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Abstract
Objectives: Age-related differences in cognition are typically assessed by comparing groups of older to younger partici-
pants, but little is known about the continuous trajectory of cognitive changes across age, or when a shift to older adult-
hood occurs. We examined the pattern of mean age differences and variability on episodic memory and executive function 
measures over the adult life span, in a more fine-grained way than past group or life-span comparisons.
Method: We used a sample of over 40,000 people aged 18–90 who completed psychometrically validated online tests 
measuring episodic memory and executive functions (the Cogniciti Brain Health Assessment).
Results: Cognitive performance declined gradually over adulthood, and rapidly later in life on spatial working memory, 
processing speed, facilitation (but not interference), associative recognition, and set shifting. Both polynomial and seg-
mented regression fit the data well, indicating a nonlinear pattern. Segmented regression revealed a shift from gradual to 
rapid decline that occurred in the early 60s. Variability between people (interindividual variability or diversity) and var-
iability within a person across tasks (intraindividual variability or dispersion) also increased gradually until the 60s, and 
rapidly after. Confirmatory factor analysis revealed a single general factor (of variance shared between tasks) offered a good 
fit for performance across tasks.
Discussion: Life-span cognitive performance shows a nonlinear pattern, with gradual decline over early and mid-adulthood, 
followed by a transition in the 60s to notably accelerated, but more variable, decline. Some people show less decline than 
others, and some cognitive abilities show less within-person decline than others.
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A body of evidence shows that while crystallized cog-
nitive ability is relatively intact into later life (Craik & 
Bialystok, 2006; Hartshorne & Germine, 2015), older 
adults perform worse than younger adults on measures 
of fluid cognition, including working memory (Bopp & 
Verhaeghen, 2005), interference control (Rey-Mermet & 
Gade, 2018), and associative recognition memory (Old & 

Naveh-Benjamin, 2008). However, the typical approach 
of comparing younger and older adult groups offers little 
insight into how and when decline occurs across the 
adult life span. Some researchers claim that decline oc-
curs monotonically over midlife, whereas others report 
that cognition remains relatively stable in midlife and de-
clines later in life (Christensen et al., 1994). There is also 
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a lack of consensus on the timing of accelerated decline 
in later life, ranging from an onset in the fourth decade 
to the seventh decade (Christensen et al., 1994; Morse, 
1993). Finally, what constitutes older adulthood varies 
across studies, with the start of older adulthood ranging 
from 50 to 70.

Life-span studies show a steady worsening of per-
formance per decade on various cognitive measures, in-
cluding working memory (Borella et al., 2008; Chiappe 
et al., 2000; Myerson et al., 2003; Park et al., 2002), proc-
essing speed (Salthouse et  al., 2000); interference con-
trol (Bugg et al., 2007; Troyer et al., 2006; Uttl & Graf, 
1997), associative recognition memory (Bender et al., 
2010), and set shifting (Periáñez et al., 2007; Salthouse 
et al., 2000; Tombaugh, 2004). Polynomial models often 
account for effects of age on cognition better than linear 
models, indicating that decline accelerates later in life 
(Borella et al., 2008; Myerson et al., 2003; Salthouse & 
Meinz, 1995; Uttl & Graf, 1997).

Challenges in collecting data from different ages in life-
span studies means that ages are usually grouped into 5- or 
10-year bins. The availability of internet-based psycho-
logical tests has increased sample size potential, allowing 
for finer-grain analysis of age effects (e.g., Hartshorne & 
Germine, 2015; Reimers & Maylor, 2005). The availability 
of large samples offsets the variability inherent in unsuper-
vised testing (Chetverikov & Upravitelev, 2016; Enochson, 
& Culbertson, 2015; Hilbig, 2016).

Large samples from online data collection have also 
enabled more advanced analyses sensitive to age-related 
change. A seminal study examined the life-span trajectory 
of sustained attention using segmented regression, an anal-
ysis that estimates the rate of change and transition periods 
where the rate shifts (breakpoints; Fortenbaugh et  al., 
2015). The approach enabled them to find differential pat-
terns for components of sustained attention: a criterion 
measure (responding during uncertainty) became increas-
ingly conservative in a linear fashion with age, while a dis-
crimination measure improved until mid-adulthood and 
then declined.

