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P H Y S I C A L  S C I E N C E S

The dissipative Talbot soliton fiber laser
Heze Zhang1, Yueqing Du1, Chao Zeng1, Zhipei Sun2, Yong Zhang3, Jianlin Zhao1, Dong Mao1*

Talbot effect, characterized by the replication of a periodic optical field in a specific plane, is governed by diffrac-
tion and dispersion in the spatial and temporal domains, respectively. In mode-locked lasers, Talbot effect is rare-
ly linked with soliton dynamics since the longitudinal mode spacing and cavity dispersion are far away from the 
self-imaging condition. We report switchable breathing and stable dissipative Talbot solitons in a multicolor 
mode-locked fiber laser by manipulating the frequency difference of neighboring spectra. The temporal Talbot 
effect dominates the laser emission state—in the breathing state when the integer self-imaging distance deviates 
from the cavity length and in the steady state when it equals the cavity length. A refined Talbot theory including 
dispersion and nonlinearity is proposed to accurately depict this evolution behavior. These findings pave an effec-
tive way to control the operation in dissipative optical systems and open branches in the study of nonlinear phys-
ics.

INTRODUCTION
Talbot effect, also known as Talbot self-imaging, describes the re-
currence of a periodic object illuminated by a plane wave at specific 
planes, which was first found by Talbot (1) and then theoretically 
interpreted by Rayleigh (2). Hitherto, the Talbot effect has been 
found and applied in a myriad of fields, including Bose-Einstein 
condensates (3), quantum optics (4), and atom optics (5). In addi-
tion to the widely studied Talbot effect in the spatial domain, it can 
be extended to other domains [i.e., time (6–8), frequency (9, 10), 
and transverse momentum (11) domains] by virtue of the Fourier 
duality (12). Analogous to the spatial Talbot effect arising from the 
paraxial diffraction of optical beams (13), the temporal counterpart 
is enabled by the propagation of pulse trains in a dispersive medium 
under the first-order dispersion condition (7), resulting in the re-
construction of the initial periodic pulse trains (integer Talbot ef-
fect) or the revival of pulse patterns with multiplied repetition rates 
(fractional Talbot effect) (14). This approach can manipulate the 
repetition rate and intensity of pulse trains without affecting the na-
ture of individual pulses and has been applied in temporal cloaking 
(15), high–repetition rate lasers (16), and waveform amplifi-
cation (17).

Aided by frequency-shifted feedback, the Talbot effect has been 
used in single-frequency lasers to generate ultrashort pulses, known 
as Talbot lasers (18–20). Their longitudinal modes have a quadratic 
phase distribution that can be flexibly manipulated, enabling the 
generation of pulse trains with a controllable repetition rate based 
on the Talbot condition. In this case, the nonlinear effect has a neg-
ligible impact on Talbot lasers due to the relatively low pulse inten-
sity. Apart from these linear cases, Talbot phenomena also appear in 
nonlinear systems (21–23). Periodic rogue waves exhibit recurrent 
behavior in a cubic nonlinear medium, which arises from the trans-
verse modulation instability and the nonlinear interference of 
Akhmediev breathers (22).

Optical soliton originally refers to a self-organized structure that 
can preserve its property during propagation in conservative sys-
tems. In a lossless fiber, solitons are generated through the intricate 
interplay between anomalous dispersion and self-phase modula-
tion, exhibiting the Sech2 intensity profile (24). The mode-locked 
pulses in anomalous-dispersion fiber lasers are referred to as “soli-
tons” because they result from the similar balance between disper-
sion and nonlinear effects (25). The normal-dispersion fiber lasers 
are capable of generating self-similar pulses and dissipative solitons. 
The former relies on the self-similar amplification in the gain fiber 
(26), while the latter depends on the balance between gain and loss 
(such as the filtering effect) of the system (27). All these mode-
locked pulses exchange energy with the environment, and their 
properties vary along the cavity owing to gain, loss, dispersion, and 
nonlinear effects. Lately, the term “dissipative optical soliton” has 
gained increasing popularity to underscore the crucial role of dissi-
pation in the formation of mode-locked pulses (28). As the typical 
dissipation system, the mode-locked fiber laser constitutes an ideal 
platform to uncover the underlying physics of nonlinear waves (27–
34). Nevertheless, the temporal Talbot effect is difficult to manifest 
in conventional mode-locked lasers, as the longitudinal mode spac-
ing from megahertz to gigahertz requires a dispersion value above 
1000 ps2 to satisfy the self-imaging condition (6).

