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Abstract: Surface-enhanced Raman scattering (SERS) is a non-destructive spectra analysis technique.
It has the virtues of high detectivity and sensitivity, and has been extensively studied for low-trace
molecule detection. Presently, a non-noble-metal-based SERS substrate with excellent enhancement
capabilities and environmental stability is available for performing advanced biomolecule detection.
Herein, a type of molybdenum carbide/molybdenum oxide (Mo2C@MoOx) heterostructure is con-
structed, and attractive SERS performance is achieved through the promotion of the charge transfer.
Experimentally, Mo2C was first prepared by calcinating the ammonium molybdate tetrahydrate and
gelatin mixture in an argon atmosphere. Then, the obtained Mo2C was further annealed in the air to
obtain the Mo2C@MoOx heterostructure. The SERS performance was evaluated by using a 532 nm
laser as an excitation source and a rhodamine 6G (R6G) molecule as the Raman reporter. This process
demonstrates that attractive SERS performance with a Raman enhancement factor (EF) of 1.445 × 108

(R6G@10−8 M) and a limit of detection of 10−8 M can be achieved. Furthermore, the mechanism of
SERS performance improvement with the Mo2C@MoOx is also investigated. HRTEM detection and
XPS spectra reveal that part of the Mo2C is oxidized into MoOx during the air-annealing process, and
generates metal–semiconductor mixing energy bands in the heterojunction. Under the Raman laser
irradiation, considerable hole–electron pairs are generated in the heterojunction, and then the hot
electrons move towards MoOx and subsequently transfer to the molecules, which ultimately boosts
the Raman signal intensity.

Keywords: SERS; molybdenum carbide; molybdenum oxide; heterojunctions; charge transfer

1. Introduction

Surface-enhanced Raman spectroscopy (SERS) is a single-molecule analytical tech-
nique that can detect and identify chemical and biological compounds through their unique
Raman vibration fingerprints [1]. Presently, it has been widely implemented in the fields of
bio-medicine, homeland security, food safety, and medical diagnosis, etc. [2–6]. Although
the exact mechanism of the enhancement effect is still under debate, the presence of an
electromagnetic mechanism (EM) and a chemical mechanism (CM) are two commonly
accepted enhancement theories [7]. Generally, the EM relies on the generation of surface
plasmon resonance (SPR) on the noble metal-based SERS substrates, which subsequently
amplifies the oscillating dipoles of the molecules and ultimately produces the enhanced
Raman signal intensity. On the other hand, the CM relies on the photo-induced charge
transfer between the molecules and the SERS substrate. The extra charges amplify the polar-
izability of the molecules, and consequently enhance the Raman signal intensity. Typically,
the enhancement factor (EF) produced by the EM can reach 106 or even higher, whereas
it is only around 10–1000 times that obtained on the conventional CM-dependent SERS
substrates [8,9].
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Up to today, an enormous number of studies on noble metal-based (Au, Ag, and Cu)
SERS substrates have been performed. By designing and preparing noble metal-based
nanostructures with various morphologies or compositions, fantastic SERS performance
has been demonstrated [10–12]. At present, it is well accepted that precise control of the
noble metal morphologies and compositions is a major necessity for generating strong
plasmonic coupling; however, manufacturing the large-scale nanostructures with high
accuracy requires excessive cost. In addition, noble metals generally exhibit poor stability
and biocompatibility; thus, SERS detectors prepared with noble metals are rarely used in
biological applications [9].

