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ABSTRACT Natural products (NPs) isolated from bacteria have dramatically ad-
vanced human society, especially in medicine and agriculture. The rapidity and ease
of genome sequencing have enabled bioinformatics-guided NP discovery and char-
acterization. As a result, NP potential and diversity within a complex community,
such as the microbiome of a plant, are rapidly expanding areas of scientific explora-
tion. Here, we assess biosynthetic diversity in the Populus microbiome by analyzing
both bacterial isolate genomes and metagenome samples. We utilize the fully se-
quenced genomes of isolates from the Populus root microbiome to characterize a
subset of organisms for NP potential. The more than 3,400 individual gene clusters
identified in 339 bacterial isolates, including 173 newly sequenced organisms, were
diverse across NP types and distinct from known NP clusters. The ribosomally syn-
thesized and posttranslationally modified peptides were both widespread and diver-
gent from previously characterized molecules. Lactones and siderophores were prev-
alent in the genomes, suggesting a high level of communication and pressure to
compete for resources. We then consider the overall bacterial diversity and NP vari-
ety of metagenome samples compared to the sequenced isolate collection and
other plant microbiomes. The sequenced collection, curated to reflect the phyloge-
netic diversity of the Populus microbiome, also reflects the overall NP diversity
trends seen in the metagenomic samples. In our study, only about 1% of all clusters
from sequenced isolates were positively matched to a previously characterized gene
cluster, suggesting a great opportunity for the discovery of novel NPs involved in
communication and control in the Populus root microbiome.

IMPORTANCE The plant root microbiome is one of the most diverse and abundant
biological communities known. Plant-associated bacteria can have a profound effect
on plant growth and development, and especially on protection from disease and
environmental stress. These organisms are also known to be a rich source of antibi-
otic and antifungal drugs. In order to better understand the ways bacterial commu-
nities influence plant health, we evaluated the diversity and uniqueness of the natu-
ral product gene clusters in bacteria isolated from poplar trees. The complex
molecule clusters are abundant, and the majority are unique, suggesting a great po-
tential to discover new molecules that could not only affect plant health but also
could have applications as antibiotic agents.

KEYWORDS biosynthetic gene clusters, natural product biosynthesis, plant-microbe
interactions, quorum sensing, rhizosphere-inhabiting microbes, siderophores

A diverse array of microbial organisms living in the rhizosphere confer beneficial
attributes to the host plant (1–4). Microbial symbionts facilitate nutrient exchange,

environmental stress tolerance, pathogen resistance, and modulation of the host
immune response. Populus, the first woody plant to be sequenced (5) and have its
microbiome characterized (6–8), is a key model system for studying the plant micro-
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biome and its effect on nutrient cycling, plant health, and ecological diversity (4). A
deeper understanding of how the microbiome of Populus utilizes secondary metabo-
lism for intra- and interspecies communication to maximize plant growth and devel-
opment will be critical for realizing the effective production of sustainable fuel sources
and for understanding the cycling of materials through ecosystems.

While the root microbiome can depend on environmental conditions such as soil
type, season, climate, and water availability (6, 8, 9), there is clear evidence for rich
diversity within the Populus microbiome (8, 10). Rhizosphere and endosphere microbial
communities are distinct from each other, indicating different selection processes for
survival within these compartments (6, 7, 11). Soil type and host plant genotype
dramatically influence microbial population, so it follows that the small-molecule
clusters can also widely vary between microbiome samples (12). For example, potato
plant microbial natural product (NP) diversity was found to change as the plants
matured, reflecting changes in the microbial composition and the role of the micro-
biome during growth and development (13). This strongly indicates that different
interactions and functions are required for bacteria to compete in these distinct
compartments and across the development of a plant, and thus, the possible NP
production will differ, leading to increased NP diversity (14). While soil microbiome
analyses have surveyed the diversity of nonribosomal peptide (NRP) or polyketide (PK)
clusters (13, 15), little is known about the extent of biosynthetic gene cluster (BGC)
diversity across all known NP types within a plant-associated microbial community.

Bacteria not only interact with one another using chemical signaling (16), but they
also interact directly and indirectly with the host plant through chemical signaling (17),
nutrient exchange (18, 19), induction of immune response pathways (20), and promo-
tion of root hairs or lateral root growth (21). For example, beneficial Pseudomonas
microorganisms are of particular importance in protecting the host from potential
pathogens through the induction of the plant immune response (22). Complex NPs
with antibiotic properties have also been shown to protect the plant from pathogens
and to stabilize the microbiome (23–26). Bioinformatic mining of the genomes of
soil-dwelling bacteria has revealed that bacteria have the ability to produce many more
NPs than have been discovered through traditional activity-based isolation methods
(27, 28). In particular, special focus has been directed toward the actinomycetes
because of the prevalence of BGCs in their genomes (29) and known production of
bioactive NPs, including the widely successful antibiotics tetracycline, chloramphenicol,
erythromycin, and rifamycin (30, 31). The types of NPs that bacteria have the potential
to synthesize, the situations under which these compounds are produced, and the
mechanisms by which NPs influence microbe-microbe and microbe-plant interactions
(32) are questions of great importance in developing a comprehensive understanding
of the plant microbiome.