Currently, synchronized multicolor mode-locked lasers were 
achieved by introducing spectral filter and phase modulation inside 
the cavity (35, 36), in which the frequency spacing of neighboring 
spectra lies in the terahertz range, ~103 times larger than that of the 
longitudinal modes in other laser resonators. The dispersion value 
required for achieving Talbot self-imaging (~1 ps2) is comparable to 
the cavity dispersion, enabling the multicolor fiber laser to be an 
ideal platform for studying the temporal Talbot effect. In this study, 
we demonstrate a self-reproducible multicolor wave packet in a 
mode-locked fiber laser that operates in the breathing (steady) state 
when the integer self-imaging distance deviates from (equals) the 
cavity length. The formation and self-reproducing characteristics of 
the multicolor wave packet depend on both the Talbot effect and 
dissipation effect, thus leading to its designation as a dissipative Tal-
bot soliton to emphasize their pivotal roles. A refined Talbot theory 
that accounts for dispersion and nonlinear effects is proposed to 
analytically describe the propagation of the dissipative Talbot soli-
ton in fibers.
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RESULTS
Principle and setup
The spatial Talbot effect is interpreted as the superposition of par-
axial diffraction components of a plane wave induced by a periodic 
structure such as grating, as shown in Fig. 1A. Because of the con-
structive interference of the diffracted waves, the grating image re-
appears at a periodic distance—Talbot length. In the temporal 
domain, a wave packet composed of multicolor solitons features 
beating fringes originating from the interference among them 

(Fig. 1B, left). Such a complex wave packet resembles the light wave 
diffracted by the grating in the spatial domain and exhibits the Tal-
bot self-imaging phenomenon during the propagation in dispersive 
medium such as single-mode fibers.

In a laser resonator with a fixed dispersion value, the self-imaging 
distance of a low-intensity wave packet is dependent on the frequen-
cy difference between neighboring spectra according to Talbot the-
ory (37), similar to the spatial counterpart depending on the period 
of the grating. As illustrated in the right panel of Fig. 1B, when the 

Fig. 1. Principle and setup of the dissipative Talbot soliton laser. (A) The spatial Talbot effect is ascribed to the interference of plane waves diffracted by a grating, 
manifesting as the periodic recurrence of the grating image. (B) In the temporal domain, the multicolor wave packet resembles these diffracted waves and exhibits recur-
rent phenomena during propagation in a dispersive medium. The laser operates in the breathing (steady) state when the integer self-imaging distance deviates from 
(equals) the cavity length. (C) Experimental setup. WDM, wavelength division multiplexer; EDF, erbium-doped fiber; OC, output coupler; PI-ISO, polarization-insensitive 
isolator; SA, saturable absorber; DG, diffraction grating; CL, cylindrical lens; SLM, spatial light modulator; PC, polarization controller; SMF, single-mode fiber; PD, photode-
tector; DFT, dispersive Fourier transformation; a.u., arbitrary units. The inset displays the typical spectral filter and phase modulation induced by the PPS.



Zhang et al., Sci. Adv. 10, eadl2125 (2024)     13 March 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

3 of 10

integer self-imaging distance deviates from (equals) the cavity 
length, such a wave packet cannot (can) reproduce itself in a single 
round trip, generating a breathing (stable) soliton governed by the 
temporal Talbot effect, i.e., breathing dissipative Talbot soliton 
(BDTS) and stable dissipative Talbot soliton (SDTS).

We develop a synchronized multicolor soliton fiber laser to veri-
fy the above principle and explore dissipative Talbot solitons, as de-
picted in Fig. 1C. The cavity length and net dispersion of the fiber 
laser are 18.9 m and  −0.52 ps2, respectively. The programmable 
pulse shaper (PPS) is used within the cavity to introduce spectral 
filter and phase modulation in the frequency domain. When the 
pulse enters the PPS, it is dispersed by the diffraction grating and 
launched into the spatial light modulator. By manipulating the spa-
tial light modulator with a computer, one can flexibly and precisely 
adjust both the transmittance and phase of each frequency as de-
sired. The inset of Fig. 1C illustrates the typical spectral filter and 
phase modulation induced by the PPS, wherein the former facili-
tates multiwavelength lasing, while the latter partially compensates 
for group delay differences at these wavelengths. The parameters of 
the fiber laser and measurement system are given in Materials and 
Methods.

