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Abstract: Restricted Mean Survival Time (RMST), the average time without an event of interest until
a specific time point, is a model-free, easy to interpret statistic. The heavy reliance on non-parametric
or semi-parametric methods in the survival analysis has drawn criticism, due to the loss of efficacy
compared to parametric methods. This assumes that the parametric family used is the true one,
otherwise the gain in efficacy might be lost to interpretability problems due to bias. The Focused
Information Criterion (FIC) considers the trade-off between bias and variance and offers an objective
framework for the selection of the optimal non-parametric or parametric estimator for scalar statistics.
Herein, we present the FIC framework for the selection of the RMST estimator with the best bias-
variance trade-off. The aim is not to identify the true underling distribution that generated the data,
but to identify families of distributions that best approximate this process. Through simulation
studies and theoretical reasoning, we highlight the effect of censoring on the performance of FIC.
Applicability is illustrated with a real life example. Censoring has a non-linear effect on FICs
performance that can be traced back to the asymptotic relative efficiency of the estimators. FICs
performance is sample size dependent; however, with censoring percentages common in practical
applications FIC selects the true model at a nominal probability (0.843) even with small or moderate
sample sizes.

Keywords: parametric; non-parametric; information theory; model selection; survival analysis

1. Introduction

Restricted Mean Survival Time (RMST), the average survival time up to a given
time point, is hailed as a model-free statistic, which is easy to interpret causally when
summarizing survival data [1]. RMST has observed a resurgence in practical applications
as an alternative to classical analysis based on log-rank tests or Proportional Hazard (PH)
models when assessing between-group differences in survival analysis [2,3]. For clinical
trial planning, the power of different analysis methods needs to be considered. There are
indications that log-rank or PH tests generally have higher statistical power than RMST;
however, this depends on the setting [4,5]. When estimated non-parametrically, RMST is
less efficient than hazard-based methods estimated via semi- or fully parametric models
under the proportional hazards assumption [6].

The heavy reliance on non-parametric or semi-parametric methods in a survival anal-
ysis has drawn some criticism [7,8]; however, as Meier and collaborators [9] point out, it is
a rather challenging task to identify the correct parametric form for a certain problem. In
addition, the censoring affects the efficacy of both parametric and non-parametric RMST
estimators. Gardiner [10] used Kolmogorov–Smirnov, Andersen-Darling and Cramér-von
Mises statistics to assess the goodness-of-fit of parametric distributions against the empir-
ical Kaplan–Meier alternative prior to estimating RMST. Nemes and collaborators [11]
concluded in a simulation study that, under model miss-specification, the non-parametric
RMST estimator has superior efficacy in terms of the mean squared error (MSE) compared
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to parametric alternatives. The authors also concluded that parametric estimators reduce
type II error rates (i.e., increased statistical power) if the correct distribution is identified.
The percentage of censoring and the choice of restriction time are acknowledged by the
authors to directly affect the comparability of parametric and non-parametric estimators.

The MSE offers an objective way to compare estimators in simulation studies where
the true value of a parameter of interest is known. However, the validity of MSE compar-
isons is limited in practical situations, as the bias generally is unknown and is difficult
to estimate. Building upon the Focused Information Criterion (FIC) by Claeskens and
Hjort [12], Jullum and Hjort [13] developed a framework for objective comparison and
model selection among parametric and non-parametric models, and this latest development
of FIC is at the core of our study. FIC does not attempt to assess the overall fit of candidate
models to observed data. Instead, candidate models are ranked based on the estimated
precision of a parameter of primary interest. This ‘focus’ parameter does not need to be a
specified parameter of a distribution, but can be any scalar summary of the data. As RMST
captures the survival patterns in a single scalar measure, FIC offers a feasible framework
for model selection.

In this paper, building upon Claeskens and Hjort [12] and Jullum and Hjort [13],
we aim to establish the FIC framework for the model selection for RMST. We describe
the mathematical framework needed for implementation. Thereafter, we look at factors
affecting the performance of FIC, such as censoring type and rate as well as sample size.
In addition, as with a real-life application, we illustrate possible gains in efficacy by using
the parametric RMST estimators suggested by FIC without compromising interpretability.
We also provide an indicative discussion of the interplay between the maximum follow-up
time and chosen restriction time.