Recently, a non-noble-metal-based SERS substrate has attracted an enormous amount
of attention [13–16]. Significantly, molybdenum-based materials, such as molybdenum
disulfide (MoS2), molybdenum telluride (MoTe2), and molybdenum sub-oxide (MoOx),
show promising SERS performance, which results from the exceptional charge transfer
capability caused by the defects in the material [17–19]. For example, a kind of two-
dimensional molybdenum disulfide (MoS2) was used to construct the nonmetallic SERS-
based immunoassay. In addition, a desirable EF of 105 was obtained by the efficient charge
transfer resonances induced by the 532 nm laser excitation, which has been ascribed to
the effective enrichment of molecules on the large active surfaces of MoS2 [20]. Mean-
while, a metallic MoO2 was prepared via the hydrothermal method, and the evaluation
of its SERS performance revealed that an EF of 3.75 × 106 can be achieved due to the
excellent charge transfer capability of the MoO2 [21]. On the other hand, recent studies
have also introduced heterojunctions to promote the charge transfer on the non-noble-
metal-based SERS substrate, and they have shown that heterojunction tends to help to
efficiently transfer the photo-generated free carriers to the molecules, which significantly
improves the SERS performance. Specifically, defective molybdenum oxide/tungsten oxide
(MoOx/WOx) are prepared, then they are mixed with different weight ratios to construct
the nano-heterojunctions. This shows that an attractive EF of 108 can be obtained on the
substrate with optimal mixing ratios [22]. However, tungsten suboxide suffers from issues
of environment instability when the above method is used in a harsh condition or when
the material is kept in the air for a long time [23]. At this point, it is notable that improving
the charge transfer between the molecules and substrates is a key factor for promoting the
SERS performance of the non-noble-metal-based substrate. Moreover, the environmental
stability of the SERS substrate material is also essential for various detection applications.

Herein, a molybdenum carbide/molybdenum oxide (Mo2C@MoOx) heterostructure is
constructed to promote its charge transfer for SERS applications. Experimentally, Mo2C
was first prepared by calcinating the ammonium molybdate tetrahydrate and gelatin
mixture in an argon atmosphere. Then, the obtained Mo2C was oxidized in the air to
obtain the Mo2C@MoOx heterostructure. The SERS performance was evaluated by using a
532 nm laser as the excitation source and a rhodamine 6G (R6G) molecule as the Raman re-
porter. Attractive SERS performance with a Raman enhancement factor (EF) of 1.445 × 108

(R6G@10−8 M) and a limit of detection of 10−8 M was achieved. Furthermore, the SERS
performance improvement of the Mo2C@MoOx is also investigated. High-resolution TEM
detection and XPS spectra reveal that part of the Mo2C is oxidized into MoOx during the
air-annealing process, and generates high levels of metal–semiconductor mixing energy
in this hetero-region. Under Raman laser irradiation, the enhanced light absorption pro-
duces substantial electron–hole pairs in the hetero-region, and then these electrons move
towards the molecules because of the MoOx energy level, which ultimately boosts the
Raman signal intensity.

2. Materials and Methods
2.1. Chemicals

Commercial Mo2C (CAS No.: 12069-89-5, 99.95%) was purchased from Maclin Bio-
chemical Co., Ltd., Shanghai, China. Gelatin (CAS No.: 9000-70-8, 99%) was obtained from
Macklin Biochemical Co., Ltd., Shanghai, China. Ammonium molybdate tetrahydrate (CAS
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No.: 12054-85-2, AHM, >99%) was purchased from Sinopharm Chemical Reagent Co., Ltd.,
Shanghai, China. All chemicals were used without further purification. Deionized water
(resistivity of 18.2 MΩ•cm) was used to prepare the solutions in all the experiments.

2.2. Synthesis of Mo2C

To obtain the Mo2C, in the experiment, gelatin (1 g) was first added into deionized
water (20 mL), and then AHM (2 g) was put into the solution. After that, the above mixture
was stirred vigorously in a 50 ◦C water bath for 2 h. Thereafter, the prepared solution
was dried in the oven to drive the excessive water out at 80 ◦C for another 25 h. Next, the
mixture was dehydrated at 200 ◦C in the quartz tube with argon flushing for 1 h. Thereafter,
the temperature of the quartz tube was raised to 900 ◦C by 10 ◦C/min, and held at that
temperature for another 1 h. Finally, the quartz tube was cooled down naturally. In the
entire carbonization process, the argon gas flow was kept at 45 mL/min. The obtained
black solid products were washed and centrifuged with distilled water several times to
remove the residue of the reactants, and finally dried in vacuum at 80 ◦C for further use.

2.3. Preparing the Mo2C@MoOx Films

The obtained Mo2C powder was dispersed in alcohol, and ultrasonicated for 15 min.
Then, 10 µL of the mixed solution was dropped onto the silicon wafer that was pretreated
with the piranha solution and dried in the air. Finally, the silicon wafer was transferred to
the hot plate for annealing. The optical image and cross-section SEM image of the prepared
substrate are shown in Figure S1. It can be observed that the physical thickness of the Mo2C
is about 78.7 nm.