Before imparting spectral filtering and parabolic phase, the fiber 
laser delivers single-wavelength chirp-free soliton, exhibiting typi-
cal sidebands as that of the previous reports (29). By introducing 
periodic spectral filtering and parabolic phase with a PPS, we obtain 
various types of multicolor solitons in the fiber laser and study their 
evolution dynamics. The roles of spectral filter and phase modula-
tion on the pulse formation are elucidated in section S1 and fig. S1. 
The spectral number of multicolor solitons should be no less than 
three to demonstrate the temporal Talbot effect. Taking the three-
color soliton as an example, the frequency difference of neighboring 
spectra is mainly determined by the spectral filtering period, rang-
ing from 0.493 to 0.812 THz. As the self-imaging distance mainly 
depends on the frequency difference of neighboring spectra, BDTSs 
and SDTSs can be achieved in the fiber laser by tuning the modula-
tion period of spectral filter and parabolic phase.

Breathing dissipative Talbot solitons
A lumped propagation model is used to perform the simulations 
(38), in which the complex amplitude of the pulse is multiplied by 
the relevant matrices of each fiber component during the propaga-
tion in the laser cavity. After one round trip, the output works as the 
input of the next round trip until self-consistent evolution is 
achieved. The pulse propagation in the fiber and PPS is described by 
the generalized nonlinear Schrödinger equation encompassing 
phase modulation, spectral filtering, dispersion, nonlinearity, gain, 
and loss. The details of the equation and simulation parameters are 
illustrated in the “Simulation model” section.

We first investigate the ordinary BDTS in the simulation, which 
has three discrete spectra with a frequency difference of 0.764 THz. 
The intracavity evolution over 20 consecutive round trips is plotted 
in Fig. 2A, where the pulse intensity is normalized to highlight the 
changes in the pulse profile and beating fringe. Since the integer 
self-imaging distance deviates from the cavity length, the pulse 
changes along the cavity and reproduces itself per ~16 round trips.

Monitoring at the output coupler, the spectrum and pulse profile 
periodically vary with the round trip (Fig. 2, B and C). In this pro-
cess, the central frequencies of the three spectra remain unchanged 
(Fig. 2B, right), while their intensities undergo periodic oscillations 

due to the four-wave mixing effect (39). The beating fringe spacing 
at round trip 16 is half of that at round trip 8 (Fig. 2C, right), which 
is the typical characteristic of the fractional Talbot effect (16, 37). As 
the integer self-imaging distance differs from the cavity length, the 
one-half fractional image (i.e., the pulse with a halved beating fringe 
spacing) also appears at different cavity positions for each round 
trip, as can be clearly observed in Fig. 2A (e.g., the one-half frac-
tional image appears before the output coupler for round trip 8 and 
at the output coupler for round trip 16). The energy of each spec-
trum changes with a period of 16 round trips, while the total energy 
varies slightly (Fig.  2D), implying a strong energy exchange gov-
erned by the four-wave mixing effect (39) and a quasi-balance be-
tween the gain and loss. The radio frequency spectrum of the 
ordinary BDTS displays three peaks (Fig.  2E), where the central 
peak corresponds to the fundamental repetition rate determined by 
the cavity length and the two side peaks associate with the breathing 
behavior.

Decreasing the modulation period to 0.532 THz while keeping 
other simulation parameters unchanged, we obtain another type of 
BDTS that exhibits a phase shift between two neighboring round 
trips, i.e., the inverted BDTS (Fig. 2, F to I). The spectral and energy 
evolutions, as well as the radio frequency spectrum, are similar to 
those of the ordinary BDTS, while their pulse evolutions are quite 
different, as marked by the white dashed box in Fig. 2G. The tempo-
ral phase shift originates from the phase difference between neigh-
boring spectra accumulated in one round trip. The spectral phase 
difference is induced by the chromatic dispersion and nonlinearity 
of the cavity, which cannot be detected through the dispersive Fou-
rier transform technique as it only reflects the intensity information. 
Such a phase shift is the typical fingerprint of the inverted temporal 
Talbot effect, which is similar to the spatial counterpart—the grating 
image at half of the Talbot length exhibits a displacement with re-
spect to the initial grating (Fig. 1A).

Stable dissipative Talbot solitons
The temporal Talbot effect dominates the formation of the BDTS 
when the integer self-imaging distance deviates from the cavity 
length. Apart from the BDTS, the SDTS can be achieved in the same 
fiber laser if the integer self-imaging distance equals the cavity 
length. Figure 3A shows the normalized intracavity evolution of a 
typical SDTS with a frequency difference of 0.785 THz. Since the 
SDTS reproduces itself at one cavity length, the pulse profiles at the 
output coupler (white dashed lines) are identical for each round trip. 
Similar to the BDTS, we term this wave packet the ordinary SDTS 
due to the absence of the phase shift during pulse evolution. The 
details of the ordinary SDTS are illustrated in Fig.  3 (B to E), in 
which the spectrum, pulse profile, and normalized soliton energy 
are invariable with the increase of round trip. Moreover, the radio 
frequency spectrum (Fig. 3E) exhibits a single-peak structure, fur-
ther confirming the steady state of the fiber laser.