A variety of computational programs, such as antiSMASH (33), BAGEL (34), and
PRISM (35), have enabled the prediction of BGCs from bacterial genomes. Although
BGCs are recognized on the basis of homology to NP biosynthetic pathways that have
already been identified, newer programs are venturing into putative cluster identifica-
tion, and predictions are continually being refined as the products of novel clusters are
identified and characterized (33). In particular, the ribosomally synthesized and post-
translationally modified peptide (RiPP) natural products benefit from genome mining
efforts. The structures and masses of these NPs, derived from precursor peptides
encoded in the genome, can be predicted with increasing accuracy on the basis of the
presence of certain identifiable biosynthetic enzymes that install posttranslational
modifications onto the core region of the precursor peptide. While many RiPPs have
been identified as having antibiotic, anticancer, or antifungal activity in vitro, the actual
in vivo role is, in most cases, undetermined (36).

Here, we analyze metagenome samples from the roots of field-grown Populus for
genes involved in secondary metabolism. Further, we investigate the sequenced ge-
nomes of 339 bacterial strains, including 173 newly sequenced genomes, isolated from
the root endosphere and rhizosphere of Populus deltoides and Populus trichocarpa in
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order to connect the diversity observed in the metagenome samples to the biosyn-
thetic potential of individual organisms. We determine the key organisms that have the
greatest biosynthetic richness and classify clusters on the basis of NP family to better
understand community structure in the rhizosphere. We next evaluate distribution of
certain NP classes across strains. The biosynthetic potential is assessed for novel
compounds and better-known signaling molecules such as siderophores and quorum-
sensing homoserine lactones. Finally, we examine the most prevalent family charac-
terized, the RiPPs, for broadly distributed and genus-specific NP clusters. These exam-
ples of NPs identified from genome mining reveal the diversity of compounds that can
be discovered within the Populus rhizosphere.

RESULTS
Phylogenomic analysis of bacterial BGCs. We constructed a phylogenetic tree

utilizing the genomes of 339 diverse bacterial strains isolated from the Populus micro-
biome (Fig. 1). Organisms were selected for genome sequencing on the basis of ease
of cultivation, representation of the overall phylogenetic diversity of the Populus

FIG 1 Phylogenetic tree of genome-sequenced bacterial strains from the Populus microbiome. The tree was inferred from approximately maximum likelihood
approach with FastTree v2.1.9. Branch support values are noted on each branch, and branches are colored by phylum or class as follows: yellow, Actinobacteria;
red, Bacteroidetes; green, Firmicutes; dark blue, Alphaproteobacteria; blue, Betaproteobacteria; light blue, Gammaproteobacteria. The isolation compartment is
noted with color strip as indicated: black, rhizosphere isolate; gray, endosphere isolate.
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microbiome (6), and potential for use in controlled laboratory/greenhouse studies (21,
37) (see Fig. S1A in the supplemental material). The genomes sequenced, assembled,
and annotated in collaboration with the Joint Genome Institute (JGI) as of July 2017
were downloaded from the JGI Integrated Microbial Genomes and Microbiomes web-
site (https://img.jgi.doe.gov/) for further analysis (38). Of the genomes analyzed, 173 are
being reported for the first time (Table S1). These bacteria were isolated from wild
Populus deltoides and Populus trichocarpa root samples collected as noted (Table S1)
from root surfaces (rhizosphere) or surface-sterilized and ground roots (endosphere
isolates).

Bacterial genome size and gene count are linearly related (39); in the sequenced
isolates, the number of detected genes was compared to genome size, and no outliers
were detected, revealing that genomes were well assembled and annotated (Fig. S1B).
The sequenced genomes were subsequently mined for biosynthetic gene clusters
(BGCs) using antiSMASH 3.0 (33). Bioinformatic analysis of the collection identified a
total of 3,409 BGCs from more than 35 natural product (NP) families (Table S3).
Members of Actinobacteria harbored the greatest number of BGCs per genome
(21.15 � 20.85 BGCs/genome), but the large standard deviation reflects the fact that
the phylum contains the cluster-rich Streptomyces genus (45.29 � 17.81 BGCs/genome)
but also genera with few clusters (for example, Arthrobacter with 4.43 � 1.62 BGCs/
genome, Microbacterium with 3.00 � 0.00 BGCs/genome, Nocardioides with 3.50 � 1.91
BGCs/genome, and Promicromonospora with 4.67 � 1.53 BGCs/genome) (Table 1 and
Fig. S2A). In contrast, Proteobacteria and Firmicutes harbored many fewer clusters and
were less biosynthetically rich (7.56 � 4.21 and 8.03 � 4.43 BGCs per genome). Though
there is rough scaling between genome size and number of BGCs, when normalized to
genome size, Actinobacteria microorganisms dedicate a larger portion of the genome
to secondary metabolism than all other phyla (Table 1 and Fig. S2B) (40). In contrast,
Paraburkholderia, Gram-negative bacteria commonly found in close symbiotic relation-
ship with both plants and fungi, dedicate a disproportionately small amount of
genomic space to NP biosynthesis (Fig. S2B).

BGCs were grouped into categories on the basis of similar biosynthetic pathways,
including nonribosomal peptides (NRPs), polyketides (PKs), ribosomally synthesized
and posttranslationally modified peptides (RiPPs), terpenes, saccharides, fatty acids,
lactones, siderophores, and hybrids. The most abundant BGCs in the Populus micro-
biome collection encode RiPPs (606 clusters from 97 genomes [Fig. 2]). Clusters from NP
families known to produce antibiotics (NRPs, PKs, and RiPPs in particular) were some of

TABLE 1 Percentage composition of rhizosphere and endosphere metagenomes for the four most common bacterial phyla, and the
representation of those phyla in the sequence collectiona

Phylum and class
% of
metagenome

% of sequenced
collection Genome size (Mb)b

No. of
BGCs

Avg no. of BGCs
per genomeb

% of genome dedicated
to BGCsb

Actinobacteria 18.70 13.86
Actinobacteria 14.62 13.86 6.96 � 2.84 994 21.15 � 20.85 9.80 � 4.71