The goal of the current study was to perform a fine-
grained examination of age-related differences using a web-
based cognitive assessment of spatial working memory, 
interference control, processing speed, associative recogni-
tion, and set shifting (Cogniciti’s Brain Health Assessment; 
Troyer et al., 2014). The Brain Health Assessment is well 
suited to examine cognitive aging as it was specifically de-
signed for older adults, has high psychometric reliability 
and validity, and includes tasks sensitive to changes in 
the brain associated with aging and age-related cognitive 
disorders.

In addition to examining trajectories of age-related 
cognitive decline using measures of central tendency, we 
examined variability of performance between people 
(interindividual variability or diversity) and within a person 
across tasks (intraindividual variability or dispersion). 

Diversity and dispersion both increase with age, even 
after accounting for age-related changes on mean perfor-
mance (Christensen et al., 1994, 1999; Dykiert et al., 2012; 
Hilborn et al., 2009; Morse, 1993; Schretlen et al., 2003). 
Finally, we examined differences between age-related ef-
fects on each task, and whether all tasks loaded onto a 
single general factor, because general influences account 
for substantial variance in age-related cognitive decline 
(Salthouse, 2017; Salthouse & Meinz, 1995; Tucker-Drob 
et al., 2019; Verhaeghen, 2011).

Method

Participants

Participants were recruited via in-person brain health 
workshops, advertisements, media outlets, and word of 
mouth. The assessment was completed 115,973 times be-
tween 2014 and 2019 in individuals aged 14 to older than 
100. Subsequent completions by the same individual were 
removed (n = 20,687). Completions were excluded if par-
ticipants refreshed the page during the task (n = 113), had 
technical issues with data recording (n = 15,541), reported 
demographic information that was unclassifiable (n = 26), 
or reported health conditions that could affect cognitive 
performance (e.g., alcohol or substance abuse, stroke, 
traumatic brain injury, cancer treated with chemotherapy; 
n = 7,168).

The age range was narrowed to 18–90 (n  =  564 re-
moved), due to smaller samples (less than 50 per age), and 
extremely variable responses for ages outside this range. 
Completions were excluded if participants reported an age 
that did not appear to be accurate either due to dispro-
portionate numbers of reported ages at the cutoffs of the 
validated range (n = 8,093), or if there was a jump in the 
reported age from one completion to another (n = 4,078). 
An assessment score was provided only to ages 50–79 in 
the first few years, ages 40–79 in the mid-years, and eventu-
ally for almost all ages, that is, 20–94; nearly twice as many 
individuals reported their age at the cutoffs of the valid-
ated age range (“40,” “50,” or “79”) compared to nearby 
ages, and their performance deviated from others of similar 
ages, suggesting that some had falsely reported their age to 
get a score. Data were also excluded if a participant’s age 
changed by over 5 years, because data collection occurred 
only over 5 years (5 years was selected to allow for genuine 
mistakes, while excluding deliberate misinformation).

The final sample after exclusions consisted of 59,703 
individuals. The mean age was 62.9 years (SD = 11.8; me-
dian = 64, interquartile range = 14), and 66% identified as 
female. Most participants had completed university (6% 
did not complete high school, 28% completed high school, 
44% completed a college/undergraduate degree, 22% had 
a graduate/professional degree). Refer to Supplementary 
Table S1 for sample size and demographic information per 
age decade.
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Brain Health Assessment

The Brain Health Assessment is a free self-administered on-
line test designed for older adults concerned about their 
memory. Full details of the tasks and development can 
be accessed in the original paper (Troyer et  al., 2014). 
Participants completed the test in their own homes, by ac-
cessing the Cogniciti website (https://cogniciti.com/). The 
test takes around 20 min to complete. It consists of a back-
ground questionnaire and four cognitive tasks. The back-
ground questionnaire includes details of participants’ age, 
sex, level of education, and specific health conditions that 
may affect cognition (e.g., high cholesterol, Alzheimer’s dis-
ease, anxiety, insomnia or other sleep disorders, diabetes, 
stroke).