For the spatial Talbot effect (Fig. 1A), the light field undergoes 
one-half fractional self-imaging twice (i.e., the grating image at one-
fourth and three-fourth the Talbot length) and inverted integer self-
imaging once (i.e., the grating image at one-half the Talbot length) 
before achieving ordinary integer self-imaging. This phenomenon 
can also be verified in the temporal domain by analyzing the intra-
cavity evolution of the ordinary SDTS over two consecutive round 
trips (section S2 and fig. S2). From the first output coupler, the pulse 
profile changes three times before reaching the next output coupler, 
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corresponding to one-half fractional self-imaging twice and invert-
ed integer self-imaging once. Because of the nonuniform dispersion 
distribution within the laser, the self-imaging positions are not 
equally spaced along the laser cavity.

The SDTS also has two different forms—the ordinary SDTS and 
inverted SDTS. Figure 3 (F to I) shows the inverted SDTS with a 
frequency difference of 0.559 THz. In contrast to the ordinary SDTS, 
the inverted SDTS undergoes a phase shift of ~0.9 ps between neigh-
boring round trips, i.e., the positions of the beating fringe are mis-
aligned. As the phase shift does not affect the pulse profile and 
intensity, the energy of the pulse remains unchanged during the 
whole evolution. Moreover, the inverted SDTS only experiences 
one-half fractional self-imaging once between two neighboring 
round trips (fig. S2E), similar to the evolution of the spatial grating 
image within half of the Talbot length (Fig. 1A).

By using the SDTS in Fig. 3C as the input signal, we simulate the 
pulse evolution in lossless fibers external to the cavity (section S3 
and fig. S3). The pulse exhibits the typical Talbot phenomenon dur-
ing propagation, in which the one-half fractional self-imaging and 
integer self-imaging appear twice, similar to the pulse evolution 
within the laser cavity (fig.  S2A). However, because of unequal 
group velocities among the three spectra, the pulse envelope 

broadens, and the intensity decreases during further propagation in 
lossless fibers, indicating that the dissipative Talbot soliton cannot 
maintain its characteristic outside of the cavity. We further investi-
gate the evolution of SDTS within the cavity by excluding the spec-
tral filter, phase modulation, and dissipation effect, respectively. The 
pulse cannot achieve self-consistent evolution after neglecting any 
one of those effects, as elaborated in section S4 and fig. S4. On the 
basis of the above analyses, we confirm that the Talbot effect togeth-
er with spectral filter, phase modulation, and dissipation effect dom-
inate the formation of the dissipative Talbot soliton. The formation 
condition is much more intricate than the perturbed solitons of the 
nonlinear Schrödinger equation (29, 40).

Experimental results
Simulations reveal the evolution behavior of the BDTS and SDTS in 
the same fiber laser by varying the frequency difference of neighbor-
ing spectra. Both have two types of forms, governed by either the 
ordinary or inverted temporal Talbot effect. To validate the simula-
tion results, we perform an experimental study on the synchronized 
multicolor mode-locked fiber laser. Via changing the periodic spectral 
filter and phase modulation with the PPS, the BDTS and SDTS are 
achieved in the same fiber laser under a pump power of 24 mW.  

Fig. 2. BDTS in simulation. (A) Intracavity evolution of the ordinary BDTS over 20 consecutive round trips. Because the integer self-imaging distance deviates from the 
cavity length, the pulse profile at the output coupler changes with the round trip. Left: Ordinary BDTS. Right: Inverted BDTS. Evolutions of the (B and F) spectra, (C and G) 
pulses, and (D and H) normalized energies versus cavity round trip. (E and I) Radio frequency spectra. a.u., arbitrary units.
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Because of the spectral filtering effect, the bandwidth of each 
spectrum and envelope width of the typical SDTS are about 0.5 nm 
and 7 ps, respectively. The corresponding time-bandwidth product 
is calculated to be approximately 0.4, indicating the near absence of 
chirp in the dissipative Talbot soliton. The formation mechanism of 
the dissipative Talbot soliton exhibits similarity to the pulse gener-
ated in normal-dispersion fiber lasers (27, 41), as the spectral filter 
also plays a pivotal role in both their formation and stabilization.

