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Abstract: Plant viruses use cellular factors and resources to replicate and move. Plants respond to
viral infection by several mechanisms, including innate immunity, autophagy, and gene silencing,
that viruses must evade or suppress. Thus, the establishment of infection is genetically determined
by the availability of host factors necessary for virus replication and movement and by the balance
between plant defense and viral suppression of defense responses. Host factors may have antiviral or
proviral activities. Proviral factors condition susceptibility to viruses by participating in processes
essential to the virus. Here, we review current advances in the identification and characterization
of host factors that condition susceptibility to plant viruses. Host factors with proviral activity
have been identified for all parts of the virus infection cycle: viral RNA translation, viral replication
complex formation, accumulation or activity of virus replication proteins, virus movement, and virion
assembly. These factors could be targets of gene editing to engineer resistance to plant viruses.

Keywords: virus susceptibility genes; antiviral defense; virus movement; gene silencing; virus
resistance; virus accumulation; host factors

1. Introduction

Viruses are molecular parasites that use cellular resources in all parts of their replication cycle.
Additionally, plant viruses move cell-to-cell (local) in infected leaves and long-distance through the
vascular system (systemic movement) (Figure 1A) using virus-encoded movement proteins and cellular
factors. Plant viruses have been described for classes II through VII of the Baltimore classification
system [1]. Accordingly, the genomes of plant viruses consist of ssDNA, dsRNA, positive-single-strand
RNA, or negative-single-strand RNA. Reverse-transcribing ssRNA or dsDNA virus genomes have also
been described [1]. Positive-single-strand RNA viruses are the most abundant group of plant viruses
and include the genera Bromovirus, Cucumovirus, Potexvirus, Potyvirus, Tobamovirus, Tombusvirus,
and others. Negative-single-strand RNA viruses include Orthotospoviruses [1].

Plant viruses are usually delivered into the cell by an insect vector and infection initiates in a
single cell. Viral proteins must be translated and participate in virus replication, virion assembly,
and virus movement to the neighboring cells. At every newly infected cell, the cycle is repeated [2].
After reaching the vascular system, viruses move long distances [3]. Some viruses are restricted to the
vasculature. However, most viruses exit the vascular system and infect roots and young leaves away
from the site of initial infection (Figure 1B). Thus, the infection process of a plant by a virus consists of
a continuous cycle of virus replication at the cellular level and cell-to-cell movement [2,3].

Plant virus replication and movement are genetically determined by a combination of viral and
host factors coordinated in a temporal and spatial manner [4–6]. Viruses express their genes through
an RNA intermediate [7]. Because viruses lack ribosomes, translation of viral proteins from genomic
RNA, subgenomic RNA, or mRNA is dependent on the cellular translation machinery [8–10].
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Figure 1. Plant virus infection progression, movement, and symptoms caused by virus infection.
Nicotiana benthamiana plants were inoculated with GFP-tagged TuMV (TuMV-GFP) by agroinfiltration
and leaves of whole plant pictures taken under visible or UV light. (A) Pictures showing representative
local infection foci (green spots) in inoculated leaves, long-distance movement and infection of the
vascular system, and progression of systemic infection in noninoculated leaves. (B) Symptoms of
TuMV-GFP infection at 10 days post-inoculation (dpi) and distribution of virus infection as determined
by UV illumination.

While plant DNA viruses form minichromosomes in the nucleus of infected cells that are replicated
by cellular DNA-dependent DNA polymerases [11], RNA viruses induce the formation of specialized
organelle-like replication vesicles bound to cellular membranes [5,6]. These vesicles contain viral
genomic RNA, viral RNA-dependent RNA polymerases, host factors and are the sites of virus
replication [5,9,12–14]. The most detailed information about virus replication complex formation
and activity is for positive-single-strand RNA brome mosaic virus (BMV), tomato bushy stunt virus
(TBSV), and turnip mosaic virus (TuMV) [15–17]. In addition to cellular membranes, cellular proteins
participate in the formation and are essential components of viral RNA replication compartments
(Table 1) [5,13,14]. Other host factors modulate the accumulation or activity of virus replication proteins
(Table 1).

Cell-to-cell movement of plant viruses occurs through plasmodesmata [18]. Plant viruses encode
movement proteins that increase the plasmodesmata size exclusion limit or form microtubules
to direct virions or nucleoprotein complexes to neighboring cells. Virus movement requires both
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virus-encoded proteins and cellular factors, including membranes, proteins, microtubules, or actin
filaments (Table 1) [12,18–21]. Plant virus movement is reviewed in [3,22].

Plants protect themselves from viruses by several mechanisms targeting viral nucleic acids or
proteins. While viral RNA and DNA are targeted by gene silencing [23], viral proteins are recognized by
autophagy [24] and R-mediated innate immunity [25]. Antiviral defense restricts viral RNA translation,
virus replication, movement, or virion assembly, resulting in reduced virus accumulation and/or
a delay in virus movement with or without a hypersensitive response [26–28]. Antiviral defense
mechanisms are reviewed in [26,29].