The four cognitive tasks were administered in the fol-
lowing order. A  Spatial Working Memory task required 
participants to find pairs of shapes on a grid by remem-
bering their locations over two trials. A  number–word 
Stroop task, a measure of interference control, required 
participants to indicate the number of words for neutral 
(e.g., “boy boy”), congruent (e.g., “two two”), or incon-
gruent stimuli (e.g., “one one”). A Face–Name Association 
task, a measure of associative memory, required partici-
pants to learn pairs of faces and names. A Letter–Number 
Alternation task, a measure of set shifting and attention 
control, required participants to click alternating numbers 
in ascending order. Refer to Supplementary Material for 
additional task details.

Tests were designed and selected for sensitivity to 
aging and ability to be completed online. Extensive de-
velopment and piloting were conducted to ensure that 
the tasks could be completed reliably by people with 
basic computer skills. Practice trials with feedback are 
provided for the Stroop and Letter–Number Alternation 
tasks. Visual examples are provided for all tasks. After 
completing the test, participants received an overall 
score, which was a percentile value of their performance 
based on norms for age.

Measures

Total score
A single representative measure per task was used to 
calculate the total score: the total number of clicks for 
the Spatial Working Memory task (combining Trials 1 
and 2), the response time on the incongruent condition 
for the Stroop task (because it combines baseline speed 
and interference effects), the associative recognition rate 
for the Face–Name Association task, and the completion 
time for the Letter–Number Alternation task. Scores per 
task were converted to z scores so that all tasks were 
in the same metric, and averaged to create the total 
score. Scores from the Face–Name Association task were 

reversed so that in all tasks, higher scores reflected worse 
performance.

Individual task scores
Performance on the Spatial Working Memory task was meas-
ured as the total number of clicks on Trials 1 and 2. Stroop 
performance was measured as the average response time of 
correct responses in the Neutral condition (to measure base-
line speed), and as the residuals after regressing Neutral re-
sponse times from the Incongruent condition (to measure 
interference effects) and the Congruent condition (to measure 
facilitation effects; MacLeod, 1991). Residual scores control 
for variance due to baseline speed (Salthouse & Meinz, 1995). 
On speeded tasks (Letter–Number Alternation and Stroop), 
accuracy was also included as a measure of performance.

Process dissociation logic (Jacoby, 1991) was applied 
to the Face–Name Association task, to parse item recog-
nition memory (I) from associative recognition memory 
(A; see Troyer et  al., 2012). Hits to intact items involve 
identifying associations between items (A) and individual 
items in the absence of associations (I[1 − A]). Thus, hits 
to intact face–name pairs reflect both associative and 
item memory (yes|Intact = A + I[1 − A]). False alarms to 
recombined face–name pairs reflect item memory only 
(yes|Recombined = I[1 − A]), in the absence of associations. 
Thus, associative memory can be calculated as the differ-
ence between the proportions of hits to intact pairs and false 
alarms to recombined pairs (yes|Intact − yes|Recombined).

Variability
Diversity and dispersion were measured after controlling 
for confounding effects of background variables and age. 
These purification steps resulted in residual scores uncon-
taminated by age differences or background factors that 
influence performance (Hultsch et al., 2002). The residual 
scores were then used to calculate variability.

Accounting for mean performance is important because 
more extreme means are also associated with more vari-
ance (e.g., on the Stroop task, mean performance increases 
with age, and larger means are associated with greater 
variability). Substantial age-related increases in variability 
have been found, even after controlling for mean effects of 
age (e.g., Hultsch et al., 2002, 2008). To fully account for 
mean age-related effects, the purified residual scores were 
obtained from the final selected best-fitting model (refer to 
the subsection on Age Differences in Mean Performance), 
thus removing all effects of age on mean performance.

