mature lymphocytes an effect that was partially inhibited by
co-administration of Valproic acid (VPA; C) and Curcumin (Cur; D).
Apparently Co-Cur group showed sparse lymphocytic infiltrate compared to
mock-treated. Arrows indicate the activated lymphocytes.

FIGURE 3 | Show H&E (400X) stained sections for the treated groups:

Cur,VPA, and VPA-Cur as well as the self-recovery group that received

no treatment for 1 month. The represented photographs indicate that VPA
acid treated rats (A) featured moderately intense lymphocytic infiltrate and
Cur treatment (B) induced suppression of the inflammatory response as
depicted by negligible lymphocytic infiltrate as marked by the arrows.
Moreover VPA-Cur combination (C) exerted the most anti-inflammatory
effect by showing no inflammatory infiltrate compared to self-recovery
group (D) that contain sparse lymphocytic infiltrate as indicated by the
arrows.

antioxidant capacity (TAC), GSH, and MDA levels as well as SOD
activity in the different experimental groups. Results are pre-
sented as fold change from the mock-treated group. An overall
significant decline (p < 0.01) in the sera TAC, GSH level and
SOD activity associated with significant elevation in MDA level
(p < 0.001) were observed in LPS-induced brains (Figure 4). In
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FIGURE 4 | Fold alterations in antioxidant capacity versus mock-treated

rats. Oxidative stress related markers total antioxidant capacity (TAC),
glutathione (GSH), and malondialdehyde (MDA) levels as well as superoxide
dismutase activity (SOD) activity were measured in the different experimental
groups. LPS-induced an overall reduction in antioxidant defense system as
indicated by significant (*p < 0.01) decrees in TAC, GSH, and SOD and
significant (**p < 0.01) elevation in MDA content versus mock-treated rats

(mock-Trx). Co-administration of VPA did not improve oxidative stress
markers. On the contrary, Cur co-administration inhibited LPS-induced
neurotoxicity markedly by maintaining all parameters near normal values.
Moreover treating induced rats with cur but not with VPA restored GSH
content and SOD activity. VPA addition to Cur exerted the most antioxidant
effect on neuroinflamed rats. An improvement in GSH level and SOD activity
was also observed in Self-Rec rats.

parallel to histological observations, co-administration of VPA or
Cur ameliorated LPS-induced neurotoxicity with most prominent
effect upon Cur co-administration. Furthermore Cur treatment
markedly improved both GHS level and SOD activity (Figure 4).
Obviously VPA treatment was not effective in inhibiting LPS-
induced oxidative stress as indicated by significant elevation in
MDA (p < 0.01) accompanied with significant reduction in TAC,
GSH level, and SOD activity (p < 0.001 and p < 0.01, respec-
tively; Figure 4). Interestingly, adding VPA to Cur potentiated Cur
effect and restored the oxidative stress markers back to normal
when compared to mock-Trx. Restoration of GSH level and SOD
activity in the self-recovery group indicated that shifting the oxida-
tive stress balance is essential during physiological wound healing
process (Figure 4).

EXPRESSION PROFILE OF NEURO-INFLAMMATION MARKERS
The relevance of neuroinflammation to Alzheimer’s pathology
has been elucidated by different reports. Microglial activation
has been shown in regions associated with Aβ deposition. In
the current study we examined the expression of BACE1, APP,
and γ-secretase subunits (PSEN-1 and PSEN-2) as the major
factors implicated in Aβ deposition as well as the inflamma-
tory enzymes iNOS, COX-2, and APE1. Total RNA from cortex
tissues were extracted and mRNAs were analyzed by semi-qRT-
PCR for the indicated genes. LPS-induced significantly BACE1
and APP along with the inflammatory enzyme iNOS expressions
(around 8-, 2-, and 30-folds, respectively) when calculated in ref-
erence to the expression level in mock-Trx (Figures 5A,B). In
addition, LPS reduced PSEN-1 and -2 expressions significantly
(p < 0.001). Co-addition of either VPA or Cur ameliorated LPS
effect by around 10 and 30% respectively (Figure 5B). Moreover
treatment of induced rats with Cur is more effective than VPA

in reducing BACE1, APP, and iNOS expressions (p < 0.01) and
increasing PSEN-1 and -2 levels (Figures 5A,B). We also show that
adding VPA potentiates Cur-mediated anti-inflammatory prop-
erties and significantly reduced BACE1, APP (p < 0.001), and
iNOS (p < 0.01) when compared to control and self-rec. groups
(Figure 5B).