Figure 4 (A to D) depicts the properties and evolution behav-
iors of the ordinary BDTS with a frequency difference of 0.751 THz. 
The measured real-time spectrum and field autocorrelation trace 
(Fig. 4, A and B) are consistent with the simulations. For example, 
the three spectra vary periodically and exchange energy with the 
increase of round trip, and the fractional Talbot effect can also be 
observed from the field autocorrelation evolution—doubled beat-
ing fringes appear per 7 round trips (Fig. 4B, right). Similar to the 
simulation results, the energy of each spectrum exhibits obvious 
oscillation with a period of 14 round trips, while the total energy 
remains almost unchanged with the round trip (Fig. 4C). Since the 
total energy remains nearly constant throughout the evolution, 
the BDTS is similar to the “invisible” pulsating soliton under the 
interplay between soliton and dispersive waves (31), as well as the 
“trampoline-like” pulsating soliton dominated by the Kerr effect 
and dispersion (42).

The ordinary SDTS can be obtained from the same fiber laser 
by enlarging the frequency difference to 0.778 THz (Fig. 4, E to H). 
Because the ordinary SDTS reproduces itself in one cavity length, 
the single-shot spectrum and field autocorrelation remain con-
stant throughout the whole evolution (Fig. 4, E and F). The ran-
dom energy fluctuation arises from the environmental noise and 
limited resolution of the dispersive Fourier transformation system 
(Fig.  4G). The stability of the laser is further validated by the 
single-peak radio frequency spectrum with a signal-to-noise ratio 
of ~60 dB (Fig. 4H).

In addition to the ordinary BDTS and SDTS, the fiber laser is 
capable of delivering the inverted BDTS and SDTS by tuning the 
frequency difference to 0.539 and 0.559 THz, respectively, wherein 
the spectrum and energy evolutions also coincide with the simula-
tions (section  S5 and fig.  S5). Because the field autocorrelation 
trace is directly calculated from the Fourier transform of the spec-
tral intensity (43), it cannot reveal the phase shift induced by the 
inverted temporal Talbot effect (fig. S5, B and F). A recently devel-
oped technology, known as the time lens (44, 45), has emerged as a 
promising candidate for capturing single-shot temporal informa-
tion with a subpicosecond resolution. The time lens holds great po-
tential in accurately revealing this phase shift and completely 
reconstructing the real-time evolutions of the inverted BDTS 
and SDTS.

Fig. 3. SDTS in simulation. (A) Intracavity pulse evolution of the ordinary SDTS over 20 consecutive round trips. As the integer self-imaging distance equals the cavity 
length, the pulse profiles at the output coupler are identical for each round trip. Left: Ordinary SDTS. Right: Inverted SDTS. Evolutions of the (B and F) spectra, (C and 
G) pulses, and (D and H) normalized energies versus cavity round trip. (E and I) Radio frequency spectra. a.u., arbitrary units.
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Refined Talbot theory
Both the simulation and experimental results demonstrate that the 
evolutions of the BDTS and SDTS are governed by the temporal Tal-
bot effect. The laser operation (breathing or steady state) crucially 
depends on the relation between the integer self-imaging distance 
and cavity length. According to the traditional Talbot theory (37), 
the self-imaging distance is determined by the frequency difference 
and cavity dispersion. Such a deduction is reliable for low-intensity 
pulses or optical beams and has been verified by several groups in a 
variety of experimental configurations (8, 16, 46, 47). Nevertheless, 
for pulses or beams with higher intensity, the situation becomes 
much more complex, as the nonlinearity cannot be ignored for the 
Talbot effect. For example, the self-imaging distance of periodic 
rogue waves increases with the pulse intensity (22, 48), and the frac-
tional image disappears for wave trains in surface gravity water un-
der the nonlinear case (23).

By propagating the dissipative Talbot soliton in single-mode fi-
bers, we find that the self-imaging distance relies on both the disper-
sion value and pulse intensity, as illustrated in Fig.  5. The initial 
beating fringe spacing of dissipative Talbot soliton is measured as 
1.286 ps (Fig. 5, A and D). When the pulse power is 0.24 mW, the 
beating fringe spacing decreases to 0.643 ps at a distance of 6 m (i.e., 
one-half fractional self-imaging; Fig. 5B) and returns to its initial 
value at a distance of 12 m (i.e., integer self-imaging; Fig. 5C), there-
by confirming the presence of the Talbot effect in our laser. When 
the pulse power is increased to 4.37 mW, the one-half fractional and 
integer self-imaging distances enlarge to 6.8 and 13.6 m, respective-
ly (Fig. 5, D to F). However, the dissipative Talbot soliton broadens 
and cannot achieve self-imaging at any power when the propagation 
length is larger than 60 m. These observations also coincide with the 
simulation results based on the nonlinear Schrödinger equation 
(Fig. 5G), further confirming that the nonlinear effect is essential for 
the self-imaging condition of high-intensity dissipative Talbot 
soliton.