2. Notation and Assumptions
2.1. Notation and Nomenclature

We assume that survival times X1, . . . , Xn for subjects j = 1, . . . , n are indepen-
dently and identically distributed (iid), according to the cumulative distribution func-
tion F(x) = P(X ≤ x) and survival function of interest S(x) = 1 − F(x) = P(X > x).
Similarly we assume C1, . . . , Cn to be iid censoring times according to the distribution
function G(c) and survival function 1− G(c). Thus, the actual observed time for subject j
is Tj = min

(
Xj, Cj,

)
. Additionally, we have δj = I

{
Xj ≤ Cj)

}
as an event indicator that

takes a value of 1 if the event of interest takes place before or on the given censoring time,
and 0 otherwise. We assume independence between failure and censoring times. We let
t(1) ≤ ... ≤ t(n) denote the ordered observed survival times and δ(1), ..., δ(n) their associated
indicator values.

In estimating the survival function S from the observed censored data
(

t(i), δ(i)

)N

i=1
,

scientific literature almost exclusively uses the Kaplan–Meier Product-Limit estimator [14],
expressed as

ŜKM(t) = ∏
Ti≤t

[
1− δi

Y(Ti)

]
(1)

where Y(t) is the number at risk at time t. If we have information about F(x) and if it is a
member of a parametric family of distributions with p-variate parameter vector θ, then the
likelihood function for the sample (Tj, δj), j = 1, ..., n is

L(θ|Tj, δj) =
n

∏
j=1

f (Tj; θ)δj
{

1− F(Tj; θ)
}1−δj . (2)
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Further, we denote the first and second derivatives of the log-likelihood function,
log L(θ|Tj, δj), as u(Tj; θ) and I(Tj; θ). We also define the information matrix as

J = −EF
{

I(Tj; θ)
}

and K = VarF
{

u(Tj; θ)
}

(3)

Generally, K is considered an inefficient estimator of the information matrix; however,
it plays an important role when robustness is of concern. Under some regularity conditions
(see Chap 6 in [15]) the maximum likelihood estimator of θ, θ̂MLE, satisfies

√
n(θ̂MLE − θ0)

D−→ Np{0, Σ}, (4)

where θ0 is the unique minimizer of the Kullback–Leiber divergence and the least false
parameter value; Np is a mean zero p-variate normal distribution with covaraince matrix Σ.
If the assumed parametric model is the true model then J = K and Σ = J(θ)−1. Below, the
subscript np denotes the non-parametric estimator and pm the parametric estimator, while
the subscript 0 corresponds to the least false or best approximate value, as the minimizer of
the Kullback–Leibler distance from the true model to the approximated model.

2.2. Restricted Mean Survival Time

Kaplan and Meier [14] suggested estimating the mean survival time (µ) as

µ̂KM =
∫ ∞

0
t dFn(t), (5)

where Fn is the empirical distribution function. However, this is rarely estimable due to
censoring and instead attention is paid to the τ-restricted mean survival time (µτ)

µ̂KM,τ =
∫ τ

0
t dFn(t) =

∫ τ

0
ŜKM(t) dt. (6)

This approach disregards any information after τ and technically, this counts as Type I
censoring, as the analysis is restricted to the interval (0, τ].

Alternatively, based on the plug-in principle, we can use the maximum likelihood
estimates to calculate µτ with the assumed distribution function as

µτ =
∫ τ

0
S(t; θ̂MLE) dt.

As the Kaplan–Meier estimator has an infinite number of parameters, σ2
np > σ2

pm. How-
ever, this presumes that F(t) is correctly identified. If F(t) is incorrectly selected, then
the maximum likelihood estimator is asymptotically biased, resulting in a inflated MSE.
Trading-off bias against variance is a cornerstone of the FIC, described in the next section.
In this setting, the non-parametric estimator is considered unbiased, thus

MSEnp = 02 +
vnp

n
. (7)

and the MSE for the parametric estimator is given by

MSEpm = b2 +
vpm

n
, (8)

where b is the bias of the estimator and v represents the variance.