Bacteroidetes 3.01 14.16
Chitinophagia 0.53 1.47 8.74 � 0.71 112 22.40 � 8.93 7.51 � 9.59
Cytophagia 0.96 0.59 6.35 � 3.02 19 9.50 � 7.78 3.65 � 2.69
Flavobacteriia 0.55 8.55 5.00 � 0.77 327 11.28 � 5.99 4.74 � 2.14
Sphingobacteriia 0.56 3.54 6.48 � 0.93 95 7.92 � 4.44 3.18 � 2.14

Firmicutes 2.58 10.32
Bacilli 1.35 10.32 5.88 � 1.15 281 8.03 � 4.43 5.12 � 2.16

Proteobacteria 34.56 61.65
Alphaproteobacteria 17.69 22.42 6.10 � 1.13 474 6.24 � 2.92 4.94 � 2.05
Betaproteobacteria 6.93 21.24 7.06 � 1.59 605 8.40 � 4.54 4.13 � 2.47
Gammaproteobacteria 5.43 17.99 5.82 � 0.93 502 8.23 � 4.78 4.56 � 1.99

aGenome size, number of BGCs, average number of BGCs per genome, and percentage of genome dedicated to secondary metabolism are detailed for each class
within the four major bacterial phyla, Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria.

bValues are means � standard deviations.
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the more abundant cluster types, highlighting the importance of the ability to produce
metabolites for bacterial competition. Similarly, terpenes, historically studied in plants
and mammals and now known to be widespread in bacteria as well (41), were present
in the largest number of genomes, with 49% of the isolates carrying a gene encoding
a terpene synthase. Bacterial terpenes are implicated in interkingdom signaling, as the
volatile compounds have recently been shown to elicit profound effects on plants (42,
43). Siderophores, discussed in more detail below, were represented in more than
one-third of the sequenced isolates, highlighting the importance of nutrient acquisition
in the soil. Intriguingly, a total of 500 previously unclassified clusters were identified
from more than 30% of organisms in the sequenced collection (Fig. 2). The antiSMASH
algorithm identifies clusters using enzymes that perform less common biosynthetic
transformations in an attempt to capture possible NPs that fall into previously unex-
plored families (33).

In order to compare the sequenced isolates from different compartments, we
divided results by endosphere and rhizosphere (Fig. S3). Normalizing to the number of
genomes within each compartment, endophytic bacteria tend to have slightly more
BGCs than rhizosphere isolates (Fig. S3B and C), containing on average more RiPP, NRP,
terpene, hybrid, and less common NP clusters. This observation, and the enrichment of
homoserine lactone (HSL) and butyrolactone BGCs in endophytic genomes, is in
agreement with the metagenomic data, highlighting the importance of quorum sens-
ing in the more confined endosphere. However, siderophore clusters were actually
overrepresented in the rhizosphere isolates compared to endophytic isolates (44). This
could be the result of bias in the selection of organisms for sequencing and may not
reflect an overall trend in iron acquisition in the rhizosphere versus endosphere.
Nonetheless, as nutritional availability and microbiome structure differ between com-
partments, it is not surprising that endophytic bacteria and rhizosphere isolates would
be capable of producing different types of NPs.

The most abundant gene cluster type found in the collection encodes RiPPs, of
which the majority are bacteriocins and lanthipeptides. However, these clusters are
present within only 29% of the collection, while almost half of the sequenced organ-
isms (49%) contain terpene clusters (Fig. 2B). Previous studies have focused on the
iteratively constructed NRP and PK NPs, whose enzymatic machinery is diverse even
within the microbiota of different deep-sea sponges or urban park soils, not just from
other characterized enzymatic domains of similar function but also within the micro-
biome itself (45, 46). A systematic survey of NPs in the genomes of human gut
microbiota showed a vast number of previously uncharacterized gene cluster families,

FIG 2 Diversity of natural product cluster classes identified in the sequenced bacterial isolates from the Populus
microbiome. (A) Total number of gene clusters identified in the collection from each natural product class. The total
number of clusters is indicated in boldface type at the top of each bar. Clusters with �85% sequence similarity to a known
cluster are indicated as black bars in each class, with the percentage of the class indicated above each bar. (B) Total number
of genomes containing clusters of each natural product class. The total number of genomes containing natural products
in that class is listed at the top of each bar.
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along with a vast diversity of BGCs belonging to known families (47, 48). We thus
looked at the homology of BGCs identified in the Populus microbiome to determine the
extent of overlap with previously characterized clusters.

Presence of known BGCs. Importantly, within each NP family, there exists the
possibility of widespread structural diversity. Using MiBIG (49), a repository of gene
clusters and their experimentally confirmed products, BGCs with �85% similarity to
already characterized clusters were identified. Surprisingly, only 54 of the 3,409 clusters
(1.6%) matched a known BGC (Fig. 2A and Table 2). The most prevalent known clusters
are siderophores and include desferrioxamine B and petrobactin (Fig. S4C and D). While
RiPP clusters are the most common BGC in the collection of isolates, only one cluster
matched an already-described compound: the lassopeptide paeninodin, which was
identified in four genomes (50). The limitation of this analysis is that similarity analysis
is performed only with MiBIG-curated clusters, which do not comprise all BGCs posi-
tively connected to a NP. However, the diversity of clusters present in the collection, as
described below, suggests that many of the isolates harbor unique gene clusters
capable of producing previously uncharacterized NPs.