We have previously reported the involvement of APE1 down-
regulation during the pathogenesis of neuroinflammation and
maintaining high APE1 expression is associated with neuro-
protection (Zaky et al., 2013). Cur has been reported to regu-
late COX-2 both at transcriptional and protein levels. In the
current study we investigated APE1 and COX-2 as key inflam-
matory enzymes by real time-PCR (qRT-PCR) and western
blotting. LPS induction for 4 weeks increased COX-2 expres-
sion by up to threefold and reduced APE1 by around 70% when
compared to control (Figure 6A). Continuous administration
of Cur with LPS inhibited significantly the brain toxicity by
reducing COX-2 and maintaining high APE1 expressions. On
the contrary, VPA co-administration did not improve COX-2
or APE1 levels. Although Cur treatment significantly inhib-
ited COX-2 and induced APE1expressions (up to normaliza-
tion; Figure 6A), but VPA-Cur combination was more effec-
tive on inhibiting COX-2 and inducing APE1. In consistent
with COX-2 gene expression results (qRT-PCR), western blot-
ting analysis showed similar pattern of cytosolic COX-2 protein
(Figure 6B).

Because LPS-induced neurotoxicity is associated with oxida-
tive stress and DNA mutation that activate APE1 nuclear
translocation, therefore we investigated nuclear versus cytoso-
lic distribution of APE1 protein. The results showed high
nuclear localization in LPS-induced and Co-VPA administered
rats. In parallel to Cur effects on antioxidant capacity and
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FIGURE 5 | Gene expression profiles of neuro-inflammation

modulated genes assessed by reverse transcriptase (RT-PCR) analysis.

Total mRNA isolated from rats’ brain tissues were analyzed by
semi-qRT-PCR for (β-secretase (BACE1), amyloid protein precursor (APP),
PS-1, PS-2, and inducible nitric oxide synthase (iNOS) levels on agarose
gel (B). Quantifications of the bands on the gel using VisionWorksLS
Acquisition and Analysis Software indicated that LPS induced significantly
(**p < 0.01) the expression of BACE1, APP, and iNOS accompanied with
reduction in PS-1 and PS-2 (***p < 0.001) genes compared to mock-Trx

(A). Co-VPA (200 mg/kg) treated rats showed no marked decrease in
BACE1 and APP levels compared to LPS-induced rats, but still significantly
higher (*p < 0.01) than control. Co-Cur administration (200 mg/kg), VPA
and Cur treatments induced reduction in BACE1, APP, and iNOS
expression level compared to LPS-induced rats (A). A remarkable decrease
in BACE1, APP, and iNOS level in VPA-Cur treated rats compared to
LPS-induced group (but still significant from control at p < 0.01 and
p < 0.001 respectively; A). Self-recovery rats showed no improvement in
APP, BACE1, or iNOS levels.

neuroinflammation markers, we observed marked reduction
in nuclear APE1 level upon continuous supply of Cur during
induction (Figure 6B). Likewise Cur only and in combination
with VPA was shown to be effective in switching APE1 local-
ization to cytoplasm versus VPA-treated and self-Rec groups
(Figure 6B).