2.4. Measurements and Characterization

X-ray diffraction (XRD) spectra were recorded on a D8 Advance diffractometer
equipped with a Lynxeye Xe detector (Bruker AXS, Karlsruhe, Germany). X-ray pho-
toelectron spectroscopy (XPS) was measured with a thermal K-α instrument, the X-ray
emission source is Al-K-α rays (hν ≈ 1486.6 eV), and the experimental binding energy data
are corrected to C 1 s = 284.8 eV. The scanning electron microscope (SEM) images of the
prepared material were detected on an SU-70 field emission scanning electron microscope
(SU-70, Hitachi, Japan) under an accelerating voltage of 5 kV. For the transmission electron
microscopy (TEM), high-resolution TEM images were obtained using the transmission
electron microscope (Tecnai G2F20S-Twin, FEI, Hillsboro, OR, USA) under an accelerating
voltage of 200 kV. UV–vis spectra were recorded on the spectrometer (TU1901, P-General,
Samutprakarn, Thailand). The SERS performance was examined using a ProSp-Micro40-
VIS Raman system (Hangzhou SPL, Hangzhou, China), and QE Pro spectrometer (QE pro,
Ocean Optics, Dunedin, FL, USA) was used to record the Raman spectra. The excitation
laser wavelength was 532 nm and the power on the substrate was 1 mW. Meanwhile, the
integration time was set to 10 s, and the objective lens was 50×.

3. Results and Discussion

The black Mo2C powder was first detected via SEM. Figure 1a,b shows the micro-
scopic morphologies of the Mo2C at different magnifications. It can be seen that the Mo2C
nanoflakes are in irregular shapes, and the surface of the nanoflakes is relatively smooth.
The size of a typical nanoflake is about 87 × 120 nm2. The crystal structure of Mo2C
was then identified via XRD. Figure 1c shows that sharp diffraction peaks can be deter-
mined, which indicates that the prepared Mo2C has good crystallinity. Then, the SERS
performance of the synthesized Mo2C was evaluated by using the R6G as the Raman
reporter. As Figure 1d shows, the characteristic Raman vibrational peaks can be observed
when a 10−4 M R6G solution is used. However, when the R6G concentration is reduced
to 10−5 M, the Raman peak intensities reduce significantly, and the Raman peaks even
become completely extinct when the concentration of R6G solution reaches 10−6 M (see
inset of Figure 1d). Based on the above observation, it is evident that the SERS performance
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of the synthesized Mo2C is extremely weak, which could be ascribed to the weak charge
transfer capability from the substrate to the molecules.
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Figure 1. (a,b) The SEM images of the synthesized Mo2C with different magnifications; (c) the XRD
spectrum of the synthesized Mo2C; (d) the SERS spectra of R6G measured on the synthesized Mo2C.

In order to improve the SERS performance of the synthesized Mo2C, the Mo2C@MoOx
heterostructure was constructed by annealing the Mo2C powder in the air. Firstly, three
sets of Mo2C powder were subjected to air annealing at 300 ◦C, 350 ◦C, and 400 ◦C, with
the time fixed at 30 min. The UV–vis absorption spectra of the products were collected,
and these are shown in Figure 2a. The figure shows that the synthesized Mo2C exhibits
metallic properties [24]. Meanwhile, the absorption curve tails up when compared to that
measured on the commercial Mo2C in the long wavelength range, which is ascribed to the
existing of defects in the synthesized Mo2C [25]. On the other hand, the absorption edges
of the annealed products were significantly shifted to longer wavelengths, which suggests
that the band gap opened up due to the formation of MoOx [26]. Additionally, the Raman
spectra of the products were also measured. As can be observed in Figure 2b, only weak
intrinsic Raman peaks of MoOx can be observed on the spectra collected for the materials
annealed at 300 ◦C and 350 ◦C, revealing that the thermostability of Mo2C is quite good.
On the other hand, prominent Raman peaks appear on the material annealed at 400 ◦C.
Specifically, the Raman peak which appears at 288 cm−1 is assigned to the wagging mode of
the double bond O=Mo=O, while the Raman peaks that appear at 662, 818, and 994.7 cm−1