For any plant–virus combination, the outcome could be the absence of infection (incompatible
interaction or nonhost) or the establishment of infection (compatible interaction or permissive host).
Incompatible interactions result from the lack of cellular factors essential for the virus to replicate or
move, or due to the presence of a defense mechanism restricting virus replication or movement [30–32].
Permissive host plants harbor necessary factors and resources and virus infection occurs through
the entire plant or could be limited to inoculated leaves or the vascular system. Symptoms may
or may not develop. Genetic analyses have shown that the absence of proviral factors results in
the absence of infection, or reduced virus replication or movement, or both [33–35]. Accordingly,
several terms have been used to describe these genes, such as loss-of-susceptibility, recessive resistance,
or positive regulators of virus infection [33,36]. Herein, we use the term susceptibility genes, because
their presence conditions virus susceptibility.

In plants, translation initiation factor eIF(iso)4E [33] and DEAD-box RNA helicase RH8 [37]
illustrate susceptibility genes that are required for potyvirus infection and that are not necessary for
translation of plant genes, growth, or development. This kind of genes represents opportunities to edit
plant genes and engineer resistance to viruses. This review is focused on susceptibility genes to plant
virus infection and the experimental systems used to identify and characterize them.

2. Viral Determinants of Infection

The infection process of a plant by a virus can be divided into sequential phases: virion disassembly,
viral RNA translation, viral replication complex formation, virus replication, cell-to-cell movement,
systemic movement, and virion formation [3,4]. Plant viruses encode replication, movement,
gene silencing suppressors, and capsid proteins (Figure 2A) that are essential for the infection
process [2,38]. The absence of one or more of these virus factors results in lack of infection, reduced
virus replication, or slow movement, causing low virus accumulation and mild symptoms in infected
plants [39,40].

3. Host Genetic Determinants of Virus Infection

During the infection process, viral factors interact with host factors. Based on their role in
host–virus interactions, host factors can be divided into two functional groups: antiviral and proviral
(Figure 2A). Host factors with proviral activity are necessary for essential steps of the infection process,
such as viral RNA translation, virus replication, movement, or virion formation (Table 1 and Figure 2A).
On the contrary, host factors with antiviral activity restrict viral RNA translation, virus replication,
movement, or virion formation. Viruses must evade or suppress antiviral defense responses, such as
gene silencing (Figure 2B). Informative papers and reviews include [34,35,41–43].

At the genome-wide level, the first experimental identification of proviral and antiviral factors
derived from a genome-wide screen of a yeast (Saccharomyces cerevisiae) deletion library for host factors
affecting BMV replication [34]. Subsequently, genome-wide screens identified yeast genes with proviral
or antiviral activity to TBSV [35] and to flock house virus [44]. Based on an RNA interference screen,
Drosophila melanogaster genes were also grouped into the same functional groups with respect to the
replication of influenza virus [45]. Theses genome-wide screens elegantly showed that a permissive
host harbors both proviral and antiviral factors and that most of the host genes are irrelevant to
virus infection.
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Figure 2. Functional groups of host and viral factors based on their role in virus infection. (A) Host
factors may have antiviral or proviral activity. Antiviral factors (red line) condition resistance to
virus infection by antagonizing one or more essential parts of the infection cycle (dotted green box).
Proviral factors (green arrow) work in synchrony with viral factors in all parts of the infection cycle,
determine virus susceptibility, and may be essential or nonessential to the host. (B) Gene silencing
restricts virus infection and virus-encoded silencing suppressors are needed for infection. In the
absence of translation initiation factor eIS(iso)4E, TuMV cannot infect A. thaliana. eIF(iso)4E is needed
for potyvirus replication and/or cell-to-cell movement. A. thaliana leaves were mechanically inoculated
with TuMV-GFP, suppressor deficient TuMV-AS9-GFP, or suppressor deficient TCV-GFP. Pictures were
taken at 7 dpi under UV light.

4. Host Factors That Determine Virus Susceptibility

Permissive hosts contain factors required for all parts of the virus replication at the cellular
level [34,35]. Additionally, permissive plants contain factors required for local and systemic virus
movement [46,47]. This model predicts that in the absence of required host factors, virus accumulation
is reduced at the cellular level and/or at the organismal level due to inefficient virus replication,
movement, or a combination thereof. The end result is a virus-resistant phenotype characterized by
reduced virus accumulation and mild symptoms with respect to susceptible plants or by the absence of
infection, similar to the phenotype of a nonhost (Figure 2B). Accordingly, the presence of host factors
required for virus infection or movement are genetic determinants of susceptibility to viruses.