MODULATION OF FIVE MEMBERS OF let-7 FAMILY miRNAs
microRNAs are considered crucial regulators of cellular immu-
nity and functions. Accumulating data from different studies
have highlighted diverse alterations in miRNAs biogenesis and
regulatory role in inflammatory diseases including neurodegen-
eration. miRNA let-7 family members are highly expressed in
central nervous system and were shown to play crucial role in
cell development and differentiation. Therefore we analyzed the
expression profile of five members of let-7 family (a, b, c, e,
and f) in the different experimental groups. The results show
that let-7 a, b, and c were under detection level in LPS induced

rats, an effect that was countered by either co-VPA or co-Cur
incorporation (Figure 7). We also observed unique pattern of
drug-induced differential expression of the five miRNAs types.
Moreover Cur or VPA treatment of induced rats exhibited the
same pattern of inducing significantly let-7c and f compared to
Cur-VPA treated rats that showed significant restoration in the
expression of the five members (Figure 7). Evidently we observed
significant elevations in let-7 a, c, and f in self-rec. group which
confirms the implication of these let-7 members in self-healing
mechanism.

DISCUSSION
In the present study, we observed the alteration of the inflam-
matory response in male adult Sprague–Dawley rats brain cortex
and investigated the protective versus therapeutic effects of Cur
alone or in combination with HDAC1 inhibitor, VPA on atten-
uating LPS-induced neuroinflammation in rats. We focused
on Cur, which is used as a food additive, due to its diverse
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FIGURE 6 | Quantitative real time RT-PCR (qRT-PCR) and western

blotting analysis of APE1 and COX-2 expressions. mRNA and total
proteins extracts were prepared (as described in the methods section)
from mock-treated and LPS-induced as well as co-treated and treated
groups. (A) and (B) showed a significant elevation (**p < 0.001) in
cyclooxygenase-2 (COX-2) level of LPS-induced group as well as
VPA-treated and co-VPA treated groups in comparison with mock-treated

group versus reduction in COX-2 level in self-recovery group. A
remarkable reduction (*p < 0.01) in COX-2 level in Co-Cur treated,
Cur-Treated and VPA-Cur treated groups versus LPS-induced group. A
remarkable reduction in APE1 in induced versus mock-treated group. Data
revealed an elevation of APE1 in treated and Co-treated groups as well as
self-recovery group but especially in VPA-treated group versus
LPS-induced rats.

FIGURE 7 | Quantitative real time RT-PCR analyses of let-7 miRNAs

family expression profile in different experimental groups. In our
study we measured the alterations in the expression levels of five
different types of let-7 miRNAs (Let-7 a, b, c, e, and f). Mock-treated,
LPS-induced, co-treated and treated rat’s miRNAs extracts were
subjected to quantitative real time polymerase chain reaction (qRT-PCR)

of target genes expression. Completed reductions (under detection limit)
in let-7a, b, and c levels were observed in LPS-induced rats, the effect
that was ameliorated by co-administration of VPA or Cur (**p < 0.001).
Moreover VPA+Cur combination for treating induced rats significantly
(*p < 0.01) induced the five members of let-7 family in comparison to
LPS-induced rats.
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pharmacological activities, very low toxicity and widespread avail-
ability. The therapeutic potential of VPA in central nervous
system diseases is also gaining support. We administered Cur
and/or VPA (200 mg/kg) for 4 weeks and observed produc-
tion of proinflammatory mediators, COX-2, APE1, and nitric
oxide/iNOS. The combined therapy decreased the production
and mRNA expression of the inflammatory TNF-α and inter-
leukin (IL-6; data not shown). In addition, expression of iNOS
and COX-2 were decreased by cotreatment with Cur and VPA.
In conclusion, these results show that the anti-inflammatory
properties of Cur and VPA potentially result from the inhibi-
tion of COX-2, iNOS, IL-6, TNF-α, and NO through activation
of NF-κB. These results impact the development of poten-
tial health products for preventing and treating inflammatory
diseases.