are assigned to the stretching mode of the triply coordinated oxygen (3Mo-O), the doubly
coordinated oxygen (2Mo-O), and the terminal oxygen (Mo6+-O), respectively. Finally, the
Raman peaks that show at 243, 286, 335, and 375 cm−1 are indexed to the oscillation modes
of (2Mo-O), (O=Mo=O), (3Mo-O), and (Mo=O), respectively [22]. The above observation
demonstrates that the oxidization reaction at 400 ◦C is more efficient at oxidizing the Mo2C
into MoOX. Furthermore, the SERS performance of the materials oxidized at different
temperatures was investigated, and 10−4 M R6G was used as the probe molecule. Figure 2c
shows that the characteristic peaks of the R6G, from 600 to 2000 cm−1, could be observed
on all films. In detail, the Raman peaks that appear at 608 and 772 cm−1 are attributed to
aromatic bending, and the Raman peak that is located at 1183 cm−1 arises from aromatic
C-H bending. Meanwhile, the Raman peak that shows at 1362 cm−1 is assigned to C-C
bridge stretching and, finally, the Raman peaks that appear at 1507 and 1646 cm−1 are
ascribed to aromatic C-C stretching [27]. More importantly, it also can be observed that
the SERS intensities of R6G measured on the Mo2C annealed at 300 ◦C and 350 ◦C are
similar to that measured on the synthesized Mo2C, which suggests that there is almost no
change in the charge transfer capability, even when the Mo2C has been annealed in the



Biosensors 2022, 12, 50 5 of 10

air. However, it is interesting to observe that the SERS intensities of R6G measured on the
Mo2C annealed at 400 ◦C are almost two times high than the intensities measured on the
other two mentioned above, which reveals that the charge transfer capability of the Mo2C
annealed at 400 ◦C is significantly improved.

Biosensors 2022, 12, x FOR PEER REVIEW 5 of 10 
 

from aromatic C-H bending. Meanwhile, the Raman peak that shows at 1362 cm−1 is as-
signed to C-C bridge stretching and, finally, the Raman peaks that appear at 1507 and 1646 
cm−1 are ascribed to aromatic C-C stretching [27]. More importantly, it also can be ob-
served that the SERS intensities of R6G measured on the Mo2C annealed at 300 °C and 350 
°C are similar to that measured on the synthesized Mo2C, which suggests that there is 
almost no change in the charge transfer capability, even when the Mo2C has been annealed 
in the air. However, it is interesting to observe that the SERS intensities of R6G measured 
on the Mo2C annealed at 400 °C are almost two times high than the intensities measured 
on the other two mentioned above, which reveals that the charge transfer capability of the 
Mo2C annealed at 400 °C is significantly improved. 

 
Figure 2. (a) The absorption curves measured on different materials that were annealed under dif-
ferent temperatures; (b) the corresponding Raman spectrum of the materials annealed at different 
temperatures; (c) the SERS spectrum of R6G measured on different materials that were annealed at 
different temperatures. 

To further explore the effect of the annealing time on Mo2C’s SERS performance, the 
synthesized Mo2C powder was subjected to different annealing times, while the temper-
ature was fixed at 400 °C. As Figure 3a shows, the absorption peak blue shifts with the 
extension of the annealing time, which suggests that there is an increase in the amount of 
the MoOx component. Meanwhile, the Raman spectra of the annealed materials and the 
corresponding SERS spectra of the R6G were also recorded, and these are shown in Figure 
3b and Figure 3c, respectively. The evolutions of the Raman peak intensities at 818 cm−1 
(MoOx) and 608 cm−1 (R6G) are extracted and shown in Figure 3d. This illustrates that the 
characteristic Raman peaks of MoOx gradually increase with the extension of the anneal-
ing time, which further confirms that the percentage of MoOx increases in the products. 
However, the peak intensity saturates when the annealing time is >100 min, indicating 
that the Mo2C has been fully oxidized into MoO3. At the same time, for the Raman peak 
of R6G, the Raman peak intensity gradually climbs up in the beginning, and it reaches the 
maximum point when the annealing time is set to 70 min. However, further increasing the 
annealing time degrades the material’s SERS performance, and the SERS enhancement 
capability remains unchanged when the annealing time is >100 min, which verifies that 
the Mo2C is fully oxidized at that time. 

Figure 2. (a) The absorption curves measured on different materials that were annealed under
different temperatures; (b) the corresponding Raman spectrum of the materials annealed at different
temperatures; (c) the SERS spectrum of R6G measured on different materials that were annealed at
different temperatures.