In this review, host factors that condition susceptibility to plant viruses are organized based on
sequential parts of the virus infection cycle. Susceptibility factors with essential roles in all parts of
the virus infection cycle have been identified. Representative host factors are listed in Table 1 and
described below. However, some host factors are involved in more than one part of the infection cycle,
and for others, the exact function has not been determined.

4.1. Viral RNA Translation

Viruses lack ribosomes and express their genes trough mRNA [7]. Translation of all viral proteins is
dependent on the cellular translation machinery, including ribosomes [8–10]. Accordingly, host factors
that play a critical role in viral RNA translation have been identified. Using the BMV replication
system in yeast, a genetic screen identified DED1, a general translation initiation factor essential for
cell survival, as being necessary for BMV RNA translation [48]. Cells harboring the mutant allele
DED1-18 inefficiently translate viral polymerase-like protein 2a from RNA2 [48]. Similarly, members
of the deadenylation-dependent mRNA decapping complex LSM1-7 and PATH1 are required for
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BMV RNA1, RNA2, and RNA3 translation [10,49]. Without affecting host translation, the absence of
DED1-18, LSM1-7, or PATH1 results in reduced BMV RNA replication [10,48,49].

Table 1. Representative nonessential host factors that condition susceptibility to plant viruses.

Host Factor Cellular Function Virus and
Viral Factor Host System Technique Reference

Viral RNA translation

DED1-18 General translation BMV RNA2 Yeast Genetic screen [48]

RISP and eIF3 Activation of polycistronic
mRNA translation CaMV TAV Yeast Yeast two-hybrid [50]

eIF4G and
eIF4G2 Translation initiation LMV and PPV

VPg A. thaliana Genetic analysis [51]

LSM1-7 and
PATH1

Deadenylation-dependent
mRNA decapping

BMV, RNA1,
RNA2, and

RNA3
Yeast

Genetic analysis of
single-mutant

strains
[10,49]

Virus replication complex formation

PEX19 Transport of membrane
proteins to the peroxisome TBSV p33 Yeast Immuno-precipitation [52]

ESCRT proteins
Membrane

bending/budding away
from the cytoplasm

TBSV p33 Yeast N.
benthamiana

Genome-wide
screen [53]

BMV 1a Yeast
Genetic analysis of

single-mutant
strains

[54]

RHP
Induce positive curvature

to peripheral ER
membranes

BMV 1a Yeast Genome-wide
screen [55]

SYP71
Membrane fusion between

transport vesicles and
target membranes

TuMV 6K2 A. thaliana

Colocalization with
the virus

replication
complex

[56]

ACBP Lipid biosynthesis BMV 1a Yeast Genome-wide
screen [57]

RAB5 Regulation of endosomal
biogenesis TBSV p33 Yeast N.

benthamiana
Genome-wide

screen [58]

SYP81 Peroxisome protein
distribution TBSV p33 Yeast N.

benthamiana Yeast two-hybrid [59]

Chl-PGK
Glycolytic, glucogenic,

and photosynthetic
pathways

BaMV RNA (3′

UTR) N. benthamiana
Electrophoretic

mobility shift and
mass spectrometry

[60]

ERV14 ER vesicle formation BMV 1a Yeast Yeast GFP-tagged
library [61]

ARF1
Formation of coat protein

complex I vesicles on
Golgi membranes

RCNMV p27 N. benthamiana
A. thaliana

Affinity
purification and

mass spectrometry
[62]

ERO1 Disulfide bond formation
within the ER lumen BMV 1a Yeast Genetic analysis [63]

eEF1A Translation elongation and
unfolded protein response

TMV 126K and
3′ UTR of

genomic RNA
N. benthamiana Virus-induced

gene silencing [64]

TuMV NIb A. thaliana Tandem affinity
purification [65]

TBSV RdRp Yeast Proteomics [66]

BaMV RNA
(3′ UTR) N. benthamiana

Electrophoretic
mobility shift and
mass spectrometry

[67]

TMV 126K and
genomic RNA N. benthamiana Virus-induced

gene silencing [64]

TYMV 3′ UTR Vigna
unguiculata

Luciferase assays
in protoplasts [68]
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Table 1. Cont.

Host Factor Cellular Function Virus and
Viral Factor Host System Technique Reference

Accumulation or activity of the replication proteins

LSM1
Decapping and
degradation of

cytoplasmic mRNAs
BMV 1a Yeast

Yeast UV
mutagenesis and
genetic analysis

[69]

OLE1 Conversion of saturated to
unsaturated fatty acids BMV 2a Yeast

Yeast UV
mutagenesis and
genetic analysis

[70]

GAPDH Glycolysis and
gluconeogenesis TBSV p33 Yeast

N. benthamiana

Affinity
purification and

mass spectrometry
[71]

HSP70 and
HSP90

Protein folding, refolding,
ubiquitination, regulation

of transcription
RCNMV p27 N. benthamiana

Affinity
purification and

mass spectrometry
[72,73]