Entropy 2022, 24, 713 4 of 12

3. Focused Information Criterion for RMST

We now aim to deduce the FIC for RMST. We look at properties of the non-parametric
estimator

∫ τ
0 ŜKM(t) dt and a parametric alternative denoted by

∫ τ
0 Ŝpm(t) dt. As n −→ ∞

based on Jullum and Hjort [13], we note that

(√
n
(∫ τ

0 ŜKM(t) dt−
∫ τ

0 S(t) dt
)

√
n
(∫ τ

0 Ŝpm(t) dt−
∫ τ

0 S0(t) dt
)) D−→

((
Z

ct J−1U

))
∼ N

((
0
0

)
,
(

vnp vc
vc vpm

))
. (9)

Here, (Z, U) are zero mean normal variables with dimensions 1 and p. Next, we need
to establish estimators for the parameters in Equation (9). For the variance of the non-
parametric RMST, the empirical analogue of v̂np = n−1 ∑n

i=1 IF(Ti, F̂n) is a natural choice.
Here, IF is the influence function of a statistical functional T(F) given by

IF(x; T, F) = lim
ε→0

{T[(1− ε)F + εδx]− T(F)}
ε

, (10)

if this limit exists. Reid [16] was first to provide IF for censored data, and for the restricted
mean survival time. Building upon the representation of the cumulative hazard function as
a functional of two subsurvival functions Su = P(X > t, δ = 1) and Sc = P(X > t, δ = 0)
by Peterson [17], Reid [16] gives

IF(Ti, Fn, Su, Sc) =
∫ τ

0
S(t)

{
1{s ≤ t}

(Su + Sc)(s)
+
∫ min(s,t)

0

dSu

(Su + Sc)2(u)

}
dt, (11)

with τ < ∞ and S(τ) > 0. This reduces to the well known Greenwood plug-in estimator,
which, as Eaton and collaborators [5] demonstrated based on Monte Carlo simulations, is
closest to empirical and asymptotic variances. The Greenwood estimator is given by

V̂(µτ) = ∑
ti≤t

[∫ τ

ti

ŜKM(t) dt
]2 δi

Yi(Ti)(Yi(Ti)− δi)
. (12)

The variance of the parametric estimator is defined from a model-agnostic viewpoint.
The influence function of θ̂MLE = MLE(F) is given by

IF(T, F) = lim
ε→0
{MLE(Fε)−MLE(F)} = J(θ)−1K(θ)J(θ)−1

with

J = − 1
n

n

∑
j=1
{I(T; θ)} and K =

1
n

n

∑
j=1

{
u(T; θ)u(T; θ)t}. (13)

With the delta-method, this gives

vpm =

{
∂µ(θ̂)

∂θ

}t

J(θ)−1K(θ)J(θ)−1

{
∂µ(θ̂)

∂θ

}
. (14)

For the co-variance

vc =
1
n

{
∂µ(θ̂)

∂θ

}t

J−1
n

∑
j=1

IF(Tj, F̂n)u(Tj; θ̂). (15)

In Equation (9) we made the claim that
√

n
(∫ τ

0 ŜKM(t) dt−
∫ τ

0 S(t) dt
)

has a limit
normal distribution with a mean zero of a certain variance, implicitly assuming that∫ τ

0 ŜKM(t) dt is asymptotically unbiased.
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Generally, non-parametric estimators are unbiased; however, this is not true for the
Kaplan–Meier integrals [14]. Meier [18] specified that ŜKM(t) is “nearly unbiased” at a rate
of e−Y(t).

Gill [19] provided stronger bounds for the bias

−F(t)Hn(t) ≤ S(t)− ŜKM(t) ≤ 0 (16)

where Hn(t) = P(Y(t) = 0) is the probability that the at risk set is empty.

Mauro [20] demonstrated that Bias
〈 ∫ τ

0 t dFn(t)
〉
≤ 0. Zhou [21] was first to provide a

lower bound for the bias

−
∫ τ

0
tHn(t)F(dt) ≤ Bias

〈 ∫ τ

0
t dFn(t)

〉
. (17)

Stute [22] provided and improved version of the lower bound of the bias in the form of

−
∫ τ

0
tG(t)Hn−1(t)F(dt) ≤ Bias

〈 ∫ τ

0
t dFn(t)

〉
. (18)

It is evident that if there is no censoring, the terms of the lower bound vanish, and
as the bias is strictly negative,

∫ τ
0 x dFn(x) is unbiased. This is expected as in this case∫ τ

0 x dFn(x) = n−1 ∑i Xi. However, it is also evident that when censoring is present, the
Kaplan–Meier integral can have a non-negligible large sample size bias. Maximum bias is
observed at τH = inf{t : H(t) = 1}, the least upper bound of support for the distribution
function of T. In real life applications τ � τH . Additionally, the bias is more evident
when G has short tails compared to F. As a result Hn(t), or Hn−1(t) on the interval (0, τ] is
negligible and we can assume that the bias of ŜKM ∼ 0.