For diversity measurements, the purified residuals per 
task were converted to absolute scores to remove nega-
tive values. The absolute residual scores for each task were 
then regressed on age using the final selected best-fitting 
model. Low values reflect similar performance between dif-
ferent individuals, while high values reflect a large range in 
performance.
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For dispersion measurements, the purified residual 
scores per task were converted to z scores, to allow com-
parisons across tasks. To calculate a single dispersion score, 
we used the same representative measure per task as the 
total score. Intraindividual standard deviations were cal-
culated for each individual across the residual z scores for 
each task. The intraindividual standard deviation of stand-
ardized purified residuals was then regressed on age using 
the final selected best-fitting model. Low values reflect rel-
atively similar performance (i.e., low variability) across 
tasks for an individual, while high values reflect uneven 
performance across tasks.

Data Preparation

Responses were excluded for practice trials and the first 
test trial on all tasks. Data were removed on tasks that had 
incomplete responses, but the participants were retained 
for other tasks if their data were complete (n = 9,038 to 
n  =  12,318). Data were then trimmed per task, in an it-
erative manner, with a recursive moving criterion for the 
standard deviation based on the sample size (Grange, 
2015). Within-subject trimming (per participant per condi-
tion) was done on individual trials for the Stroop task, to 
remove exceptionally low or high response times. A lower 
bound for legitimate responses was set at 250 ms. Within-
subject trimming was not performed on other tasks as they 
did not contain extreme responses per trial (the range was 
from 0% to 100%; Face–Name Association task), or the 
measure of interest was the total score and not average per-
formance across trials (the Letter–Number Alternation task 
and the Spatial Working Memory task). Between-subject 
trimming (per age per condition) was done on all tasks to 
remove individuals with exceptionally low or high scores 
(n = 369 to n = 1,871 removed per task; 1%–4% of data). 
The final samples were n = 48,510 for the Spatial Working 
Memory task, n = 45,774 for the Face–Name Association 
task, n = 47,375 for the Stroop task, and n = 43,298 for the 
Letter–Number Alternation task.

Analyses

Analyses were conducted with the R language and environ-
ment for statistical computing (R Core Team, 2020), using 
packages for data trimming (Grange, 2015), segmented re-
gression (Muggeo, 2008), and confirmatory factor analysis 
(Rosseel, 2012).

Age differences
Locally estimated scatterplot smoothing.—Nonparametric 
locally estimated scatterplot smoothing (LOESS; Cleveland 
& Devlin, 1988) was used to visually examine performance 
at different ages. LOESS curves fit models to localized 
subsets in the data, using a span of alpha =  .5 to foresee 
trends over the means for each age.

Segmented regression.—Parametric regression models 
were used to quantify the pattern of change with age ob-
served with the LOESS curves. We used segmented re-
gression as it quantifies parameters of interest: the rate of 
change per year of age (the slope parameter, β), and the 
age(s) in which the rate shifts (the breakpoint parameter, 
which estimates statistically significant slope changes in 
the regression line, ψ).

Linear and polynomial regression.—We also fitted models 
with linear and polynomial effects of age, because these 
have been widely used in past studies to model age-related 
change.

Sample  size.—Simulation studies have proposed a metric 
of n = 500 per breakpoint across a range of error precision 
scenarios, and a metric of n = 1,000 per sample across a 
range of breakpoint locations and slope coefficients (White 
et al., 2018). This offers a probability that the true param-
eter is included in over 90% of samples (Muggeo, 2003). 
The sample contained at least n = 1,000 per 10 years of age 
(ages 20–29, 30–39, etc.) allowing estimation of one break-
point per decade.

The sample size was not evenly distributed across ages, 
with greater sample sizes for the age range of 50–80 than 
other ages (refer to Figure 1 and Supplementary Table S1), 
probably because the test was targeted at adults concerned 
about their memory as they aged, and because in the earlier 
years of measurement, validated scores were only provided 
to adults between 50 and 79. However, ages with fewer in-
dividuals still contained over 1,000 participants per decade.