HSP70 TBSV p33 Yeast Proteomics [74,75]

HSC70-2 BBSV p23 and
CP N. benthamiana

Immuno-precipitation
and mass

spectrometry
[76]

AtRH8
PpDDXL mRNA processing TuMV VPg A. thaliana

Prunus persica Yeast two-hybrid [37]

AtRH9 RNA metabolism TuMV NIb A. thaliana
Genetic analysis of

single-gene
mutants

[77]

PABP2 PABP4
PABP8 Translation initiation TuMV VPg and

NIb A. thaliana Copurification and
genetic analysis [78,79]

TOM1, TOM2,
ARL8

Integral components of
membranes

TMV-Cg, ToMV,
130K, and 180K

N. benthamiana
A. thaliana

Sucrose gradient
sedimentation and
affinity purification

[80,81]

Virus movement

eIF(iso)4E Translation initiation TuMV VPg A. thaliana EMS mutagenesis [33]

PevMoV, PVY
VPg Capsicum spp. Comparative

mapping [82,83]

TEV VPg A. thaliana
Capsicum spp.

Genetic analysis
and genetic

complementation
[46,84]

PDL1, PDL2,
PDL3 Cell-to-cell trafficking GFLV MP and

CaMV MP A. thaliana Genetic analysis [85]

KNOLLE Membrane fusion GFLV MP BY-2 cells Immuno-precipitation [86]

PME Cell wall-modifying
enzyme

TMV, CaMV
MP N. tabacum Renatured blot

overlay [87]

MYOSIN XI-2 Organelle trafficking TMV 126 kDa N. benthamiana

Pharmacological
disruption and

virus-induced gene
silencing

[88]

Actin Intra- and intercellular
trafficking

TMV, PVX,
126K TBSV p33 N. benthamiana

Pharmacological
disruption and

virus-induced gene
silencing

[88]

FIBRILLARIN rRNA processing,
formation of cajal bodies GRV ORF3 N. benthamiana Virus-induced

gene silencing [89]

PVIP1
Maintenance of the root

and shoot apical
meristems

TuMV VPg A. thaliana Yeast two-hybrid [90]

SYTA ER-plasma membrane
tethering

CaLCV MP
TMV and
TVCV 30K

TuMV
P3N-PIPO

A. thaliana Yeast two-hybrid [91,92]
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Table 1. Cont.

Host Factor Cellular Function Virus and
Viral Factor Host System Technique Reference

PCaP1 Microtubule
depolymerization

TuMV
P3N-PIPO A. thaliana Yeast two-hybrid [93]

SEC24A Intracellular protein
transport TuMV 6K2 A. thaliana Yeast two-hybrid [19]

cPGK2 Gluconeogenesis and
glycolysis

PPV,
undetermined A. thaliana

Genome-wide
association
mapping

[94]

RHD3 Generation of the tubular
ER network TSWV NSm A. thaliana N.

benthamiana Genetic analysis [47]

TOR1 TOR2 Orientation of cortical
microtubules TMV 126/183 k A. thaliana Experimental virus

evolution [95]

eEF1B Translation elongation and
unfolded protein response PVX TGBP N. benthamiana Yeast two-hybrid,

immuno-precipitation [96]

DBP1 Proteosome-mediated
regulation of eIF(iso)4E

PPV and TuMV,
undetermined A. thaliana

Proteomics, yeast
two-hybrid,

immuno-precipitation
[97]

CmVPS41 Vesicle trafficking from
Golgi to the vacuole CMV 3a Cucumis melo Fine mapping [98]

RNA silencing suppression

RAV2 Negative regulation of
transcription

TEV HC-Pro
and

Carmovirus
p38

A. thaliana
Yeast two-hybrid

and
immuno-precipitation

[99]

rgs-CaM Cellular signaling TEV HC-Pro N. tabacum Yeast two-hybrid [100]

RH8 mRNA binding and
processing

PPV and TuMV
VPg

N.
benthamianaA.

thaliana
Yeast two-hybrid [37]

Nbrgs-CaM Cellular signaling TYLCCV DNA
satellite βC1

A. thaliana N.
benthamiana

Transcriptional
profiling [32]

OsSAMS1 Ethylene biosynthesis RDV Pns11 Oryza sativa Yeast two-hybrid [101]

AtRAN-F2b Late endosome to vacuole
transport CaMV MP A. thaliana Colocalization and

coprecipitation [102]

Virion assembly

CK2 CPIP
HSP70 CHIP

Protein phosphorylation
Cochaperone

Protein ubiquitination
Ubiquitin ligase

PVA CP A. thaliana N.
benthamiana Coprecipitation [103]

Virus accumulation

CAT1 Decomposition of
hydrogen peroxide PepMV p26 N. benthamiana Yeast two-hybrid [104]

OsSAMS1 Ethylene biosynthesis RDV Pns11 Oryza sativa Yeast two-hybrid [101]