The parametric estimator is asymptotically unbiased and based on Equation (9) for
the bias b̂, we have √

(n)(b̂− b) D−→ ct J−1U ∼ N(0, κ) (19)

where κ = vpm + vnp − 2vc.
Although, b̂ is an approximately unbiased estimator for b, typically b̂2 overestimates

b2 with EF{b̂2} = b2 + κ/n + o(n−1). Jullum and Hjort [13] noted that it is theoretically
possible that b2 < κ/n and introduced the following correction max(0, b̂2 − κ̂/n) in order
to truncate negative estimates (i.e., no bias) to zero.

After we have established the necessary estimators, we can confirm the FIC scores for
the RMST µτ as

FICnp =
v̂np

n
(20)

FICpm = max
{

0, b̂2 − κ̂

n

}
+

v̂pm

n
(21)

Clinical trials mainly aim to compare two (or more) treatment arms, e.g., to test the
difference in restricted means survival times between two groups (denoted 1 and 2, below)

∆ =
∫ τ

0
S1(t) dt−

∫ τ

0
S2(t) dt. (22)

If ∆ is estimated based on non-parametric models, then

FIC∆
np =

v̂1np

n1
+

v̂2np

n2
. (23)
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while if we use parametric estimators then

FIC∆
pm = max

{
0, (b̂1 − b̂2)

2 − κ̂1

n1
− κ̂2

n2

}
+

v̂1pm

n1
+

v̂2pm

n2
. (24)

Naturally, a mix of distributions or a mix of parametric and non-parametric estimators
is possible.

4. Operating Characteristics of FIC for RMST

Jullum and Hjort [13] (Corollary 1) provided the upper probability limit of FIC se-
lecting the true parametric model over the non-parametric one (αn) as Pr(χ2

1 < 2) = 0.843.
Likely, αn is influenced by several factors that limit the amount of information available in
the data. In the following, we assess how censoring and sample size affect αn. In addition,
we discuss how the choice of τ and the relationship between τ and maximum follow-up
time (tmax) might affect FIC.

The characteristics of the variance estimators for RMST have direct implications
on FIC. The Greenwood variance estimator (Equation (12)) is a sum of a sequence of
overlapping squared areas from ti to τ weighed by the square of the coefficient of the
variation of S(t) at ti. As noted previously, vnp ≤ vpm. When we have Type I censoring, the
support set for vnp and vpm coincide. If tmax > τ, then the domain of the non-parametric
estimator is (0, τ], while for the parametric estimator it is (0, tmax]. The proportion of the
total Fisher Information contained in the censored data is just the proportion of observations
that are not censored [23], and given X ⊥⊥ C ⊥⊥ τ we have

J(T, θ) = J(X, θ)Pr(X < τ ∧ C) (25)

where Pr(X < τ ∧ C) =
∫ τ

0 F(x)g(x) dx and if τ < tmax then Jtmax (θ)
−1 < Jτ(θ)−1. If the

parametric model is correct, and follow-up is not restricted to (0, τ] (i.e., random censoring)
with J(T, θ) = J(X, θ)Pr(X < C), FIC ought to select the true parametric estimator with
higher probability.

Within a reasonable restriction time, we expect that αn is directly affected by the
percent of censored observations and sample size. Here, we consider a scenario where
we assume that the maximum follow-up time is τ, mirroring a clinical trial with Type
I censoring at τ. The actual observed time for subject j is Tj = min

(
Xj, Cj ∧ τ

)
and

δj = I
{

Xj ≤ Cj ∧ τ
}

, a mix of Type I and random censoring. We assume exponential
survival times with λ = 1/365 and Type I censoring at τ = 365, and evaluate a series of
random exponential censoring times with hazard γ = 0.1/365, ..., 3/365 with increments of
0.029. This resulted in a minimum overall censoring of 36.7%, and a maximum censoring
of 75%. For each γ, we simulated a data set with n = 100 and estimated FIC for the
non-parametric and for the exponential RMST. The simulations were repeated 1000 times.
The aim was to assess the true positive rate of choosing between the (true) exponential
RMST and the non-parametric alternative.