Consistent with the inhibition of pro-inflammatory media-
tors by Cur and VPA, we observed an anti-inflammatory role
of Cur via inhibition of NF-κB pro-inflammatory pathways.
Therefore, the NF-κB pathway is potentially involved in the
anti-inflammatory therapeutic effects of Cur in a variety of neu-
ropathologies. In support of this, Cur has been found to block
the LPS-mediated induction of COX-2 through inhibition of NF-
κB and STAT3 (Kim et al., 2003; Kang et al., 2004). Although
the beneficial effects of combined therapy can be observed and
conclusive under various experimental conditions, the effects of
Cur and VPA in rat cortex cells exposed to LPS remain to be
fully elucidated. Further experiments are required to explore the
detailed mechanisms underlying this process. Regardless of the
mechanism, the data presented in this study may assist future
studies that aim to determine the therapeutic potential of Cur
and VPA.

In a recent study, neuroinflammation was induced by bilat-
eral intracerebroventricular (ICV) administration of LPS (Tyagi
et al., 2008). They studied the proinflammatory cytokines (TNF-
α and IL-1β), acetylcholinesterase (AChE) activity, MDA, and
reduced GSH as markers for neuroinflammation, choliner-
gic activity, and oxidative stress, respectively, in different
brain regions at different time points after LPS injection.
They found enhanced AChE activity with these inflamma-
tory markers after LPS administration indicates a possible
relationship between neuroinflammation and cholinergic sys-
tem during the development of neurodegenerative diseases. It
was found also that cholinergic agonists inhibit cytokine syn-
thesis and protect against cytokine-mediated diseases (Tracey,
2007).

Findings from an experiment of selective serotonin reup-
take inhibitors (SSRIs) by Waiskopf et al. (2014) suggested a
possible interaction with both TLR4 responses and cholinergic
signaling through as yet unclear molecular mechanism(s). They
also demonstrated reduced LPS-induced pro-inflammatory IL-
6 and TNF-α in human peripheral blood mononuclear cells
preincubated with antidepressant fluoxetine. Furthermore, they
showed that fluoxetine intercepts the LPS-induced decreases
in intracellular AChE-S and that AChE-S interacts with the
NF-κB-activating intracellular receptor for activated C kinase 1
(RACK1). This interaction may prevent NF-κB activation by
residual RACK1 and its interacting protein kinase PKCβII. These

findings attribute the anti-inflammatory properties of SSRI to
surface membrane interference with leukocyte TLR4 activation
accompanied by intracellular limitation of pathogen-inducible
changes in AChE-S, RACK1, and PKCβII (Waiskopf et al.,
2014).

Also, Sailaja et al. (2012) reported that chromatin structure
and histone modifications are causally involved in this transcrip-
tional memory. Specifically, the AChE gene is known to undergo
long-lasting transcriptional and alternative splicing changes after
stress. Their findings provide further support and underscore the
importance of better understanding for the notion that chromatin
regulation is an important mechanism controlling long-term
adaptive changes in the brain associated with complex psychiatric
conditions.

In the present study we assessed the effect of the HDAC1
inhibitor VPA by measuring alterations at histological, biochem-
ical, and molecular levels. The early stage of asymptomatic stage,
reached by LPS with a modified dose (250 μg/kg five times per
week for 4 weeks) was established to explore the mechanism of
action of Cur, VPA, and VPA-Cur combination on the attenu-
ation of LPS-induced neuroinflammation. Histological analyses
indicated that co-administration of either VPA or Cur inhibited
LPS-induced lymphocyte infiltrations in the cortex tissues. How-
ever, treatment of induced rats with VPA, Cur or their combination
for 4 weeks post LPS-induction, exerted neuronal recovery, but the
most significant improvement was observed upon treatment with
VPA-Cur combination as confirmed by H&E staining.