RIM1 Transcription factor RDV,
undetermined O. sativa Tos17 insertional

mutagenesis [105,106]

FDH1 Catalyzes oxidation of
formate into CO2

CMV 1a Capsicum
annum Yeast two-hybrid [107]

CTR3 Calcium binding in the ER CMV 1a C. annuum Yeast two-hybrid [107]

PDIL5 Protein folding BaMMV and
BaYMV

Hordeum
vulgare Map-based cloning [108]

MPI7 Vesicle-mediated transport CaMV MP A. thaliana Yeast two-hybrid [109]

IRE1A, IRE1B
and bZIP60 Unfolded protein response TuMV 6k2 A. thaliana Genetic analysis [110]
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Table 1. Cont.

Host Factor Cellular Function Virus and
Viral Factor Host System Technique Reference

eEF1A eEF1B Translation elongation and
unfolded protein response SMV P3 Glycine max

Cellular
fractionation and
Yeast two-hybrid

[111]

EXA1 Adaptor that binds
proline-rich sequences

PLAMV,
AltMV, and

PVX,
undetermined

A. thaliana EMS mutagenesis [112]

Virus names: alternanthera mosaic virus (AltMV), bamboo mosaic virus (BaMV), barley yellow mosaic virus
(BaYMV), barley mild mosaic virus (BaMMV), beet black scorch virus (BBSV), brome mosaic virus (BMV), cabbage
leaf curl virus (CaLCV), cauliflower mosaic virus (CaMV), cucumber mosaic virus (CaMV), grapevine fanleaf virus
(GFLV), groundnut rosette virus (GRV), lettuce mosaic virus (LMV), pepino mosaic virus (PepMV), plantago asiatica
mosaic virus (PIAMV), pepper veinal mottle virus (PevMoV), plum pox virus (PPV), potato virus A (PVA), potato
virus X (PVX), rice dwarf virus (RDV), red clover necrotic mosaic virus (RCNMV), soybean mosaic virus (SMV),
tobacco etch virus (TEV), tobacco mosaic virus (TMV), tomato bushy stunt virus (TBSV), tomato mosaic virus
(ToMV), tomato yellow leaf curl China virus (TYLCCV), tomato spotted wilt virus (TSWV), turnip mosaic virus
(TuMV), turnip vein clearing virus (TVCV), turnip yellow mosaic virus (TYMV).

4.2. Virus Replication Complex Formation

Positive-strand RNA viruses replicate in virus-induced organelle-like replication vesicles
formed on intracellular membranes of the endoplasmic reticulum (ER), peroxisomes, mitochondria,
or chloroplasts. This process requires the coordinated activity of viral and host factors for appropriate
subcellular localization of replication proteins, membrane remodeling, lipid biosynthesis, viral RNA
template selection, and formation and trafficking of replication vesicles [2,5,6]. Consistently, host factors
that mediate these events have been identified (Table 1), and in mutant plants or cells lacking these
essential host factors, virus replication complexes do not form or do not function normally, resulting in
a drastic reduction in virus replication [54,61].

For the formation of virus replication compartments, viral proteins must localize to a cellular
organelle and remodel cellular membranes to induce vesicle formation [6,12]. Several host factors have
been shown to mediate these events. ER-vesicle protein 14 (ERV14) interacts with and mediates BMV
1a localization to the perinuclear ER [61], while PEX19 mediates localization of the TBSV replication
proteins to the peroxisome [52]. SNF7 codes for a protein that interacts with BMV replication protein
1a and is an essential component of the replication vesicles whose membranes are permeabilized
by luminal thiol oxidase ERO1 [63]. Accordingly, replication compartments do not form in mutants
lacking ERV14 or SNF7 [54,61] and are dysfunctional in mutants lacking ERO1 [63].

Through interactions with 1a, membrane-shaping reticulon proteins (RHP) are critical to the
formation of BMV replication compartments [55]. Similarly, through interaction with the p33
replication protein, ER-resident SNARE protein encoded by SYP81 is essential in the formation of
TBSV replication compartments [59]. RAB5 encodes a GTPase protein that interacts with p33 and
redistributes phosphatidylethanolamine to the replication compartments to favor TBSV replication [58].

Endosomal sorting complexes required for transport (ESCRT proteins) interact with 1a or
p33 and are critical components of the BMV or TBSV replication complexes, respectively [53,54].
TuMV replication vesicles form in the ER and move to the chloroplast [113]. During TuMV infection
of Arabidopsis thaliana, SYP71 interacts with 6K2 and mediates the fusion of virus replication vesicles
to chloroplasts [56]. Bamboo mosaic virus (BaMV) replicates in chloroplast membranes. BaMV RNA
associates with chloroplast phosphoglycerate kinase (chl-PGK) and is transported to the chloroplast
for replication [60].