As it can be observed in Figure 1, with increasing censoring, the sensitivity of FIC
initially decreased, reaching a minimum at around 60% of censoring, followed by an
increase in sensitivity. Next, with the censoring percentage at the point where the sensitivity
was the lowest (γ = 0.00448), we simulated survival data with varying sample sizes from
50 to 1000 subjects and estimated FIC. Each sample size was simulated 1000 times. As
expected, the true positive rate of choosing the exponential distribution increased with the
sample size. For a more detailed look at the patterns recorded in Figure 1, please see the
Appendix A.
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0.00

0.25

0.50

0.75

1.00

40% 50% 60% 70%

Censoring percentage

T
ru

e
 P

o
s
it
iv

e
 R

a
te

a)

αn = 0.843

0.00

0.25

0.50

0.75

1.00

250 500 750 1000

Sample Size

b)

Figure 1. True positive rate of correctly identifying the exponential distribution as a function of
censoring percentage (a) and sample size (b). The dashed horizontal line represents the theoretical
limit (αn = 0.843) of selecting the true parametric model over the non-parametric one.

5. Practical Application

The survival rate of melanoma has increased in recent decades, with approximately
two-thirds of the patients surviving 5 years or more after diagnosis, with women generally
having better survival than men [24]. Using a data set compiled by Drzewiecki and
collaborators [25], we will assess the possibility to improve the efficiency of an RMST
analysis of sex-specific survival. Data from 126 female and 79 male melanoma patients
are included in the analysis (data can be found in the “timereg” R package). As can be
observed in Figure 2, females have better survival prospects than males. Next, we analyse
whether the restricted mean survival time at 3, 5 and 10 years differ between the sexes.
As competing models, we consider the non-parametric estimator and the Exponential,
Weibull, Gamma, Generalized Gamma and Log-logistic distributions. The combination of
the Exponential distribution for men and Gamma distribution for women was flagged by
FIC as a better alternative than the purely non-parametric estimators (Table 1).

3
 y

rs

5
 y

rs

1
0

 y
rs

0.00

0.25

0.50

0.75

1.00

0 730 1460 2190 2920 3650

Time in Days

O
ve

ra
ll 

s
u
rv

iv
a
l

Female

Male

Figure 2. Overall survival after melanoma diagnosis.
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On average, women had 65 days longer survival in the initial 3 years. The bias of the
parametric estimator was negligible (0.7 days). Additionally, the parametric model reduced
the 95 % confidence interval (CI) length with 27.5%, a considerable gain.

Table 1. Difference in RMST (∆) and associated FIC for women compared to men expressed in days
at 3, 5 and 10 years for melanoma patients estimated with non-parametric Kaplan–Meier integrals
and a combination of Exponential and Gamma distributions.

Timepoint Model ∆ (Days) Bias of ∆
√

FIC 95% CI for ∆

3 yrs Non-param. 65.32 - 30.02 6.47; 124.17
Param. 64.54 −0.78 21.74 21.92; 107.17

5 yrs Non-param. 165.19 - 67.10 36.66; 299.72
Param. 153.92 −14.83 54.83 46.46; 261.40

10 yrs Non-param. 468.19 - 183.06 109.40; 826.99
Param. 452.62 −15.57 181.51 96.86; 808.37

On average, women had 165 days longer survival in the initial 5 years. Just as for the
3-year survival, the Exponential-Gamma combination best described the data at 5 years,
and reduced the 95% CI length with 18%. However, it should be noted that the bias
was 14 days, which is an 8.5% bias. At 10 years, the RMST difference between men and
women increased to 15.5 months. Still, parametric estimation increased the efficiency;
however, the reduction in CI length was less than 1%, a very minor gain compared to the
non-parametric estimator.

6. Discussions

In this paper, we have introduced the FIC [12,13] as a tool for the model selection
for RMST. While FIC has a well established theory and is applicable in a wide range of
areas, using FIC as a tool for selection of the best RMST model has some characteristics
that need to be considered. First, we need to consider that the non-parametric RMST
estimator is not consistent and is biased. Likely, this will have minor implications in
practical applications; nevertheless, researchers should consider this aspect. If the at risk
set at the chosen restriction time τ is the empty set or contains very few participants, the
bias can be non-negligible. Second, the censoring percentage and type of censoring (type
II or random, possibly hybrid) affects the efficiency of parametric and non-parametric
estimators differently. Third, the variance of the Kaplan–Meier survival curve at any time t
is based on information up to t−. The parametric survival curve estimator use information
up to τ in the case of Type I censoring, or tmax in the case of random censoring.