To further explore the effect of the annealing time on Mo2C’s SERS performance, the
synthesized Mo2C powder was subjected to different annealing times, while the temper-
ature was fixed at 400 ◦C. As Figure 3a shows, the absorption peak blue shifts with the
extension of the annealing time, which suggests that there is an increase in the amount
of the MoOx component. Meanwhile, the Raman spectra of the annealed materials and
the corresponding SERS spectra of the R6G were also recorded, and these are shown in
Figure 3b,c, respectively. The evolutions of the Raman peak intensities at 818 cm−1 (MoOx)
and 608 cm−1 (R6G) are extracted and shown in Figure 3d. This illustrates that the charac-
teristic Raman peaks of MoOx gradually increase with the extension of the annealing time,
which further confirms that the percentage of MoOx increases in the products. However,
the peak intensity saturates when the annealing time is >100 min, indicating that the Mo2C
has been fully oxidized into MoO3. At the same time, for the Raman peak of R6G, the
Raman peak intensity gradually climbs up in the beginning, and it reaches the maximum
point when the annealing time is set to 70 min. However, further increasing the annealing
time degrades the material’s SERS performance, and the SERS enhancement capability
remains unchanged when the annealing time is >100 min, which verifies that the Mo2C is
fully oxidized at that time.
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Next, the discussion will focus on the mechanism of the SERS performance improve-
ment observed for the Mo2C annealed at 400 ◦C for 70 min. Firstly, SEM and TEM was
used to detect the morphologies of the material. It can be seen on the SEM images in
Figure 4a,b that the product still retains the irregular shapes as that of Mo2C, but the sur-
face becomes rough, which could be ascribed to the formation of the MoOx. Meanwhile,
the TEM image in Figure 4c,d reveals more details. It shows that the edge of the particle
forms tiny antennas. In addition, the high-resolution transmission electron microscope
(HRTEM) image in Figure 5d displays two lattice fringes. The first one shows d-spacing
of 2.5 Å, which is consistent with the (002) plane of Mo2C. The second one shows lattice
fringes of 1.7 Å, which corresponds to the (211) plane of MoO3. This physical evidence
indicates that annealing in the air forms the Mo2C@MoO3 heterostructure.
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Figure 4. (a,b) Different magnifications of the SEM images of the Mo2C annealed at 400 ◦C for 70 min;
(c) the TEM image of the Mo2C annealed at 400 ◦C for 70 min; (d) the corresponding high-resolution
TEM image of the Mo2C annealed at 400 ◦C for 70 min.

In addition, X-ray photoelectron spectroscopy (XPS) was used to analyze the valence
states of the elements. Figure 5 shows the XPS spectra collected for the synthesized Mo2C,
Mo2C@MoOx (400 ◦C for 70 min), and MoOx (400 ◦C for 100 min), respectively. Clearly, the
respective peaks belonging to the Mo, O, and C atoms are observed on the element scanning
spectra. Moreover, Figure 5b shows the high-resolution spectra of the Mo 3d that was
measured on the synthesized Mo2C. Three peak-shaped spectrum can be observed. Then,
deconvolution analysis was performed. The two spin-orbit doublets at 227.63 and 228.33 eV
can be assigned to the Mo2+ ion, the double peaks at 230.78 and 232.18 eV correspond
to the Mo4+ ions, while the doublets appearing at 231.43 and 234.83 eV are indexed to
the Mo5+ ions. Moreover, it can be attained that 42.4% of the Mo atoms are in a Mo2+