For mode-locked fiber lasers, the average pulse power inside the 
cavity is ~3 mW. Thus, both nonlinearity and dispersion should be 
considered when studying the evolution of dissipative Talbot soli-
tons. After incorporating the dispersion, self- and cross-phase mod-
ulations into Talbot theory, the phase difference (δφ) between the 
neighboring spectra can be expressed as

The first term on the right-hand side of Eq. 1 represents the ac-
cumulated phase difference induced by the dispersion (i.e., linear 
term), while the second term is the phase difference originating 
from the self- and cross-phase modulations (i.e., nonlinear term). β2 
is the second-order dispersion coefficient of the cavity. v1 and v0 rep-
resent the central frequencies of neighboring spectra, e.g., v0 for 
spectrum S0 and v1 for spectrum S1 (Fig. 3B). L and γ are the propa-
gation length and cubic refractive nonlinearity of the fiber in the 
cavity, respectively. P1(z) and P0(z) represent the peak powers of the 
pulse for two neighboring spectra. In addition, the phase modula-
tion introduced by the PPS also contributes to the linear part of δφ. 
The derivation details are given in section S6 and fig. S6.

According to refined Talbot theory, δφ must be an integer mul-
tiple of π to achieve integer self-imaging. On the basis of Eq. 1, we 
first calculate the self-imaging distance of dissipative Talbot soli-
tons propagating in single-mode fibers. For a lower pulse power 
(0.24 mW), the nonlinear term is ignorable (−0.02), and the integer self-
imaging distance is calculated as 12.14 m (β2 = −21.67 ps2/km, 
ν1-​ν0 = 0.778 THz, δφ = π). For a higher pulse power (4.37 mW), 
the nonlinear term is calculated as −0.35, giving a self-imaging dis-
tance of 13.49 m. The theoretical predictions quantitatively agree 
with the experimental and simulation results in Fig. 5, confirming 
the accuracy and reliability of the refined Talbot theory.

δφ = −
1

2
β2L(2πv1−2πv0)

2 +

L

∫
0

γ[P1(z) − P0(z)]dz (1)

Fig. 4. Ordinary BDTS and SDTS in the experiment. Left: Ordinary BDTS. Right: Ordinary SDTS. Evolutions of the (A and E) shot-to-shot spectra, (B and F) field autocor-
relations, and (C and G) normalized energies versus cavity round trip. (D and H) Radio frequency spectra. a.u., arbitrary units.
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For dissipative Talbot solitons circulating in a fiber laser, we cal-
culate δφ in a single round trip versus the frequency difference 
(L = 18.9 m, β2 = −27.51 ps2/km), as illustrated in Fig. 6A. The gray 
solid line denotes the results based on traditional Talbot theory (i.e., 
ignoring the nonlinear term in Eq. 1), in which δφ monotonically 
increases with the frequency difference and equals π and 2π at two 
discrete values. Thus, traditional Talbot theory implies that the laser 
should operate in the steady state for two discrete frequency differ-
ences. However, both the experiment and simulation show that the 
laser operates in the steady state for a wide range of parameters, 
which is inconsistent with the traditional Talbot theory.

For the refined Talbot theory taking the nonlinear term into ac-
count, the phase differences δφ are π and 2π over a wide range of 
frequency differences (red dots) rather than at two discrete values, 
corresponding to a broad range of steady state. ​It is shown that both 
linear and nonlinear terms contribute to the self-imaging condition 

of the dissipative Talbot soliton, where the nonlinear phase differ-
ence partially compensates the linear phase difference by automati-
cally adjusting the relative intensity of each spectrum, ensuring the 
same value of π or 2π over a wide range of frequency differences. 
Physically speaking, under the combined effect of nonlinearity and 
saturable absorption, the fiber laser is inclined to operate in the 
steady state, where the dissipative Talbot soliton modifies its spectral 
morphology to compensate the phase difference induced by the dis-
persion. In this regard, the temporal Talbot effect is an attractor in 
nonlinear systems that displays a similar physical essence to the 
minimum loss principle (49).