Segmented model fitting.—To ensure robust estimates, 50 
bootstrap samples were calculated, with a convergence 
tolerance of 0.00001, and a maximum of 20 iterations. 
Models were fit with no starting values for the breakpoints. 
To examine the reliability of estimates, models were refitted 
using starting values statistically calculated by a Davies test 
for a nonzero difference in the slope parameter (Davies, 
2002). In all cases, no significant difference was found be-
tween the models fitted with and without prespecified ini-
tial estimates, ps > .05.

Increasingly complex models were fitted for 
each measure, beginning with the linear model (a 
no-breakpoint model), followed by a model in which the 
line was allowed to shift at one point (a one-breakpoint 
model), then a model in which the line was allowed to 
shift at two points (a two-breakpoint model), and so 
on. Increasingly complex models were compared using 
significance testing (hierarchical regression with a chi-
squared difference test) and model parsimony criteria 
(the Akaike information criterion [AIC] and the Bayesian 
information criterion [BIC]). When criteria diverged, the 
best-fitting model was selected using the most conserva-
tive criterion, given that overfitting is a concern with very 
large data sets.
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Manipulation check for sampling bias (equal samples 
data set).— A manipulation check was run with equal sam-
ples per year of age, to account for the uneven distribution 
of participants across ages, and test whether breakpoints 
were influenced by the increased power for some ages. 
Random samples were taken from the complete data to 

create a subset with n = 50 per age (as there were at least 
50 individuals for each year of age).

Models were fit to the equal samples subset in the same 
way as the complete data set. When the best-fitting model 
diverged between the equal samples and complete data set, 
results from the equal samples data set were used to select 

Figure 1. Density plots of performance per task.
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the best-fitting model, because this data set removes bias 
from uneven sampling. The selected model from the equal 
samples data set was then fitted to the complete data set to 
obtain model estimates. This technique removed bias from 
uneven sampling across ages, yet used the maximal power 
from the whole sample.

Model comparison and selection.—The linear, polynomial, 
and best-fitting segmented regression models were com-
pared, using goodness-of-fit (the percentage of variance ex-
plained, R2; and the residual standard error) and parsimony 
criteria (AIC, BIC). The models were not nested and thus 
cannot be statistically compared to each other.

Estimates of the parameters of interest are presented for 
the final selected model per task. The regression coefficients 
(slope estimates) estimate the amount of change per year of 
age, while the breakpoint locations estimate the ages during 
which a shift in performance occurs. Parameter estimates are 
presented using raw effect sizes, because these are intuitive to 
interpret as they use the original units of performance.

Comparison of performance between tasks
Representative z scores per task (the same scores as used in 
the total score) were used to compare between tasks. Scores 
from the Face–Name Association task were reversed so that 
for all tasks, higher scores reflected worse performance.

Standardized metric for each task.—The final selected models 
for each task were compared to examine performance across 
tasks. Comparisons between tasks were done with visual 
examination and effect sizes rather than significance tests, 
as large samples produce highly precise estimates and low 
p values for all effects tested, regardless of size, theoretical 
significance, or importance (Fan et al., 2021).

General factor across tasks.—Confirmatory factor analysis 
was used to test how well performance on individual task 
scores loaded onto a single factor. Robust maximum like-
lihood estimation was used to fit the model to sample co-
variances, which is ideal because data for each task were 
continuous and on the same scale. Model fit was assessed 
with the chi-squared test statistic (χ 2), comparative fit index 
(CFI: ≥.90 is good and ≥.95 is excellent), Tucker–Lewis 
index (TLI: ≥.90 is good and ≥.95 is excellent), root mean 
square error of approximation (RMSEA: <0.08 is rea-
sonable and <0.05 is good), and standardized root mean 
square residual (SRMR: <0.08 is good; Kenny, 2015). In 
addition, effects of age on each task were recalculated 
after accounting for the general factor of variance shared 
across tasks, to parse general and specific influences (refer 
to Supplementary Material).

Results
Density plots of the raw data are presented in Figure 1.