Altered oxidative stress levels determined in our experiments
verify the neuroinflammation responses as explained by Ferger
et al. (2010). Ngkelo et al. (2012) indicated the implication of ROS
in the mechanism of TLR4 activation by LPS. The biological effects
of Cur are mainly derived from its ability to either bind directly to
various proteins such as COX-2 or its ability to modulate the intra-
cellular redox state (Hong et al., 2004). In parallel, we investigated
the anti-oxidant effect of VPA, Cur, and VPA-Cur combination
by measuring tissues MDA and GSH levels as well as SOD activ-
ities. Our results clearly demonstrate that co-Cur administration
inhibited significantly LPS-induced brain toxicity and oxidative
stress compared to co-VPA group. In addition to, treatment with
Cur alone or in combination with VPA restored oxidative stress
balance significantly (close to normalization) compared to both
VPA-treated and self-recovery groups.

Several lines of investigation support the notion that the
pathogenesis of AD is related to progressive accumulation of
Aβ protein, as a result of an imbalance between the levels of
Aβ production, aggregation and clearance. It has been shown
that the abnormal processing of APP by β and γ-secretase pro-
tease enzymes is a key event in the development of Alzheimer’s
disease (AD) neuropathology (Sastre et al., 2003), resulting in
an increase in the generation of the 42 amino acid form of
Aβ peptide which aggregates to form the insoluble amyloid
plaques. Hauss-Wegrzyniak and Wenk (2002) demonstrated that
LPS induced extracellular deposition of beta-amyloid fibrils into
the hippocampus suggesting that there is a close connection
between amyloidogenesis and LPS-induced neuro-inflammation
and LPS-induced increase of APP level. The γ-secretase complex
has not yet been fully characterized but minimally consists of
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four individual proteins including PSEN. Therefore we detected
the expression profile of neuroinflammation-related markers;
APP, BACE1, and γ-secretase subunits (PSEN-1, PSEN-2) using
semi-qRT-PCR in cortical region of rat’s brain tissues. We
observed marked induction of BACE1 and APP expressions
in the cortex tissues of LPS-induced rats along with clear
reduction in the expression levels of both γ-secretase subunits.
Consistently, we observed marked suppression in BACE1 and
APP expressions upon co-Cur administration, Cur-treatment
and more significantly in VPA-Cur treated rats versus marked
induction of PSEN-1 and PSEN-2 subunits levels in the same
groups.

Several lines of investigation support the notion that the
pathogenesis of AD is related to progressive accumulation of
Aβ protein, as a result of an imbalance between the levels of
Aβ production, aggregation, and clearance. It has been shown
that the abnormal processing of APP by β and γ-secretase
protease enzymes is a key event in the development of AD neu-
ropathology (Sastre et al., 2003), resulting in an increase in the
generation of the 42 amino acid form of Aβ peptide which aggre-
gates to form the insoluble amyloid plaques. Hauss-Wegrzyniak
and Wenk (2002) demonstrated that LPS induced extracellular
deposition of beta-amyloid fibrils into the hippocampus sug-
gesting that there is a close connection between amyloidogenesis
and LPS-induced neuro-inflammation and LPS-induced increase
of APP level. The γ-secretase complex has not yet been fully
characterized but minimally consists of four individual proteins
including PSEN. Therefore we detected the expression profile of
neuroinflammation-related markers; APP, BACE1, and γ-secretase
subunits (PSEN-1, PSEN-2) using semi-qRT-PCR in cortical
region of rat’s brain tissues.

We observed marked induction of BACE1 and APP expres-
sions in the cortex tissues of LPS-induced rats along with clear
reduction in the expression levels of both γ–secretase subunits.
Consistently, we observed marked suppression in BACE1 and APP
expressions upon co-Cur administration, Cur-treatment and more
significantly in VPA-Cur treated rats versus marked induction of
PSEN-1 and PSEN-2 subunits levels in the same groups.