RiPP natural products are diverse and are unique to the soil microbiome. RiPPs
are the most prevalent cluster type found in the sequenced collection (Fig. 2). A total
of 136 lanthipeptide-producing clusters were identified in addition to 9 lanthipeptide
hybrid clusters from 73 of the isolates, representing 23% of all RiPP clusters. The
lanthipeptide precursor peptides (LanA proteins) from the collection were compared to
known sequences in both GenBank and Uniprot (Fig. 3A and Fig. S5). The lanthipeptide
clusters are widely distributed in the Populus collection, as they are found in all four
represented phyla. The Populus microbiome-derived LanA proteins clustered together
in most cases, but these clusters were distributed throughout the tree, suggesting that
the lanthipeptides represented in the current collection of Populus isolates cover new
sequence space in the NP family. Lanthipeptides often act as antibiotics, disrupting cell
membranes; these molecules could be important in the plant microbiome to protect
against pathogens and to keep certain bacterial populations in check.

TABLE 2 Gene cluster product and NP class for clusters with �85% sequence similarity to
a characterized BGC

NP name NP class No. of BGCs

Alkylresorcinol PK 7
Carotenoid Terpene 5
Paeninodin RiPP 4
Petrobactin Other 4
Ectoine Other 4
Albaflavenone Terpene 4
2-Methylisoborneol Terpene 3
Hopene Terpene 3
Flexirubin Terpene 2
Desferrioxamine B Siderophore 2
Mycobactin Siderophore 2
Pyochelin NRP 2
Zwittermycin A Hybrid 1
Polymyxin NRP 1
Mangotoxin Other 1
Putisolvin NRP 1
Vicibactin Siderophore 1
Heterobactin Siderophore 1
Enterocin PK 1
Coelichelin NRP 1
Antimycin Hybrid 1
Naringenin PK 1
Bacillibactin NRP 1
Isorenieratene Terpene 1

Total 54
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Unlike lanthipeptides, one class of RiPP was found to be present in only one
bacterial genus in our sequenced bacterial strains. Interestingly, the microviridin cluster
was located within 16 of the 18 sequenced Chryseobacterium isolates, but not within
any other genus in the collection. Microviridins are RiPPs with a cagelike structure
formed as a result of two dedicated ATP-grasp ligases, which form two lactone rings on
Thr/Asp and Ser/Glu and a lactam ring from Lys/Glu residues within a conserved
TXKYPSDXD/E motif in the core region of the MvdA precursor peptide (Fig. 3B) (51, 52).
While microviridins have thus far been isolated only from Cyanobacteria, the in vitro
reconstitution of the pathway has enabled the study of microviridins from other
bacteria (53, 54). Homology searching of the MdnC ATP-grasp ligase in the NCBI
database showed that the microviridin biosynthetic machinery is not confined to
cyanobacteria but is also present in Proteobacteria and Bacteroidetes, in particular
Chryseobacterium (55, 56). In vitro experimentation has revealed that microviridins act
as protease inhibitors (54), but the natural function in the microbiome of Populus
remains to be determined.

The GC content of the microviridin BGC, compared to the entire Chryseobacterium
genome, does not indicate that the cluster was obtained through horizontal gene
transfer from cyanobacteria (cluster percent GC 36.04 � 1.16; organism percent GC
37.47 � 1.23) (57). Extensive searches did not yield microviridin-like precursor peptides
within other genomes in the collection, and although other putative ATP-grasp en-
zymes were identified on the basis of homology to MvdC from Planktothrix agardhii
(Fig. 3C), no other clusters contained both ATP-grasp ligases and a precursor meeting
the requirements of microviridins (58). It should be noted that ATP-grasp proteins from
other Pfams do not appear in BGCs, as they function instead in primary metabolic
pathways (51).

Chryseobacterium isolates from the Populus rhizosphere have one to four MvdA
genes per cluster, and the core regions of these precursors are typically longer than
those of previously identified MvdA sequences (18 residues on average versus 12 to 14
amino acids in cyanobacterial microviridins) (Fig. 3B). The Chryseobacterium isolates

FIG 3 Ribosomally produced and posttranslationally modified (RiPP) clusters from the Populus microbiome sequenced isolates. (A) Tree of LanA precursor
peptide sequences. The length of the branch represents distance in amino acid sequence diversity. GenBank LanA (red), Uniprot LanA (blue), and sequenced
Populus isolates (green) are indicated. Genome names are included in Fig. S4 in the supplemental material. (B) WebLogo of the core region of the
Chryseobacterium microviridin precursor peptides shows conservation of residues required for lactone and lactam formation. (C) Sequence similarity network
(SSN) of all ATP-grasp enzymes in the sequenced Populus isolates, The nodes, color coded by phylum or class as indicated, represent individual genes and are
connected with edges based on an E value of �100, and sized on the basis of amino acid sequence length. The phylum or class is indicated in color as follows:
yellow, Actinobacteria; red, Bacteroidetes; green, Firmicutes; dark blue, Alphaproteobacteria; blue, Betaproteobacteria; light blue, Gammaproteobacteria.
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from P. deltoides have class III precursor peptides, in which a single leader region is
fused to a single core region (55). Within a BGC, the individual precursor sequences
differ, indicating leniency in peptide recognition of the ATP-grasp ligases. Only 50% of
the clusters contained an N-acetyltransferase (Table S4), unlike microviridin clusters
from cyanobacteria; however, this modification has been shown to not be necessary for
protease inhibition (59). Additionally, the presence of a resistance protein (PF00903) in
81% of the clusters suggests that the microviridins may have antibacterial activity
related to protease inhibition and the resistance protein may be required for immunity
of the native producer (Table S4). It remains to be determined whether the microviridin
clusters, as well as other secondary metabolite BGCs from other organisms in the
Populus microbiome, are transcribed and translated under ecologically relevant condi-
tions and whether the NPs are involved in intra- and interspecies communication.