Figure 6B shows the integer self-imaging distance of the dissipa-
tive Talbot soliton (L) as a function of the frequency difference. 
When the nonlinear term of Eq.  1 is ignored, the integer self-
imaging distance monotonically decreases with the increase of the 
frequency difference (gray solid line). In comparison, the nonlinear 

Fig. 5. Nonlinear propagation of dissipative Talbot solitons in single-mode fibers. Experiment: Autocorrelation traces of dissipative Talbot solitons for pulse powers 
of (A to C) 0.24 mW and (D to F) 4.37 mW. (G) Simulation results of dissipative Talbot solitons at different pulse energies. a.u., arbitrary units.
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term enables the integer self-imaging distance to be comparable to 
the cavity length over a wide range of frequency differences. These 
results coincide with those in Fig. 6A, further confirming the reli-
ability of the refined Talbot theory. In our experiment, the maxi-
mum frequency difference (0.812 THz) is limited by the effective 
gain bandwidth of the erbium-doped fiber, while the minimum fre-
quency difference (0.493 THz) is mainly ascribed to the gain com-
petition effect. Since the self-imaging distance depends on the 
frequency difference, we infer that the laser may switch from the 
steady state to the breathing state when the frequency difference is 
further increased.

DISCUSSION
The temporal Talbot effect shows that the dispersion value required 
to achieve self-imaging is inversely proportional to the longitudinal 
mode spacing (37), which limits the exploration of the Talbot wave 
packet in optical cavities. ​Here, multicolor solitons with frequency 
differences up to the terahertz range readily satisfy the self-imaging 
condition at a length comparable to the laser cavity. In this regard, 
the Talbot effect is not restricted to multicolor solitons, and it is also 
promising for exploring complex nonlinear dynamics in other ultra-
high repetition rate systems, such as microresonators (50–54) and 
four-wave mixing–induced mode-locked lasers (55–57). For a mi-
croresonator with a longitudinal mode spacing of 200 GHz and a 
dispersion value of −202 ps2/km, the integer self-imaging distance 
is ~20 m. Considering the cavity length of ~1 mm, the temporal Tal-
bot effect may be responsible for breathers with thousands of pe-
riods (58).

In contrast to the traditional Talbot theory, nonlinear effects are 
considered for the refined Talbot theory to precisely describe the 
evolutions of the SDTS and BDTS, and this theory is also applicable 
to the four-color dissipative Talbot soliton (section S7 and fig. S7). 
Note that the spatial Talbot soliton has been demonstrated in non-
linear Kerr medium using the sinusoidal and uniform waves that are 
mutually coherent and trapped (59), in which the self-imaging dis-
tance is mainly determined by the relative phase between the input 
waves. However, the Talbot length in our work relies on the phase 
difference between neighboring spectra, encompassing both the lin-
ear and nonlinear parts. Since the nonlinear effects also contribute 
to the self-imaging condition, the refined Talbot theory may provide 
a more comprehensive interpretation of the recent reports on the 

recurrent behavior of periodic rogue waves in nonlinear medium 
(22, 23, 48).

The dissipative Talbot soliton is formed in a laser system includ-
ing the dispersion, nonlinearity, gain, and loss, which is similar to 
that of the conventional soliton (29), dissipative soliton (27), 
stretched pulse (60), and similariton (41). The filter-induced multi-
wavelength spectra together with group delay compensation be-
tween them endow the dissipative Talbot soliton with the unique 
ability of self-imaging, resulting in distinct evolution dynamics 
compared to other types of solitons. Apart from the fascinating 
physical mechanism, the dissipative Talbot soliton laser, with its 
unique synchronization property and the frequency difference of 
neighboring spectra lying in the terahertz range, holds great poten-
tial for applications in nonlinear optical imaging (61–63), 
difference-frequency terahertz wave generation (64), and laser 
physics (52).

Recent studies have successfully demonstrated the synchroniza-
tion dynamics between the fundamental frequency and breathing 
frequency in breather lasers (32, 65–67). The dissipative Talbot soli-
ton laser has a breathing frequency dominated by the Talbot effect, 
and further manipulation of the pump power may excite an intrinsic 
breathing frequency of the pulse; thus, such a laser can be an ideal 
platform for studying the interaction and competition among the 
fundamental repetition frequency, Talbot breathing frequency, and 
intrinsic breathing frequency.

In summary, the dissipative Talbot soliton laser, processing the 
multiwavelength spectra, provides an additional degree of freedom 
for us to explore new forms of nonlinear wave packet and uncover 
their evolution dynamics. By tuning the frequency difference of 
neighboring spectra, we found ordinary BDTS, inverted BDTS, or-
dinary SDTS, and inverted SDTS in the dissipative optical system. A 
refined Talbot theory including dispersion and nonlinear effects is 
proposed to precisely describe the evolution of the dissipative Talbot 
solitons, in which the fiber laser delivers a BDTS (SDTS) when the 
self-imaging distance deviates from (equals) the cavity length. From 
another point of view, under the coaction of nonlinearity and satu-
rable absorption, the laser tends to operate in the steady state over a 
wide range of frequency differences by automatically modifying the 
intensity of each spectrum to compensate the phase difference in-
duced by dispersion. These results shed light on the dynamics of 
solitons in nonlinear systems and open branches by combining the 
Talbot effect and solitons.