Age Differences in Mean Performance

LOESS curves of the total score and individual tasks in-
dicated that performance very slightly declined over early 
and middle adulthood, followed by a more rapid decline 

Figure 2. Locally estimated scatterplot smoothing (LOESS) curves of 
performance per task. Note: Each dot shows the mean performance 
per age. The gray shading around the LOESS curve indicates a 95% CI 
envelope.
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beginning around age 60 (Figure 2). The pattern of de-
cline later in life was observed across all measures with 
the exception of interference response times on the Stroop 
task. There appeared to be a tradeoff between speed and 
accuracy on the Stroop task, because speed declined over 
adulthood and more rapidly after the 60s, while accuracy 
improved over adulthood and then declined slightly after 
the 60s.

The best-fitting segmented regression model had one 
breakpoint for all measures, with the exception of the 
interference effect on the Stroop task which was best 
fit by a linear model. Results from our manipulation 
check on the equal samples data set revealed that the 
parameter estimates from the equal samples data set 
were similar to those from the complete data set (refer 
to Supplementary Tables S2–S4 for complete results on 
model comparison for the equal samples and complete 
data sets).

Segmented and polynomial models both fit the data 
better than linear models, and had nearly identical fits to 
each other (Table 1). Both had the same values for the 
amount of variance explained (R2) and the average re-
sidual standard error. The segmented model performed 
slightly better on parsimony measures (AIC and BIC): the 

segmented model offered a more parsimonious fit on seven 
measures and the polynomial model on three measures, and 
the models were equal on one measure.

In line with past recommendations where segmented 
and polynomial models provided similar fits (Ryan & 
Porth, 2007), we selected the segmented model as our 
final model because it quantifies the age at which perfor-
mance shifts. In contrast, the maximum/minimum points 
from polynomial regression may not be relevant to in-
terpret, because no maximum or minimum value is ex-
pected for the age range.

The transition points and rates of change per age 
are described for the final selected model per measure 
in Table 2. For example, on the total score, there was 
a gradual decline in performance of 0.01 units per year 
from the start of measurement at age 18 until 62.5 years, 
followed by a more rapid decrease of 0.04 units per 
year until the end of measurement at age 90: 95% CIs: 
[0.01, 0.02], [61.9, 63.2], and [0.03, 0.04], respectively. 
Overall, performance on individual tasks and the total 
score showed a gradual decline from the start of meas-
urement at age 18 until around age 60, followed by a 
more rapid decline until the end of measurement at age 
90 (Figure 3).

Table 1. Comparison of Linear, Polynomial, and Segmented Regression Models

Task Measure (units) Linear model Polynomial Segmented

Spatial Working 
Memory

Trial 1 (number of 
clicks)

R2 = 0.14, RSE = 17.0 R2 = 0.16, RSE = 16.9 R2 = 0.16, RSE = 16.9 
AIC = 400967, BIC = 401222 AIC = 400185, BIC = 400448 AIC = 400114, BIC = 400385

Trial 2 (number of 
clicks)

R2 = 0.14, RSE = 14.5 R2 = 0.15, RSE = 14.5 R2 = 0.15, RSE = 14.5 
AIC = 386110, BIC = 386364 AIC = 385719, BIC = 385982 AIC = 385685, BIC = 385957

Stroop Neutral RT (ms) R2 = 0.32, RSE = 179 R2 = 0.34, RSE = 177 R2 = 0.34, RSE = 177 
AIC = 612702, BIC = 612990 AIC = 611522, BIC = 611819 AIC = 611519, BIC = 611825

Interference RT (ms) R2 = 0.003, RSE = 82.5 R2 = 0.003, RSE = 82.5 R2 = 0.003, RSE = 82.5
AIC = 535865, BIC = 536013 AIC = 535866, BIC = 536024 AIC = 535866, BIC = 536032

Facilitation RT (ms) R2 = 0.003, RSE = 61.4 R2 = 0.006, RSE = 61.3 R2 = 0.006, RSE = 61.3
AIC = 508677, BIC = 508956 AIC = 508542, BIC = 508830 AIC = 508547, BIC = 508844

Accuracy (%) R2 = 0.007, RSE = 6.69 R2 = 0.02, RSE = 6.66 R2 = 0.02, RSE = 6.66
AIC = 310340, BIC = 310602 AIC = 309813, BIC = 310084 AIC = 309905, BIC = 310185