Lactone clusters highlight the importance of quorum sensing. Quorum sensing
(QS) is a vital communication method in the bacterial realm which relies on the
production of signaling molecules that convey information about cell density and result
in the triggering of various cellular processes. QS regulates biofilm formation, second-
ary metabolite production, and many other cellular processes. One of the most well-
described QS systems is the homoserine lactone cluster, which is comprised of the
signaling molecule synthase and the signal receptor (60, 61). HSL clusters are identified
in antiSMASH using hidden Markov models (HMMs) based on the Pfams for the
synthetase (33). While originally implicated in intraspecies communication, recent
studies have also shown that QS molecules can be detected by nonproducing bacteria
and even the host plant, whereby plant metabolism, the plant immune response, and
root development can be modulated in response to the HSLs (16, 60, 62, 63). Accord-
ingly, the metagenomic analysis of the P. deltoides microbiome shows an enrichment of
HSLs in the endosphere (Fig. 4B).

Schaefer et al. determined that, of 129 proteobacterial isolates from P. deltoides
tested, 40% demonstrated HSL activity (16). Secondary metabolite prediction in the
sequenced organisms encountered 131 HSL and 40 butyrolactone gene clusters, most
prevalent in the Rhizobium and Streptomyces genera, respectively (Fig. S6A and E).
Interestingly, a LuxR gene was found in Streptomyces sp. strain OK807, which, while not
adjacent to a LuxI gene, had high sequence similarity to proteobacterial sequences
(Fig. S6E) (64). Homology searches with the Streptomyces sp. OK807 LuxR yield other
LuxR genes in Streptomyces and do not appear to be the result of horizontal gene
transfer from Proteobacteria (data not shown). Further investigation will be required in
order to determine the signal molecule the Streptomyces LuxR detects and what effect
LuxR activation has on the organism.

While HSL clusters are known to be prevalent in Proteobacteria, LuxR genes are not
always adjacent to an HSL synthase gene (Fig. S6D) (16, 65, 66). Indeed, a total of 436
LuxR proteins were found in the 339 sequenced isolates, compared to only 131 HSL
synthase proteins. Of the 163 isolates with genes encoding a LuxR, 63 did not contain
a LuxI homolog (Fig. S6E), indicating that nonproducing bacteria may be able to
eavesdrop on chemical signaling of cell density to regulate their own metabolic
pathways (67). Recent evidence suggests that many of these LuxR solos regulate other
BGCs, as is the case for the NRP-polyketide synthase (PKS) bactobolin and the �-lactam
carbapenem (64). Alternatively, some LuxR solos may be capable of detecting tree-
produced signaling molecules. The OryR homolog PipR in Pseudomonas sp. strain GM79
was found to recognize an as-yet unknown metabolite in Populus leaf macerates,
suggesting that LuxR-type proteins can even be involved in interkingdom signaling
(63). While the presence of PipR homologs in other Proteobacteria (Fig. S6D) (16) does
not necessarily indicate a novel NP, plant-derived molecules may also be utilized in the
root microbiome to control bacterial cellular processes such as NP biosynthesis or
biofilm formation.

Siderophore clusters suggest interspecies competition. Not only is signaling
important in a complex environment, bacteria must also compete with one another for
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FIG 4 Natural product biosynthetic analysis of the metagenome of P. deltoides. (A) Composition of the metagenome by kingdom and the phylogenetic
distribution of the bacterial component within the bulk soil, rhizosphere, and soil, based on BLAST phylogeny. (B) Composition of natural product clusters

(Continued on next page)
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nutrient acquisition. Siderophores are secondary metabolites that primarily chelate
iron, a metal essential for cellular metabolism and growth. Siderophores can be
biosynthesized from a variety of pathways, including NRP (enterobactin [68]), RiPP
(microcin M [69]), and NRP-independent pathways (desferrioxamine B [70]). AntiSMASH
uses PF04183.5, the IucA_IucC family involved in aerobactin biosynthesis (71), to
identify siderophore-producing clusters from a biosynthetic pathway exclusive to
iron-chelating molecules; thus, the number of siderophore-producing clusters may be
dramatically underestimated (33). Indeed, clusters with 100% similarity to the NRP-
produced coelichelin and pyochelin were identified in Pseudomonas sp. strain GV058
and Pseudomonas sp. strain GV077, and Streptomyces atratus sp. OK807, respectively
(Table 2).

Despite the limitations of estimating the overall number of possible siderophore-
producing clusters, siderophore BGCs were widely distributed across genera in our
sequenced collection (Fig. S4A and B). Of the 163 gene clusters identified as containing
siderophore-producing enzyme genes, 10 had �90% similarity to clusters with a
product described in the NP database MiBIG (49), including desferrioxamine B and
petrobactin (Fig. S4C and D). These NRP-independent pathways were found in bacteria
from 40 different genera. The percent occurrence of siderophore clusters in the
sequenced collection does not reflect the enrichment of the cluster observed in the
endosphere metagenomic analysis; only 37% of the sequenced isolates contained a
siderophore cluster, while 45.33% of sequenced rhizosphere isolates had the potential
to make an NRP-independent siderophore. Bacteria compete for limited resources in
the plant microbiome, and the presence of a siderophore cluster could be a compet-
itive advantage for the survival of certain species, both within the root and in the
rhizosphere. The prevalence of siderophore gene clusters across multiple biosynthetic
pathways in the sequenced collection is evidence for resource competition in the
Populus microbiome as well as the importance of siderophores in plant root coloniza-
tion (44).