Consistently in the present study, by investigating APE1 expres-
sion in LPS-neuroinflammation established model, the results
revealed significant reduction of both APE1 mRNA level, and
intracellular protein distribution (cytosolic versus nuclear) com-
pared to mock-treated rats. Furthermore, we show that Cur
co-administration maintained significantly elevated APE1 level
during the course of LPS-induction compared to induced rats
with more nuclear localization. Furthermore we found that
VPA-Cur treatment was more effective than either Cur or VPA
treatments alone in restoring high APE1 expression profile and
inducing more cytosolic localization. The intracellular localiza-
tion of the multifunctional APE1 has been closely correlated to
its various functions, hence nuclear versus cytosolic distribu-
tion level reflects a vital role in BER or in redox co-activation
of different transcription factors. This suggests that Cur and
VPA-Cur combination actions are mediated, in part, by main-
taining elevated APE1 level and shifting the intracellular bal-
ance to more cytosolic localization, a state that mimic normal
condition.

In agreement with Peng et al. (2005) that showed that VPA
may cause MKP-1 activation to dephosphorylate p38MAPK and
JNK, leading to decrease in p65 and C/EBPb binding to the
COX-2 promoter region and COX-2 down-regulation in LPS-
stimulated bEnd.3 cells, our data established that co-expression
of inflammatory proteins COX-2, iNOS and amyloid peptides
were higher in the LPS-treated rats. However, Cur/VPA decreased
the LPS-induced expressions of COX-2, iNOS, and amyloid
peptides. Cur administered to rats either alone or in com-
bination with VPA exhibited the most significant inhibitory
effect on COX-2 and iNOS expressions in their brain tissues
extracts.

Recently miRNAs have been identified as crucial regulators of
immune cell development and function. Deregulated miRNAs
contribute to the development of various diseases, for example,
cancer, cardiovascular, or neurological diseases (Bonauer et al.,
2010; Gascon and Gao, 2012; Thum, 2012).

Neurodegeneration is characterized by neuronal loss of specific
neuronal circuits associated with cognitive and motor func-
tions and by changes in miRNA levels in the nervous tissue
and in the periphery. Recent reports of microRNA modulators
of both neuronal and immune processes (termed NeurimmiRs)
predict therapeutic potential for manipulating NeurimmiR lev-
els in diseases affecting both the immune system and higher
brain functions, such as AD, Parkinson’s disease (PD), mul-
tiple sclerosis (MS), and anxiety-related disorders (Soreq and
Wolf, 2011). Manipulating NeurimmiR control that function
within both the nervous and the immune systems, over the
immune contributions to cognitive pathways may offer new ther-
apeutic targets. Amongst them let-7 family miRNA that were
reported to be broadly expressed across all differentiated tis-
sues and their expression is tightly controlled during embryonic
stem cells differentiation. In our study, we screened in par-
ticular, five types of let-7 miRNAs family which are; let-7a,
let-7b, let-7c, let-7e, and let-7f for possible modulation during
the course of induction, protection, and treatment. Interest-
ingly we observed an overall altered expression profile in the
five types of let-7 miRNAs in induced versus protected and
treated rats. However, let-7a, b, and c levels were undetectable
when assessed using qRT-PCR in induced group, a significant
expression was observed in Co-Cur and Co-VPA administered
groups, which suggest their implication in neural protection.
In addition, their levels were up-regulated up to 3, 6, and
11 folds consequently in VPA-Cur treated group which con-
firm their involvement in neural recovery of inflamed brain
tissues.

A major question of our study was to delineate to what extent
miRNA changes accompany disease and disease progression. miR-
NAs have recently been involved mostly in neurodegenerative
disorders including AD (Lau et al., 2013). Their work reveal that
most of the recorded expression changes in miRNAs are brain area
specific, with 10 miRNAs deregulated in the hippocampus and pre-
frontal cortex in late onset AD. It is also likely that several miRNA
changes recorded in our human brain samples are related to some
neuroinflammatory changes occurring during disease, especially
132-3p which mediates anti-inflammatory signaling (Shaked et al.,
2009). The targeting of acetylcholinesterase by miR-132-3p may
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be indeed relevant for the association of the enzyme activity with
amyloid load in late onset AD (Alkalay et al., 2013; Lau et al., 2013).