state, indicating that they form the Mo2C structure. On the other hand, it also shows that
the rest of the Mo ions are still in a high valence state (Mo3+:28.9%, Mo4+:28.7%), which
reveals the possible existence of impurities (e.g., MoC) in the product [28]. Furthermore,
the high-resolution XPS spectra of the Mo2C@MoOx is shown in Figure 5d. This analysis
shows that the percentage of Mo2+ component is reduced to 12.7% after the annealing
process. Correspondingly, the percentage of Mo high valence states increases. Specifically,
the percentage of Mo5+ ions increases to 54.0%, while Mo6+ ions also appear, and they make
up over 33.3% of the total Mo atoms. The above change suggests that Mo2C is partially
oxidized and forms an optimal heterostructure with excellent charge transfer capabilities.
The high-resolution spectra of the MoOx are shown in Figure 5f. Clearly, a two-peak-shaped
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spectrum is obtained. Through the analysis, it is found that the sample is mainly composed
of Mo6+ ions (73.2%), while only a small percentage of the atoms are in a Mo5+ state (26.7%),
which further confirms that the Mo2C is completely converted to MoO3 [29]. At this time,
the mechanism of the SERS enhancement observed on Mo2C@MoOx can be understood
in Figure S2. It can be seen that the metal–semiconductor generates high levels of mixing
energy in the hetero-region, the incident light produces substantial numbers of electron–
hole pairs, and then the hot electrons are separated (Figure S3) and move towards the
molecules because of the MoOx energy levels, which ultimately boosts the Raman signal
intensity [25,30,31].
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Finally, the sensitivity of the Mo2C@MoOx heterostructure was also evaluated. Figure 6a
shows the collected Raman spectra when the R6G concentrations decrease from 10−4 to
10−5, 10−6, 10−7 and to 10−8 M, respectively. Figure 6a shows that the Raman signal of
the R6G is still detectable when the concentration reaches 10−8 M, which indicates that the
detection limit of the Mo2C@MoOx heterostructure can be as low as 10−8 M. In addition,
Figure 6b shows the logarithmic plot of the Raman peak intensity (608 cm−1) versus the
R6G concentration from 10−4 to 10−8 M. Clearly, it can be seen that the substrate has a good
linear detection capability. Other than that, the enhancement factor (EF) of the Mo2C@MoOx
film at different R6G concentrations is also calculated by integrating the peak intensity
at 608 cm−1 (see the Supplementary Materials). It can be seen from Figure 6b that EFs of
8.4 × 105 (10−4 M R6G), 6.4 × 106 (10−5 M R6G), 4.4 × 107 (10−6 M R6G), 1.0 × 108 (10−7 M
R6G), and 1.8 × 108 (10−8 M R6G) can be obtained. At this moment, it is worth noting that
the EF increases with the decrease in the R6G concentration, which could be ascribed to
the improvement of the charge efficiency when less molecules are adsorbed on the surface.
Other than that, other Raman reporters, such as methylene blue (MB), were also used. It can
be seen from Figure S4 that the substrate shows excellent Raman enhancement capabilities.
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Moreover, the LoD can reach 10−8 M, as well. Furthermore, the uniformity of the Raman
signal intensity on the Mo2C@MoOx heterostructure was evaluated. To achieve this, the
Raman signal intensity map was recorded for the Mo2C@MoOx substrate. Specifically, a
randomly selected square of 80 × 80 µm2 was used for the mapping measurement. In
the measurement, 10−4 M R6G was used as the reporter and a total of 1600 points were
collected. Figure 6c shows the intensity mapping of the Raman peak at 608 cm−1. The figure
shows good Raman signal intensity for a large-scale area. In addition, the statistical data in
Figure 6d show that the average mapping intensity is 7004.5 cps, while the relative standard
derivative (RSD) is calculated to be 13.02%. The above data indicate that the prepared
Mo2C@MoOx substrate has excellent uniformity. Finally, as the literature reported that both
Mo2C and MoOx have relatively good resistance to high temperatures and acidic/alkaline
environments, it is expected that the Mo2C@MoOx heterostructure-based SERS substrate
can expand the potential application fields for multipurpose detection [21,25].
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4. Conclusions

To summarize, a type of Mo2C@MoOx heterostructure has been finely prepared,
and improved SERS performance has been achieved through the heterostructure-induced
charge transfer. Specifically, attractive SERS performance with a Raman enhancement factor
(EF) of 1.445 × 108 (R6G@10−8 M) and a limit of detection of 10−8 M has been achieved.
Furthermore, the mechanism of the SERS performance improvement was also investigated.
HRTEM detection and XPS spectra revealed that part of the Mo2C is partially oxidized
into MoOx, and generates metal–semiconductor mixing energy bands in the heterojunction.
Under Raman laser irradiation, a considerable number of hole–electron pairs are generated
in the heterojunction, and then the hot electrons move towards MoOx and subsequently
transfer to the molecules, which ultimately boosts the Raman signal intensity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12020050/s1, Figure S1: The optical and cross-section SEM
image of the deposited Mo2C film; Figure S2: The charge transfer path; Figure S3: PL spectra
measured on Mo2C and Mo2C@MoOx; Figure S4: SERS spectra of MB; Note 1: calculation of the
enhancement factor.
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