Analysis of the bacterial component of the Populus metagenome. In order to
determine how well the sequenced isolates reflected the overall soil microbiome, we
then surveyed the metagenome of Populus deltoides rhizosphere, endosphere, and bulk
soil samples to gain a broad perspective of secondary metabolism diversity in a
plant-associated microbial community. In comparison to the human gut microbiome,
which is dominated by Firmicutes and Bacteroidetes, the Populus root microbiome
comprises a greater level of bacterial diversity at the phylum level, with Actinobacteria,
Bacteroidetes, Firmicutes, and Proteobacteria dominating the bacterial fraction (Fig. 4A)
(72, 73). The bacterial distribution we observed is in agreement with previous metag-
enomics analyses of maize (74), Arabidopsis (75), and Populus tremula � Populus alba
field-grown trees (11). Similar to these previous plant microbiome experiments, which
showed that Proteobacteria make up a greater percentage of the bacterial community
moving from bulk soil to the endosphere (11), the component of Proteobacteria
dramatically increased from 29.2% of bulk soil bacterial reads to 43.9% in the endo-
sphere (alphaproteobacteria increased most significantly, from 12.9% to 25.7%). Acti-
nobacteria also increased from 15.3% to 24.0%, as seen in previous analyses (Fig. 4A)
(76). Differences in plant host species, genotype, soil, and environment can have
dramatic effects on the composition of the microbiome (77). In spite of the differences,
the most prevalent phyla in our samples matched those of other studies: Proteobacteria,
Firmicutes, Bacteroidetes, and Actinobacteria dominated the bacterial metagenome
counts (78), and this bacterial diversity is reflected in the genome-sequenced isolate
collection as well (Table 1). We expect that the increased diversity of species found in
soil samples compared to the human gut suggests that the plant root microbiome

FIG 4 Legend (Continued)
identified in the metagenome of P. deltoides, separated into endosphere, rhizosphere, and bulk soil components. Clusters were grouped by natural product
family and divided by the total number of clusters identified to give relative prevalence of cluster type within each compartment.
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could similarly have greater diversity in natural product biosynthetic pathways. Thus,
the assembled Populus metagenomes were analyzed by antiSMASH (33) for the pres-
ence of genes associated with secondary metabolite biosynthesis. Samples were com-
piled and separated on the basis of location of sample extraction: endosphere, rhizo-
sphere, or bulk soil (Fig. 4B).

Because of the short sequence reads common to metagenomic samples that lead to
fragmented genes, the numbers of biosynthetic genes identified per sample were low
compared to overall data set size (4,825 � 1,214 biosynthetic genes in the endosphere,
9,046 � 1,744 biosynthetic genes in the rhizosphere, and 7,545 � 2,552 biosynthetic
genes in bulk soil). Raw sequence counts were highest in the rhizosphere; however, raw
counts for bacterial contigs were also highest in the rhizosphere versus endosphere and
bulk soil (79). Thus, we normalized the data in order to compare the relative prevalence
of NP type within all identified genes in a compartment, thereby accounting for
different metagenome sample sizes (Fig. 4B).

Across all compartments, NP types commonly associated with production of anti-
biotics, including the NRP, PK, and RiPP families, were the most prevalent. Terpenes,
odoriferous and volatile hydrocarbons constructed from isoprenoid building blocks,
were also prevalent in all compartments (41). These trends reflect the prevalence
observed within the sequenced isolates.

The quorum-sensing homoserine lactones and butyrolactones are enriched in the
endosphere in both sequenced isolates and metagenomic data, suggesting a great
importance of intraspecies communication within the root. While bacteria in the
rhizosphere also rely on quorum-sensing molecules for regulation of certain pathways,
the environmental pressures in the endosphere may enhance the need for population-
based transcriptional control. Signaling provides an advantage to bacteria in the
endosphere as they compete to colonize and acquire nutrients for survival; HSLs allow
bacteria to appropriately respond to nutrient availability and the presence of other
organisms in order to efficiently colonize and survive.

The endosphere is also enriched in siderophore biosynthetic genes compared to the
rhizosphere and bulk soil, indicating that nutritional availability varies across the
compartments. Bacteria in the endosphere may need to compete more for iron than
those organisms exposed to soil. Biosynthetic genes connected to less common
processes in NP biosynthesis (condensation of multiple complex moieties, for example),
classified as “other” were most common in the rhizosphere and bulk soil samples,
perhaps reflecting the larger percentage of unclassified bacteria and thus, NPs with less
common or less well-characterized biosynthetic pathways in these compartments
(Table S2).

DISCUSSION

In this study, we investigated the natural product (NP) biosynthetic potential of the
Populus microbiome by analyzing metagenomic data as well as a set of sequenced
bacterial isolates taken from the Populus rhizosphere and endosphere. Metagenomic
analysis reveals the overall potential of the microbiome, including the estimated 95%
of bacteria that are unculturable by current techniques (2), to produce secondary
metabolites. Just as the diversity of bacterial isolates is dramatically increased com-
pared to the well-studied human gut microbiome, NP diversity may also be enhanced
in the Populus microbiome. The most abundant NP genes identified include RiPPs,
NRPs, terpenes, and those of unknown class. The metagenome samples showed that
the endophytic samples are enriched in siderophores and HSLs, but siderophores were
found to be more prevalent in rhizosphere isolates when analyzing fully sequenced
genomes. As the bacterial population is also distinct in the endosphere versus the
rhizosphere, the molecular arsenal with which organisms arm themselves in these
distinct spheres must also differ (44).