4.3. Accumulation or Activity of the Replication Proteins

During RNA virus replication, virus-encoded RNA-dependent RNA polymerases are responsible
for positive- and negative-strand RNA synthesis. Host factors are critical components involved in
template selection, accumulation, or activity of the viral RNA-dependent RNA polymerase [114].
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This has been demonstrated for BMV, TBSV, and tobamoviruses (Table 1). A cytoplasmic protein
related to core RNA splicing factors, LSM1, is required for efficient selection of BMV RNA templates
for replication [69]. HSP70, encoding heat shock protein 70, through interactions with p27 or
p33 is required for the synthesis of RNA of red clover necrotic mosaic virus (RCNMV) and TBSV,
respectively [72–74]. Similarly, TOM1 and ARL8 are required for negative-strand synthesis of tomato
mosaic virus (ToMV) [80,81], unsaturated fatty acids produced by OLE1 are needed for negative-strand
synthesis of BMV RNA [70], and GAPDH regulates the asymmetrical synthesis of positive- and
negative-strand RNA during TBSV replication [71].

4.4. Virus Movement

Plant viruses move cell-to-cell through plasmodesmata [18]. At the initial infection site, cell-to-cell
movement results in the formation of local infection spots which are potentially visible (Figure 1A).
After reaching the vascular system, viruses move long-distance and infect roots and young leaves
(Figure 1), although some viruses remain confined to the vascular system. Cell-to-cell and long-distance
movement of plant viruses is mediated by viral proteins and host factors (Table 1) [4,115,116].

Virus-encoded movement proteins modify the plasmodesmata central cavity or form tubules
inside the plasmodesmata [18]. Viruses that encode tubule-forming proteins include the families
Bromoviridae, Caulimoviridae, Secoviridae, and Tospoviridae. Interestingly, tubule formation is
dependent on host proteins. Cauliflower mosaic virus (CaMV) moves cell-to-cell through the
endocytic pathway. The CaMV MP forms tubules that pass through modified plasmodesmata and
transport virions through the lumen. In the process, CaMV MP interacts with cellular prenylated
Rab acceptor 1 and Rab GTPase receptor (AtRAB-F2b), which localize in early endosomes, and with
plasmodesmata-located adaptins [102]. Plasmodesmata-located proteins (PDL1, -2, and -3) promote
movement of grapevine fanleaf virus (GFLV) and CaMV by interacting with virus movement proteins.
A mutational analysis that disrupted the interaction resulted in reduced tubule formation, delayed
onset of systemic infection, and plants showing mild symptoms compared to wild-type plants [85].

Potyviruses move systemically using both xylem and phloem without forming tubules. The viral
movement protein is P3N-PIPO [117]. For TuMV, and possibly other potyviruses, replication vesicles
participate in cell-to-cell movement [19]. TuMV movement is dependent on PCaP1 and SEC24A
through interactions with P3N-PIPO and 6K2, respectively. SEC24A interacts with 6K2 to facilitate
intracellular trafficking of viral vesicles containing viral RNA. Consistent with this model, virus
movement was inefficient in mutant plants lacking PCaP1 or SEC24A, resulting in reduced virus
accumulation, lack of systemic movement, and mild symptoms [19]. Additionally, without affecting
virus replication, potyvirus VPg-interacting protein (PVIP) is necessary for virus movement in
plants through interactions with VPg. Inactivating mutations on TuMV VPg and siRNA-mediated
downregulation of PVIP in A. thaliana abolished the interaction and resulted in reduced virus
movement, accumulation, and mild symptoms [90].

A. thaliana synaptotagmin (SYTA) is necessary for the cell-to-cell movement of cabbage leaf curl
virus (CaLCuV), turnip vein clearing virus (TVCV), and TuMV by interacting with their respective
movement proteins (MP, 30K, P3N-PIPO) to alter plasmodesmata. Accordingly, in mutant plants
lacking SYTA, virus infection progressed slowly and plants showed mild symptoms [91,92].

The tomato spotted wilt virus (TSWV) movement protein NSm localizes to the ER membrane
and plasmodesmata and forms tubular structures that traverse the plasmodesmata. RDH3 encodes a
GTP-binding motif protein that participates in the control of vesicle trafficking between ER and Golgi
compartments. Consistently, cell-to-cell movement of TSVW requires the ER membrane transport
system through RHD3 [47].

4.5. Gene Silencing Suppression

Gene silencing is an essential antiviral defense system in plants. To promote virus infection and
movement, plant viruses encode suppressors of gene silencing that inhibit both endogenous and
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antiviral gene silencing [43]. In the absence of silencing suppressors, viruses cannot infect wild-type
plants (Figure 2B) [30,39,118,119]. Interestingly, some virus-encoded gene silencing suppressors interact
with and need host factors to function (Table 1). RAV2, an ethylene-inducible transcription factor,
is required for suppression of gene silencing by potyviral HC-Pro and carmoviral p38 to prevent
activity of primary siRNAs and for the plant malformations observed in transgenic plants expressing
HC-Pro [99].