Jullum and Hjort [13] concluded that the upper probability limit of FIC selecting
the true parametric model over the non-parametric one (αn) to be Pr(χ2

1 < 2) = 0.843, a
probability that was replicated in our simulations. This probability was obtained when the
exponential estimator was tested against the non-parametric estimator in a setting when
the exponential model was the true one and the censoring was due the restriction at τ.
We observed that αn was dependent on the censoring percentage. In addition, reaching
αn = 0.843 is sample size dependent.

In clinical trials of chronic diseases, τ coincides with the end of the follow-up. In ob-
servational studies, often τ � tmax, thus the information contained in (τ, tmax] might offer
an extra advantage for the parametric variance estimator. However, the same information
in (τ, tmax] might bias the parametric survival estimate up to τ and induce bias in µ̂τ . This
is more apparent when outliers are present, which usually appear on the right tail of the
distribution. This depends on the assumed distribution, as Aranda [26] highlighted, where,
e.g., exponential survival curves are less affected than Weibull survival curves.

As illustrated by the analysis of the melanoma data, FIC selected the best fitted model
that minimizes MSE. However, just as Akaike or the Bayesian Information Criterion (AIC
and BIC), it offers a ranking of competing models, but not a direct gauge of model fit
or quality. At the 10-year restriction time, the parametric estimator was ranked first, but
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the statistical gains (i.e., lower MSE) of choosing the parametric estimator was negligible.
Only looking at FIC ranks is likely not enough, but one should consider the distance
between the competing models on the FIC scale. Just as with AIC and BIC, this requires
further research.

One practical difficulty of parametric estimation of the RMST lies in the selection of
parametric distribution(s). A set of competing parametric families can be selected based on
subject-specific disease knowledge and by graphical examination of the hazard. The aim
should not be to identify the true underlying distribution that generated the data, but to
identify families of distributions with similar shapes [27] and by simultaneously looking
at the bias and variance with FIC to decide how much model miss-specification can be
tolerated [28] in order to increase efficiency.

In conclusion, we advocate the adaptation of the FIC framework for model selection
for RMST. Studies with relatively short restriction times (i.e., restriction time shorter than
the mean/median survival time) can greatly benefit from moving from a non-parametric
estimation to a parametric one. It is relatively easy to identify families of distributions with
similar shapes as the observed data for shorter follow-times, which would decrease the bias.
In observational studies where tmax > τ, we recommend a first analysis to be conducted
so that the support set of both parametric and non-parametric estimators is (0, τ]. This
setting will likely result in a smaller bias for the parametric RMST estimator and would
aid interpretability. Naturally, as FIC trades off bias against variance, a reduced variance
might outweigh the bias of the parametric estimator on (0, tmax]. Yet another argument for
restricting attention to (0, τ] is that the distribution that FIC selects might convey important
medical/biological information.
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Abbreviations
The following abbreviations are used in this manuscript:

CI Confidence Interval
FIC Focused Information Criterion
IF Influence Function
KM Kaplan–Meier
MLE Maximum Likelihood Estimator
np Non-parametric
pm Parametric
RMST Restricted Mean Survival Time

Appendix A. Behavior of FIC for RMST as a Function of Censoring

Figure 1a in the main text exhibited an interesting pattern, namely that the probability
of selecting the true exponential RMST over the non-parametric estimator had a v-shaped
curve, with PrFn(FICpm ≤ FICnp) being the lowest at around 65% of the data censored.
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Here, we will look at FIC and its components, to elucidate the mechanisms behind this
pattern. As noted in the main text

FICpm = max
{

0, b̂2 − κ̂

n

}
+

v̂pm

n
. (A1)

If the parametric model is the true data generating process then, at least asymptotically,
b̂ = 0, and in practical situations it is expected that b̂ is close to zero and FICpm is dominated
by the variance. Please see Appendix B for more details.