Metagenomic data are suggestive of the overall potential of the microbiome to
make a vast array of NPs, from the most abundant NRP class to less abundant hybrids
and putative secondary metabolite clusters with no closely related NP type. However,
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metagenomic analysis has its limitations. The libraries contain many short sequence
reads, leading to a lack of genomic context for the identified enzymes. This makes
connecting biosynthetic genes to the organism producing the product extremely
challenging and inhibits further investigation of clusters. In order to enable an analysis
of the distribution of NP classes across NP-producing organisms as well as the structure
and function of individual NPs in the microbiome, the cluster should be positively
correlated to a specific genome.

Bioinformatic analysis of the genomes of 339 bacterial strains isolated from the
Populus microbiome revealed that the NP cluster distribution clearly favors Actinobac-
teria but also that the most prevalent members are not necessarily the most prolific in
terms of NP biosynthesis. Nonetheless, less abundant members of the microbiome may
still have a large impact on overall community structure by producing molecules that
affect intra- and interspecies communication.

However, the presence of a BGC in a genome does not indicate that a product is
synthesized; many BGCs are cryptic, and biosynthetic potential is not a reflection of an
organism’s impact on community structure (80). Endophytic bacteria harbor more BGCs
on average than rhizosphere isolates, perhaps because of a greater need to compete
for space and nutrients within a confined and crowded environment. The presence of
BGCs involved in nutrient acquisition, such as siderophore clusters for iron uptake,
reveal that competition for resources likely dictates community structure. Thus, certain
NPs may also serve as antibiotics in order to regulate population levels within the
community. While certain classes of NPs are expected in the plant microbiome, such as
quorum-sensing (QS) molecules and siderophores, there are a vast number of other NP
gene clusters within the genomes of these soil-dwelling bacteria. The products of these
BGCs may have significant roles in the shaping of the microbiome and thus the overall
health of the host plant. We investigated the diversity of other NP clusters within the
339 sequenced genomes and discovered a RiPP cluster present in only one genus of
bacteria. Microviridin BGCs are found only in Chryseobacterium spp., suggesting a niche
role for the NP. In contrast to the microviridins, other RiPP clusters, such as those
implicated in lanthipeptide biosynthesis, are broadly distributed across bacterial gen-
era. While an abundance of clusters exists for compounds already known to influence
community dynamics, such as siderophores and HSLs, only 1.6% of clusters have an NP
already described, and 500 clusters have no discernible NP classification, suggesting
that a wealth of novel chemical diversity exists in the Populus rhizosphere. Determining
the production, and subsequently the structure and function, of these bioinformatically
predicted molecules will be important for understanding the multifaceted communi-
cation networks and community structuring taking place in the Populus microbiome.

MATERIALS AND METHODS
Metagenome sampling. Samples were collected from an experimental cultivar trial in Blount County

in Tennessee at a site managed by the University of Tennessee Institute of Agriculture (UTIA) – East
Tennessee Research and Education Center (ETREC) (35°50=N, 83°57=W) in August 2014. Metagenome
samples were collected from the bulk soil, rhizosphere, and endosphere of Populus deltoides roots, and
DNA was extracted in the laboratory as described previously (81). DNA extraction was performed using
the MoBio PowerSoil DNA isolation kit (MoBio Laboratories, Inc., Carlsbad, CA, USA) after bead-beating
frozen samples (3 min in frozen blocks using one 5-mm steel bead per sample) to pulverize roots.

Strain isolation. Root samples from Populus deltoides and Populus trichocarpa were collected from
mature trees and were processed for strain isolation as described previously (6, 22, 82–84). Caney Fork
River samples were from native P. deltoides in the Buffalo Valley Recreation Area in DeKalb County, TN
(36˚6=N, 85˚50=W). Clatskanie samples were from common garden-grown P. trichocarpa in the Columbia
River Valley in Oregon (123°40=W, 46°6=N). Corvallis samples were from common garden-grown P.
trichocarpa in the Columbia River Valley in Oregon (44°35=N, 123°11=W). Oak Ridge samples were from
native P. deltoides on the Oak Ridge Reservation, TN, or P. trichocarpa grown in Corvallis, OR, soil in a
greenhouse in Oak Ridge, TN (35°55=N, 84°19=W). Yadkin River samples were collected from native P.
deltoides in eastern North Carolina (35˚43=N, 80˚24=W).

To collect rhizosphere isolates, root washes were serially plated on R2A agar (Thermo Fisher).
Endosphere strains were isolated by surface sterilizing roots (wash five times in sterile H2O, incubate in
95% ethanol [EtOH] for 30 s, incubate in 5% NaOCl for 3 min, wash six times in sterile H2O), pulverizing
roots with a sterile mortar and pestle in 10 mM MgSO4 and serially plating dilutions on R2A agar. Colonies
were picked and restreaked a minimum of three times on R2A agar. Strains were identified by 16S rDNA
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PCR amplification using primers 8F (F stands for forward) (AGAGTTTGATCCTGGCTCAG) and 1429R (R
stands for reverse) (GGTTACCTTGTTACGACTT), followed by Sanger sequencing and analysis prior to
complete genome sequencing.