Fig. 6. Comparison between traditional Talbot theory, refined Talbot theory, and experiment. (A) Phase difference accumulated per round trip between neighbor-
ing spectra and (B) self-imaging distance versus frequency difference.
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MATERIALS AND METHODS
Experimental setup
The synchronized multicolor mode-locked fiber laser is composed 
of a wavelength division multiplexer, a 6-m erbium-doped fiber 
(Nufern, EDFL-980-HP; β2 = 21.3 ps2/km), a 9:1 output coupler, 
a polarization-insensitive isolator, a PPS (optical path, 3.7  m; 
β2 = −120.3 ps2/km), a carbon nanotube saturable absorber, and 
a polarization controller. The pigtails of fiber components are 
single-mode fibers with length of 9.2 m (Corning, SMF-28e+; β2 = 
−21.7 ps2/km). The total length and cavity dispersion are 18.9 m 
and −0.52 ps2, respectively.

Measurement system
The dissipative Talbot solitons are measured by an optical spectrum 
analyzer (Yokogawa, AQ6370), an autocorrelator (PulseCheck, 
USB-150), and a radio frequency analyzer (Agilent, E4440A). The 
dispersive Fourier transformation system measures the spectral evo-
lution of the dissipative Talbot soliton, which is composed of 30-km 
single-mode fiber with a total dispersion of −650.1 ps2, a 5-GHz 
photodetector (Thorlabs, DET09CFC/M), and a 4-GHz oscilloscope 
(LeCroy, 740Zi-A). On the basis of the above parameters, the overall 
spectral resolution of the dispersive Fourier transformation system 
is given as 0.26 nm (68).

Simulation model
The simulations of dissipative Talbot solitons are based on a lumped 
propagation model (38), in which the pulse is multiplied by the rel-
evant matrix of each component during propagation in the laser 
resonator. After one circulation, the output pulse works as the input 
of the next round trip until the laser reaches the self-consistent state. 
The pulse propagation in fiber is modeled by the generalized nonlin-
ear Schrödinger equation including dispersion, Kerr nonlinearity, 
gain, and loss and is solved by the symmetric split-step Fourier 
method (69)

where u is the slowly varying envelope of the pulse z and t represent 
the propagation distance and time, respectively. β2 is the second-
order dispersion coefficient, and γ is the cubic refractive nonlinear-
ity of the fiber. g, α, and Ωg represent the saturable gain, loss of the 
fiber, and gain bandwidth, respectively. g = 0 for single-mode fiber, 
and g = g0exp(−Ep/Es) for erbium-doped fiber, where g0, Ep, and Es 
are the small-signal gain coefficient, pulse energy, and the gain satu-
ration energy, respectively. The saturable absorber has a transmit-
tance T = 0.46 − T0/[1 + P(τ)/Psat], where T0 denotes the modulation 
depth, P(τ) is the instantaneous pulse power, and Psat is the satu-
rable power.

The spectral filter and phase modulation, introduced by the PPS, 
are modeled by multiplying the electric field with the corresponding 
function in the frequency domain. The spectral filter is a periodic 
Gaussian function derived from the experiment. The transmittance 
of each period is

where A is the filtering bandwidth (set as 0.186 THz) and ω0 denotes 
the central angular frequency of the filter.

The introduced phase is a periodic parabolic function with the 
same period as that of spectral filter. The phase profile of each pe-
riod is φ(ω) = B(ω − ω0)2, where B is set as −7.96 ps2. The simula-
tion parameters are set as follows: Es = 150 pJ, T0 = 0.1, and Psat = 
8 W. For the single-mode fiber, g0  =  0, α  =  4.6  ×  10−5/m, β2  = 
−21.7 ps2/km, γ = 1.3 W−1 km−1. For the PPS, β2 = −120.3 ps2/km 
and γ = 0. For the erbium-doped fiber, g0 = 0.7 dB/m, β2 = 21.3 ps2/
km, and γ = 3.9 W−1 km−1. In the simulation, the modulation peri-
ods of phase and filter can be tuned from 0.493 to 0.812 THz (3.881 
to 6.312 nm) by simply changing ω0.
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