
Regulation of exercise-stimulated glucose uptake in 
skeletal muscle

Review article

AMP-activated protein kinase (AMPK) is a Ser/Thr kinase that has been thought to 
be an important mediator for exercise-stimulated glucose uptake in skeletal muscle. 
Liver kinase B1 (LKB1) is an upstream kinase for AMPK and AMPK-related protein 
kinases, of which the function in skeletal muscle has not been well documented. 
Our group and others have generated mice lacking AMPK activity in skeletal muscle, 
as well as muscle-specific LKB1 knockout mice. In this review, we discuss the 
potential role of AMPK and LKB1 in regulating exercise-stimulated glucose uptake 
in skeletal muscle. We also discuss our recent study, demonstrating the molecular 
mechanism of obesity-induced development of skeletal muscle insulin resistance. 
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Introduction

The incidence of type 2 diabetes is increasing at epidemic rates worldwide and skeletal 
muscle is the tissue responsible for the majority of glucose disposal upon insulin stimulation 
and exercise, which have been known to increase glucose uptake into the tissue1). Although 
the ability of insulin to promote glucose uptake into skeletal muscle is impaired, the exercise-
stimulated glucose uptake is nearly normal in the patients with type 2 diabetes2,3). Given the 
incidence of type 2 diabetes and the physiological importance of exercise in regulation of 
glucose uptake in skeletal muscle, it is important to understand the molecular mechanisms that 
mediate this phenomenon, which is still not fully understood.

AMP-activated protein kinase and glucose uptake during exercise

AMP-activated protein kinase (AMPK) is a Ser/Thr kinase that functions in the regulation 
of energy metabolism4). Active AMPK consists of heterotrimeric complexes containing a 
catalytic α subunit and regulatory β and γ subunits. The phosphorylation of the Thr172 site 
on the α catalytic subunit by upstream kinase(s) is essential for AMPK activation5-7). Liver 
kinase B1 (LKB1)5,8,9) and Ca2+/calmodulin kinase kinase (CaMKK)10-12) have been shown to 
phosphorylate and activate AMPK. Recent studies have demonstrated that knockout of LKB1 
in muscle results in a decreased AMPKα2 activity, suggesting that LKB1 appears to be a major 
AMPK kinase in skeletal muscle13,14).

AMPK is activated upon increase in the AMP/ATP ratio, such as exercise15,16) and 
hypoxia17), and regulates multiple signaling pathways whose overall effects are to increase ATP 
production, including fatty acid oxidation and glucose uptake4,18). Consistently, incubation 
of isolated muscle with AICAR (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranotide), 
an AMPK activator, stimulates glucose uptake in the absence of insulin, comparable to the 
effects of exercise and muscle contraction19-21). Furthermore, lack of AMPK in skeletal muscle 
abolished the effect of AICAR to stimulate glucose uptake in skeletal muscle22,23). Collectively, 
these studies suggest that AMPK plays an important role in glucose uptake during exercise. 
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Despite considerable effort has been made to understand 
the role of AMPK on exercise-stimulated glucose uptake 
using transgenic and knockout mouse models, the results are 
not consistent and are somewhat controversial. Transgenic 
mouse models depleting AMPK activity in a muscle-specific 
manner show different phenotypes; a partial impairment22,24,25) 
or no reduction23,26) in exercise-stimulated glucose uptake. 
Furthermore, knockout of AMPKα1, AMPKα2, AMPKβ2, 
and AMPKγ3 do not alter glucose uptake during in vitro 
contraction27-29). These data suggest that AICAR-stimulated 
increases in skeletal muscle glucose uptake are mediated by 
AMPKα2, but AMPK cannot be the sole mediator of contrac
tion-stimulated glucose uptake. Although the role of AMPK in 
exercise-stimulated glucose uptake cannot be excluded, there 
may be multiple, potentially redundant, signaling mechanisms 
mediating contraction-mediated glucose uptake in skeletal 
muscle.

Role of LKB1 and AMPK-related protein 
kinases in glucose uptake

In order to determine the potential role of  the AMPK 
upstream kinase, LKB1, our group has generated a muscle-
specific LKB1 knockout mouse (MLKB1KO)13). Furthermore, 
Sakamoto et al.14) have studied a hypomorphic LKB1 mouse 
where whole body LKB1 protein is decreased by 70%–80% and 
skeletal muscle LKB1 is ablated. Exercise-stimulated glucose 
uptake was significantly inhibited in these two LKB1 knockout 
mouse models13,14). The mechanism(s) by which LKB1 regulates 
exercise-stimulated glucose uptake in skeletal muscle has not 
been elucidated. We speculated that decreased glucose uptake 
cannot be explained by inactivation of AMPKα2 alone and 
could be due to decreased activity of one or more other LKB1 
substrates. In addition to AMPK, LKB1 has been known to 
phosphorylate at least 12 AMPK-related protein kinases that 
are similar in structure and/or function to AMPK30,31). The role 
of AMPK-related protein kinases in regulating skeletal muscle 
glucose uptake has not yet been understood but one report 
suggests that only some of the AMPK-related kinases (QSK, 
QIK, MARK2/3, and MARK4) are expressed in rat skeletal 
muscle, and that none of these proteins are activated by in 
situ muscle contraction32). Another study demonstrated that 
phosphorylation of the AMPK-related protein kinase 5 (ARK5) 
is increased by both muscle contraction and AICAR in rat 
skeletal muscle. However, the increased ARK5 phosphorylation 
was not associated with elevated enzyme activity in this study33). 
Taken together, it is likely that exercise-stimulated glucose 
uptake is regulated by one or more alternative downstream sub
strates of LKB1.