Consistent with obtained results of the five members of
let-7expression profile in the different experimental group, by
applying mirSVR online data base for their mRNA targets
prediction, we uncovered COX-2 gene (NM_011198) as a target
for the five members while let-7b only regulates the expres-
sion of iNOS (NM_012611) gene. This explains the observation
of let-7a, b, and c disappearance in induced group that was
accompanied with threefold induction inCOX-2 level as well
as up to threefold induction in iNOS expression compared
to mock-Trx. Our results suggest that microRNAs can func-
tion as signaling molecules and identify COX-2 as an essential
element in a pathway that contributes to the spread of CNS
damage.

Evidently the distinguished pattern of let-7 five members’
expression in each group is directly correlated to the genetic
remodeling activity that is exerted by LPS, Cur, or VPA. It is
clearly demonstrated that LPS-induced neurotoxicity suppresses
let-7 family miRNAs expression, an effect that is ameliorated by co-
administration of either cur or VPA. Co-administration of either
Cur or VPA a particular differential expression was observed in
all investigated members of let-7 miRNAs confirming their func-
tion as important players in neuro-protection. Moreover a definite
significant restoration of let7-a, b, and c levels were observed in
VPA-Cur treated rats versus self-recovery group that initiated self-
healing for 4 weeks. Treatment of induced rats with VPA or Cur
alone did not induce let-7 a, b, and c in the same pattern as their
combination did which indicate the synergistic effect VPA-Cur
treatment. The anti-inflammatory effect of Cur is most likely
mediated through its ability to inhibit COX-2 and iNOS COX-
2 as important enzymes that mediate inflammatory processes.
Improper upregulation of COX-2 and/or iNOS has been associ-
ated with the pathophysiology inflammatory disorders. Since Cur
was shown to modulate COX-2 by direct binding, adding VPA
provide synergistic effect for COX-2 and iNOS down-regulation
through its activity as epigenetic modulator.

The discovery and development of miRNA-based therapeu-
tics, as well as the diverse range of molecular cascades they can
regulate, offer a new approach for treating diseases with a het-
erogeneic or epigenetic origin. We provide strong evidence for
meaningful changes in five let-7 members miRNA expression dur-
ing induction, progression, and treatment with Cur and VPA as the
most salient feature. Recently, alteration of miR- let-7 members
expression has also been reported in several other neurode-
generative diseases including schizophrenia, AD and addiction
(Beveridge et al., 2010; Hollander et al., 2010; Santarelli et al., 2011;
Wang et al., 2011). Our work thus clearly indicates that miRNAs
such as let-7 members deserve further functional exploration to
deepen our understanding of molecular mechanisms driving not
only neuroinflammation but also other neurodegenerative dis-
orders. It is not unlikely that future studies might reveal part
of those common molecular pathways that are relevant to these
conditions.

The fine-tuning activity of miRNAs has been proven crucial in
the regulation of differentiation of microglia allowing the main-
tenance of brain homeostasis. Since a single miRNA has the

FIGURE 8 | Possible mechanisms of action of combined curcumin and

VPA.

capacity to target more than one protein involved in the same
signaling pathway, their modulation can significantly change cell
phenotypes that depend on the levels and activation of specific
proteins. Such capacity reflects a molecular paradigm suitable for
therapeutic intervention.

In conclusion, as shown in Figure 8, the antioxidant and the
current study provides evidence for the potential neuro-protective
and therapeutic effect of Cur through its anti-inflammatory
and gene-remodeling activities. Furthermore we highlight the
synergistic effect of VPA addition to Cur for treating neuroin-
flammation. Also we shed the light on the role of five let-7 family
in VPA-Cur mediated mechanism of actions as novel therapeutic
targets. Given their important role in the regulation of gene expres-
sion, we believe that miRNA-based therapies could constitute an
interesting and attractive strategy to improve microglia activity,
modulating signaling pathways linked with neuroinflammation.
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