Face–Name 
Association

Item recognition (%) R2 = 0.09, RSE = 19.3 R2 = 0.10, RSE = 19.2 R2 = 0.10, RSE = 19.2 
AIC = 404014, BIC = 404268 AIC = 403612, BIC = 403874 AIC = 403567, BIC = 403838

Associative 
recognition (%)

R2 = 0.14, RSE = 26.1 R2 = 0.15, RSE = 26.0 R2 = 0.15, RSE = 25.9 
AIC = 431920, BIC = 432200 AIC = 431345, BIC = 431634 AIC = 431298, BIC = 431596

Letter–Number 
Alternation

Completion time 
(seconds)

R2 = 0.22, RSE = 12.5 R2 = 0.25, RSE = 12.3 R2 = 0.25, RSE = 12.3 
AIC = 337006, BIC = 337283 AIC = 335450, BIC = 335736 AIC = 335393, BIC = 335688

Accuracy (%) R2 = 0.035, RSE = 8.83 R2 = 0.043, RSE = 8.79 R2 = 0.043, RSE = 8.79
AIC = 307258, BIC = 307535 AIC = 306921, BIC = 307207 AIC = 306911, BIC = 307206

Total Mean across tasks (z) R2 = 0.26, RSE = 0.47 R2 = 0.28, RSE = 0.46 R2 = 0.28, RSE = 0.46 
AIC = 53839, BIC = 54123 AIC = 52808, BIC = 53102 AIC = 52814, BIC = 53116

All tasks Dispersion R2 = 0.12, RSE = 0.42 R2 = 0.13, RSE = 0.42 R2 = 0.13, RSE = 0.42 
AIC = 44993, BIC = 45277 AIC = 44330, BIC = 44623 AIC = 44255, BIC = 44557

All tasks General factor R2 = 0.37, RSE = 0.67 R2 = 0.40, RSE = 0.65 R2 = 0.41, RSE = 0.65
AIC = 83531, BIC = 83746 AIC = 81341, BIC = 81350 AIC = 81351, BIC = 815583

Note: AIC = Akaike information criterion; BIC = Bayesian information criterion; R2 = percentage of variance explained; RSE = residual standard error; RT = 
 response time. The best-fitting model is highlighted in bold.
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Age Differences in Diversity Across People

Density plots of the raw scores reflect an increase in var-
iability between people as a function of age (Figure 1). 
A Levene’s test for homogeneity of variance was conducted 
on standard deviations for different ages to examine if 
there was diversity in the data. The test was significant 
for all ages on each task, p < .05, indicating an age-related 
increase in variability among individuals.

The best-fitting segmented regression model had one 
breakpoint for each measure (Table 2; Figure 4). Diversity 
gradually increased from the start of measurement at age 
18 until around age 60, followed by a more rapid increase 
until the end of measurement at age 90. The exception was 
the Face–Name Association task, which showed no effects 
of age on diversity for both measures (item and associative 
recognition).

Age Differences in Dispersion Across Tasks

A LOESS curve indicated a slight decrease in dispersion 
from age 18 until age 30 followed by a gradual increase in 
dispersion until around age 60, and then a rapid increase 
in dispersion until age 90 (Figure 1). The best-fitting seg-
mented regression model had one breakpoint (Figure 4). 
Dispersion gradually increased by 0.01 units from age 18 
until age 64.7, followed by a more rapid increase of 0.02 
units until age 90: 95% CIs: [0.005, 0.01], [63.9, 65.4], and 
[0.02, 0.03], respectively.

Comparison of Performance Between Tasks

Standardized metric for each task
LOESS curves indicated that the pattern of change across 
tasks was very similar when standardized scores were com-
pared (Figure 5). Segmented regression also showed that 
the rates and breakpoints for each task were very similar. 
Performance between tasks became even more similar be-
tween people after the breakpoint in the 60s.