Role of SNARK in exercise-stimulated glucose 
uptake 

Studies using transgenic and knockout mouse models 

lacking AMPK activity in skeletal muscle and muscle-specific 
LKB1 knockout mouse model raise the possibility that one 
or multiple AMPK-related kinases play an important role in 
exercise-stimulated glucose uptake in skeletal muscle. The role 
of the proteins in this process has not been well understood 
and therefore remains to be elucidated. However, our group 
has recently reported that Sucrose Nonfermenting AMPK-
related Kinase (SNARK) plays an important role in exercise-
stimulated glucose uptake in skeletal muscle34). The enzyme 
activity is activated by muscle contraction and exercise in mice 
and humans. Overexpression of dominant mutant SNARK by a 
direct DNA injection and heterozygotic SNARK knockout mice 
decrease SNARK activity in skeletal muscle, which is associated 
with impaired exercise-stimulated glucose uptake. More 
recently, SNARK has also been reported to regulate muscle 
mass35). The expression of SNARK in skeletal muscle is increased 
by high fat diet and aging. Transgenic mice overexpressing a 
dominant negative form of SNARK in skeletal muscle display 
a loss of muscle mass and an increased adiposity, showing a 
sarcopenic obesity (aging-related muscle mass loss and obesity).  
These findings indicate that SNARK plays important roles in 
muscle metabolism as well as muscle mass maintenance. Further 
studies are needed to determine the role of other AMPK-related 
protein kinases in skeletal muscle metabolism. Thus, LKB1 and 
its downstream pathway, including AMPK and SNARK, play 
an important role in exercise-stimulated glucose uptake and 
muscle metabolism.

Skeletal muscle and insulin resistance

The importance of skeletal muscle in the regulation of 
whole body glucose metabolism has been clearly established. 
In addition to exercise, insulin is a major mediator for glucose 
uptake in skeletal muscle. Most patients with type 2 diabetes 
display insulin resistance in skeletal muscle. Although the 
insulin signaling molecules have been well understood, the 
development of insulin resistance remains unclear. Our group 
recently studied the role of Tribbles 3 (TRB3) in skeletal muscle. 
TRB3 is a pseudokinase36) that is expressed in various tissues, 
including liver, adipose tissue, heart and skeletal muscle13,37-39), 
and its expression is regulated through multiple mechanisms. 
In liver and adipose tissue, TRB3 expression is induced by 
fasting via activation of PGC-1α and PPAR-α37,38,40). In 3T3-L1 
adipocytes and L6 myotubes, glucose deprivation, dexame
thasone, and the unfolded protein response regulate TRB3 
expression41). Endoplasmic reticulum (ER) stress is known to 
increase TRB3 expression in various cell lines42-44). TRB3 is 
induced by various forms of ER stress via enhanced promoter 
activity44). These indicate that TRB3 is regulated by metabolic 
stress in multiple tissues. Recent studies demonstrate that TRB3 
binds and inhibits Akt activity, leading to impaired insulin 
signaling in liver37,40). Our study found45) that high-fat feeding in 
mice, and obesity and type 2 diabetes in humans increase TRB3 
in skeletal muscle.  Overexpression of TRB3 impairs insulin 
signaling and insulin-stimulated glucose uptake in skeletal 
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muscle.  Consistently, TRB3 knockout mice are protected 
from high-fat diet-induced insulin resistance in skeletal 
muscle. Taken together, these data strongly suggest that TRB3 
mediates development of insulin resistance in skeletal muscle. 
Furthermore, the results demonstrate that TRB3 may be a new 
therapeutic target for effectively managing insulin resistance.

Conclusions

It has been clearly shown that AMPK activates glucose uptake 
in skeletal muscle, which is comparable to insulin. Skeletal 
muscle LKB1, an upstream kinase of AMPK and AMPK-
related protein kinases, has been shown to regulate exercise-
stimulated glucose uptake. The underlying mechanisms appear 
to be AMPK-independent and still need to be elucidated.  
SNARK, an AMPK-related protein kinase, plays an important 
role in exercise-stimulated glucose uptake in skeletal muscle. 
Further investigations need to be done to determine if the 
LKB1/SNARK pathway is a useful therapeutical target for the 
treatment of type 2 diabetes, as the role of the pathway in other 
tissues has not been studied. Our recent study also identified 
a novel protein, TRB3, as an important signaling molecule in 
developing insulin resistance in skeletal muscle. Inhibition of 
TRB3 function may assist in preventing obesity and type 2 
diabetes. 
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