Genome and metagenome sequences. Metagenome and genome sequencing of the isolates was
performed at the Joint Genome Institute (JGI, Walnut Creek, CA, USA) (http://jgi.doe.gov/) as described
previously (82, 83). Isolates were sequenced on next-generation sequencing platforms, most commonly
Illumina HiSeq technology (see Table S2 in the supplemental material). Sequenced genomic DNA was
assembled as noted (Table S2) and annotated using the DOE-JGI Microbial Genome Annotation Pipeline
(MGAP v.4) (85). The metagenome samples analyzed were downloaded from Integrated Microbial
Genomes & Microbiomes (IMG) and were subsequently analyzed by antiSMASH 3.0. Raw gene counts
were normalized to metagenome size: metagenome no. 3300006177, 2,569 Mb and 3,453 biosynthetic
genes (BGs), metagenome no. 3300006048, 3,449 Mb and 6,407 BGs; metagenome no. 3300006051,
3,169 Mb and 4,797 BGs; metagenome no. 3300006038, 3,467 Mb and 4,643 BGs; metagenome no.
3300006049, 2,091 Mb and 5,608 BGs; metagenome no. 3300009100, 4,243 Mb and 7,633 BGs; meta-
genome no. 3300006969, 1,993 Mb and 7,509 BGs; metagenome no. 3300006853, 4,672 Mb and 10,246
BGs; metagenome no. 3300006845, 5,908 Mb and 4,414 BGs; metagenome no. 3300009147, 4,951 Mb
and 10,051 BGs; metagenome no. 3300006844, 5,764 Mb and 8,085 BGs; metagenome no. 3300006880,
4,651 Mb and 9,824 BGs; metagenome no. 3300006846, 4,343 Mb and 7,954 BGs; metagenome no.
3300006847, 5,274 Mb and 11,629 BGs.

Gene cluster identification and classification. Genomes were downloaded from JGI in FASTA
format (July 2017) and were submitted for analysis using antiSMASH 3.0 (33). Metagenome samples were
additionally analyzed using BAGEL3 (34). Individual clusters and groups of similar clusters were further
analyzed using PRISM (35) (http://magarveylab.ca) and RODEO (86) (http://ripprodeo.org) using FASTA
files or protein accession numbers, respectively.

Metagenome analysis. Metagenomes from five P. deltoides trees were downloaded from JGI-IMG in
FASTA format (June 2017) and were submitted for analysis using antiSMASH 3.0 (33). Phylogeny of
rhizosphere, endosphere, and bulk soil metagenomes was determined on the IMG/MER platform
(http://img.jgi.doe.gov) using the best BLAST hits of protein-coding genes of the assembled samples at
30% cumulative percent identity.

GC content analysis. The percent GC of nucleotide sequences for biosynthetic gene clusters was
calculated using the output files for predicted clusters in antiSMASH and compared to NCBI Taxonomy
records of organism percent GC content. For microviridin cluster percent GC, the antiSMASH-defined
cluster nucleotide sequence percent GC was compared to the organism percent GC.

Phylogenetic tree generation. The phylogenetic tree was generated using genomes downloaded
from KBase (https://kbase.us). FastTree v.2.1.9 (87) was used to determine the approximately maximum
likelihood phylogenies for the isolates, and the resulting tree based on nearest-neighbor interchanges
was visualized in interactive tree of life (iTOL) (http://itol.embl.de/) (88).

Proteins with LanA predictions were identified by the presence of either a leader/code peptide or a
LD_lanti_pre domain using antiSMASH 3.0. There were 73 genomes with one or more predictions and a
total of 136 unique sequences. The search term “lantibiotic” was used to identify confirmed lantibiotic
proteins in GenBank and Uniprot. These known proteins were used to provide a context for the PMI
newly predicted proteins. A total of 417 unique sequences from the three sources were aligned with
ClustalX, and a neighbor-joining tree was constructed with a bootstrap value of 1,000. The dendrogram
of proteins was colored by source to confirm that the new sequences include both proteins similar to
known lantibiotic proteins and novel sequences.

LuxR homologs were identified using Pfam03472 in the IMG database (16). From this set of 444
proteins, only those with a domain matching Pfam00196 (LuxR-type DNA binding helix-turn-helix [HTH]
domain) were selected, leaving 436 proteins. LuxI proteins were identified in IMG by searching for
COG3916 within the sequenced genomes and selecting proteins adjacent to a LuxR homolog. LuxR
protein sequences were exported from JGI-IMG and aligned using MUSCLE3.8.31 (89). The phylogenetic
tree data were exported, and the tree was visualized using iTOL (http://itol.embl.de/) (88).

Sequence similarity network generation. Enzyme function initiative-enzyme similarity tool
(EFI-EST) (http://efi.igb.illinois.edu/efi-est/) (90) was used to generate the sequence similarity network
(SSN) for siderophore synthase genes and were visualized in Organic layout in Cytoscape v. 3.5.1 (91).
Nodes were annotated using the JGI gene set list generated from the output of the search for
siderophore synthase genes, which was accomplished by searching for COG4264 hits in the sequenced
genomes.

Sequence logo generation. WebLogo (http://weblogo.berkeley.edu/) (92) was used to generate a
logo for the core sequence of microviridins after first aligning with MUSCLE 3.8.31 (89).

Data availability. The DNA sequence data sets supporting the conclusions of this article are
available in the JGI Integrated Microbial Genomes & Microbiomes repository (https://img.jgi.doe.gov/)
using the genome identifiers (IDs) provided in Table S1. The IMG accession numbers for the metagenome
samples are as follows: 3300006177 (endosphere), 3300006048 (endosphere), 3300006051 (endosphere),
3300006038 (endosphere), 3300006049 (bulk soil), 3300009100 (bulk soil), 3300006969 (bulk soil),
3300006853 (bulk soil), 3300006845 (bulk soil), 3300009147 (rhizosphere), 3300006844 (rhizosphere),
3300006880 (rhizosphere), 3300006846 (rhizosphere), and 3300006847 (rhizosphere).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00045-18.
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