In Nicotiana benthamiana, the calmodulin-like protein (Nbrgs-CaM) is an endogenous plant
regulator of gene silencing that functions by repressing expression of RDR6 [32]. RDR6 and
SGS3 participate in the biogenesis of secondary siRNAs necessary to amplify endogenous and
antiviral gene-silencing signals against RNA viruses [120,121] and geminiviruses [32]. Infection of
N. benthamiana by tomato yellow leaf curl China virus (TYLCCNV, a geminivirus) and the associated
βC1 DNA satellite induces expression of Nbrgs-CaM that in turn downregulates RDR6 expression,
thus reducing antiviral defense mediated by gene silencing [32].

4.6. Virion Assembly and Disassembly

Upon entry into the cell, virions are disassembled prior to translation and replication.
In the opposite process, after replication, viral genomes with or without RNA-dependent RNA
polymerases are assembled by the capsid protein into virions [103,122]. BMV virion assembly
requires replication-dependent transcription and translation of coat protein subunits [123]. Similarly,
cotranslational disassembly occurs in tobacco mosaic virus (TMV) [124] and BMV [123]. These models
predict that host factors are involved in virion assembly and disassembly. However, host factors
necessary for virion disassembly and assembly are just beginning to be identified.

During potato virus A (PVA) infection, viral RNA is recruited away from translation into
replication. This process is coordinated by the abundance and phosphorylation of the coat protein.
Translation is blocked by nonphosphorylated coat protein binding to viral RNA. Detachment from
the ribosomes promotes recruitment of the replication protein NIb to the 3′ UTR of the genomic
RNA for the assembly of viral replication compartments. Coat protein is phosphorylated by
cellular CK2. Phosphorylated coat protein interacts with ubiquitin ligase CP-interacting protein
(CPIP) and HSP90. The end result is ubiquitin-mediated coat protein degradation and initiation of
replication [103]. Formation of PVA virions is mediated by coat protein-dependent cotranslational
inhibition of translation. When coat protein is abundant, CPIP is depleted and coat protein formed in
cis interacts with coat protein accumulated in trans. The resulting complex releases the ribosomes and
triggers virion assembly [122]. Plants in which CK2, CPIP, or HSP90 were individually downregulated
accumulated PVA to lower levels than the wild type [103].

HC-Pro is involved in plum pox virus (PPV) assembly. PPV replication and virion formation
are functionally linked [122]. In other potyviruses, host factors are required for HC-Pro silencing
suppression activity [99,100]. These observations suggest that unidentified host factors are involved in
potyvirus assembly through interactions with HC-Pro, NIb, or 6K2.

4.7. Host Factors That Condition Susceptibility by Undetermined Mechanisms

Several host factors condition susceptibility to plant viruses by mechanisms that have not been
determined (Table 1). The absence of these host factors causes a reduction in virus accumulation that
could result from inefficient translation, replication, movement, virion formation, or a combination
thereof, as indicated in the following examples.

Eukaryotic translation elongation factor 1A (eEF1A) interacts with the 3′ UTR of TMV genomic
RNA and with the replication protein 126K. Downregulation of eEF1A in N. benthamiana plants reduced
TMV accumulation without affecting translation or the number of infection foci [64]. The effect could
be mediated by reduced replication, movement, or a combination thereof.

RIM1 is a NAC transcription factor that regulates jasmonic acid signaling [106]. A genetic analysis
of Tos17 insertion mutant rice lines showed that RIM1 is necessary for RDV accumulation, possibly
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through replication [105]. While lines overexpressing RIM1 accumulated higher levels of RDV, mutant
lines lacking RIM1 did not show symptoms of infection and accumulated RDV to low levels [105].
The viral component that interacts with RIM1 has not been described and the specific part of the
replication that requires RIM1 has not been identified.

The essential for potexvirus accumulation 1 (EXA1) gene contains a GYF domain and a conserved
motif for interaction with eukaryotic translation initiation factor 4E (eIF4E), and is highly conserved in
plants. EXA1 is required for infection by plantago asiatica mosaic virus (PlAMV, genus Potexvirus).
In the absence of EXA1, PlAMV, alternanthera mosaic virus (AltMV), and PVX failed to establish
infection [112].

The inositol-requiring protein-1 (IRE1) and its substrate bZIP60 are a major sensor of the unfolded
protein response signaling network in plants. Infection by TuMV induces expression of bZIP60 through
6K2. In the absence of bZIP60, TuMV accumulated to reduced levels [110].

The Hsc70-2 protein of N. benthamiana, which is induced upon infection, interacts with the beet
black scorch virus (BBSV) replication protein p23. Accordingly, downregulation of Hsc70-2 resulted in
reduced BBSV accumulation [76], likely resulting from reduced virus replication.