Starting with the Greenwood variance estimator (Equation (12)) and then replacing
each term by the asymptotic limiting counterparts, the non-parametric asymptotic variance
(AVar) is

AVar(µnp) =
∫ τ

0

{∫ τ

x
S(t) dt

}2 h(x)
n(1− F(x))(1− G(x))

dx. (A2)

Assuming exponential survival times with rate λ and exponential censoring times with
rate γ then

1
n

AVar(µnp) =
∫ τ

0

(e−λτ − e−xλ)2

λe−x(λ+γ)
dx. (A3)

The variance of the parametric estimator when the assumed parametric model is the true
model (and J = K) is given by

AVar(µpm) =

{
e−λτ(1 + λτ)− 1

λ2

}2
λ2

∑i δi
. (A4)

Here, ∑i δi = nPr(X < C) = nλ(λ + γ)−1. Next, we need to establish the Asymptotic
Relative Efficiency (ARE) between the non-parametric (Equation (A3)) and parametric
variance (Equation (A4)) as

ARE =
AVar(µpm)

AVar(µnp)
.

Without providing a closed form solution, we can observe that the sample size n is factored
out. Thus, for a given τ the ARE is a function of the proportion of censored observations
(Figure A1). The v-shaped curve of Figure 1 is present here as well. Miller [7] and Jullum
and Hjort [8] have assessed the ARE of parametric and non-parametric variance estimators,
concluding that the maximum ARE is 64%. As Figure A1 indicates, the maximum ARE is
much higher; however, for realistic restriction times (≤mean survival time), this is achieved
at a high censoring percentage, i.e., when the censoring distribution has shorter tails than
the survival distribution. This might result in tmax < τ, which complicates the estimation
of
∫ τ

0 Ŝ(t) dt. Kaplan and Meier [14] did not define S(x) for tmax < x and δtmax = 0.
Efron [29] proposed a modification so that ∀x > tmax S(x) = 0, while Gill [19] proposed
S(x) = S(tmax)|∀x > tmax. Both modifications would bias RMST and in light of guidelines
by Eaton [5], RMST should not be calculated in these settings.

In closing, we can conclude that the v-shaped curve of the true positive rate of FIC
choosing the true exponential distribution is due to the relation of the asymptotic relative
efficiency of parametric and non-parametric estimators to censoring. This concludes the
discussion of Figure 1a.
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Figure A1. Asymptotic relative efficiency of the parametric and non-parametric variance estimators
for RMST as a function of censoring percentage and restriction (τ) time.

Appendix B. Limit Probability as a Function of Censoring and Sample Size

Figure 1b in the main text illustrates, with the help of simulation, the convergence to
the limiting probability that FIC would select a parametric model over the non-parametric
one as a function of censoring and sample size. Using the notation and theory outlined in
the appendix by Jullum and Hjort [13], we note that

PrFn(FICpm ≤ FICnp) −→ Pr

{
χ2

1

(
n(µ̂np − µ̂pm)2

vnp − vpm

)
≤ 2

}
.

Here χ2
1(ζ) is a non-central distributed variable with 1 degree of freedom and a non-

centrality parameter ζ. If the considered parametric model is the true one and we have
unbiased estimates, then ζ = 0 and PrFn(FICpm ≤ FICnp) = 0.843.

As noted in the main text, µ̂np is downward biased and the bias may decrease to zero
at a rate slower than

√
n [30]. The simulation studies in Section 5 in the main text assumed

exponential survival times. Maximum likelihood estimators are consistent; however, they
can have a small sample bias. The bias of the maximum likelihood estimate of the rate
parameter (λ) of the exponential distribution (n− 1)−1λ rapidly decreases with increasing
sample size. We note that β = E[X] is the expectation of the uncensored survival times;
then, with the help of the delta-method, we can establish the bias of µ̂pm as

bpm = − 1
2n

τ2e−τβ−1

β

Just as for the non-parametric estimate, we have a downward bias. In addition, bpm −→ 0 as
n −→ ∞ or τ −→ ∞. Due to the bias of both parametric and non-parametric estimates and
different convergence rates, we expect that µ̂np − µ̂pm 6= 0. We can conclude that if n −→ ∞
then PrFn(FICpm ≤ FICnp) −→ 0.843.

The simulation in Section 5 assumed hybrid random and Type I censoring. This
assumes that no information is recorded after τ. In observational studies, the maximum
follow-up usually exceeds τ. The asymptotic relative efficiency of the parametric estimator
in the setting described in Section 5 with Tj = min

(
Xj, Cj ∧ τ

)
is around 87% of the

estimator with Tj = min
(
Xj, Cj

)
. Thus, considering the available data after τ increases the

convergence toward 0.843. This concludes the discussion of Figure 1b.
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