5. Identification of Host Factors That Determine Virus Susceptibility

A combination of experimental approaches has been used to identify proviral host factors (Table 1).
The model hosts N. benthamiana, A. thaliana, and yeast have been remarkably useful. Yeast has been
used as a heterologous host to replicate BMV [34], carnation Italian ringspot virus [125], TBSV and other
tombusviruses [35,42]. Yeast replication systems provided the foundation to screen at the genome-wide
level for host factors necessary for virus replication [34,35,126]. Host genes with essential roles in the
formation of viral RNA replication vesicles have been identified and characterized mainly using yeast
to replicate BMV or TBSV (Table 1).

Based on the model that viral factors interact and may form complexes with cellular factors, yeast
two-hybrid assays or immunoprecipitation of viral factors followed by mass spectrometry have led to
the identification of cellular factors needed for translation [50], replication complex formation [59], viral
RNA replication [37], movement [91,92], gene silencing suppression [100], and others [109] (Table 1).

In species with low or no natural variation in virus resistance, chemical mutagenesis was used
to identify susceptibility factors [33,112]. Natural genetic variation and fine gene mapping in melon
(Cucumis melo L.) led to identification of vacuolar protein sorting 41 (CmVPS41), which is conserved
among plants, animals, and yeast and is required for post-Golgi vesicle trafficking towards the vacuole.
CmVPS41 may participate in systemic movement, because cucumber mosaic virus (CMV) 3a interacts
with CmVPS41 to promote viral entry into the phloem [98].

Transient expression systems in N. benthamiana have been implemented to identify or characterize
viral factors that trigger an antiviral response or are necessary for virus infection [127].

6. Essential and Nonessential Host Factors

Factors that condition virus susceptibility may be essential or nonessential for host survival
(Figure 2A). Because they are required for survival, essential genes cannot be removed from the host.
Conditional repression of expression or temperature-sensitive expression was used to determine the
role of yeast essential genes in BMV and TBSV replication [126,128]. This genetic analysis identified
19 essential yeast genes that antagonized and 19 essential yeast genes that were required for BMV
replication [126]. Similarly found were 46 essential yeast genes that antagonized and 72 essential yeast
genes that are required for TBSV replication [128]. Genes essential for yeast survival and necessary for
BMV or TBSV replication participate in translation (DED1), protein homeostasis (ESS1, HSF1, PFY1),
ribosome biosynthesis (NOP), cell cycle (DCD53), lipid synthesis (ALG14), RNA metabolism (RNA15,
SW2), and others [126,128].

Table 1 lists representative nonessential host factors that condition susceptibility to plant viruses.
These genes represent opportunities to edit plant genes and engineer resistance to viruses, as
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demonstrated for eIF(iso)4E [129]. In plants, translation initiation factor eIF(iso)4E is required for
potyvirus infection and is dispensable for translation of plant genes, growth, and development [33].
Thus, using CRISPR/Cas9, an inactivating mutation was introduced in the eIF(iso)4E in A. thaliana.
The resulting plants were immune to TuMV [129].

7. Concluding Remarks

Plant virus replication and movement are mediated by viral genetic determinants interacting
with and functioning in synchrony with cellular factors. Consequently, the absence of host proviral
factors results in reduced virus replication, movement, or both, or in the absence of infection. Thus,
without affecting growth and development, a permissive host may be transformed into a nonhost
by mutating/editing or inactivating proviral factors that determine virus susceptibility [33,129].
This concept creates a remarkable opportunity to engineer resistance to viruses through gene
editing [129–131]. An important part of the process is the identification and characterization of
susceptibility genes to plant virus infection.

Factors nonessential for host survival and with proviral activity have been identified for all
stages of the virus infection cycle (Table 1). Host factors necessary for infection by DNA viruses,
negative-strand, and dsRNA viruses are underrepresented. Given the agricultural importance of
geminiviruses, tomato spotted wilt virus, and other orthotospoviruses, this knowledge gap is a research
opportunity with important practical applications. Additionally, identification and characterization
of new proviral factors is expected to improve our understanding of basic mechanisms governing
virus–host interactions.

Which specific plant factors are the most promising gene editing targets? Likely, the answer will
need to be determined for each plant–virus combination or by virus groups. Under this scenario,
and for practical applications, an important future challenge is the identification of proviral factors
required by groups of viruses of agricultural importance, such as potyviruses, orthotospoviruses, or
geminiviruses. In a complementary or alternative approach, identification of host factors could be
directed to particular diseases, such as maize lethal necrosis [132–134], cassava brown streak disease,
or cassava mosaic disease [135]. Another important challenge is the assessment of the risk of viruses
mutating in order to adapt to hosts with mutant proviral factors.

The identification of host factors that determine susceptibility to plant viruses in combination
with gene editing provides a valuable tool to engineer genetic resistance to viruses and to understand
the basic mechanisms of plant–virus interactions.
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