General factor across tasks
Confirmatory factor analysis revealed that a single-factor 
model offered a good fit to the data, with an excellent CFI 

Figure 4. Segmented regression models of diversity per task, and 
dispersion across tasks. Note: Breakpoints [95% CI] are shown 
along the y-axis. Models shown are fitted to the complete data set, 
selected using the best-fitting model from the equal samples data set.

Figure 5. Locally estimated scatterplot smoothing curves and seg-
mented regression models of performance between tasks (using a 
single representative measure per task, on a standardized scale; z 
scores). Note: The direction of scores was reversed for the Face–Name 
Association task so that higher scores represent worse performance 
on all tasks.

Figure 3. Segmented regression models of mean performance per task. 
Note: Breakpoints [95% CI] are shown along the y-axis. Models shown 
are fitted to the complete data set, selected using the best-fitting model 
from the equal samples data set.
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of .98, an excellent TLI of .94, an acceptable RMSEA of .08, 
and a good SRMR of .03. All tasks showed good loadings 
onto the general factor (>.05). This suggests that consider-
able variance is shared across the tasks. Further analyses 
parsing general and specific influences showed that for each 
task, unique effects of age were found even after accounting 
for the general factor of variance shared across tasks from 
(refer Supplemental Table S5).

Discussion
The prototypical cognitive aging profile is held to be 
linear or polynomial change over the life span, for mean 
performance, diversity, and dispersion (Borella et  al., 
2008; Christensen et  al., 1994, 1999; Hultsch et  al., 
2002; Myerson et al., 2003; Salthouse & Meinz, 1995; 
Salthouse, 2017; Uttl & Graf, 1997). Leveraging a large 
sample size collected online over 5  years, we modeled 
how and when fluid cognitive abilities vary with age 
at a finer grain than previous studies. We found a non-
linear aging pattern, with gradual decline from ages 18 
until the early 60s, followed by rapid decline until age 
90. The observed pattern was found on spatial working 
memory, processing speed, associative recognition, and 

set shifting, but not on interference control. Diversity 
across people and dispersion across tasks also gradually 
increased from 18 until the early 60s, and then rapidly 
increased until age 90. Our findings indicate that mean 
performance declines with advancing age, but that rela-
tively more age-related decline occurs for some people 
than others, and that relatively more age-related decline 
occurs on some tasks than others.

A strength of the current study was the use of a wide age 
range of individuals across the span of adulthood. Most 
studies of aging compare older and younger adult groups, 
leaving out midlife. Including middle-aged individuals 
offered us insights into the midlife period between younger 
and older adulthood, in which we observed small but 
present decline. Our finding of two stages of decline (one 
during adulthood and one later in life) highlights the value 
of studying age as a continuous variable and of considering 
stages in life-span aging (Craik & Bialystok, 2007).

Our results on increased variability with age highlight 
the importance of studying variability in addition to mean 
performance, to capture both the average pattern and devi-
ations from this pattern. We found that a shift to increased 
variability occurs around the same ages as a shift to in-
creased decline in mean performance, which is notable be-
cause variability was calculated after purification steps to 

Table 2. Transition Ages and Slopes (Rate of Change per Year [95% CI]) on the Final Selected Model of Mean Performance and 
Diversity Across People for the Online Participants (Aged 18–90)

Mean performance Diversity

Task Measure (units)
Adulthood 
slope 

Age of 
transition

Older adulthood 
slope

Adulthood 
slope 

Age of 
transition

Older 
adulthood slope

Spatial Working 
Memory

Trial 1 (number of 
clicks)

0.3 65.1 1.0 0.1 65.1 0.4
[0.3, 0.3] [64.4, 65.8] [1.0, 1.1] [0.09, 0.13] [63.8, 66.3] [0.3, 0.4]

Trial 2 (number of 
clicks)

0.3 64.1 0.7 0.08 65.0 0.2
[0.3, 0.3] [63.1, 65.1] [0.70, 0.74] [0.06, 0.1] [62.8, 67.2] [0.2, 0.2]

Stroop Neutral RT (ms) 4.9 55.7 12.5 1.0 65.6 3.2
[4.2, 5.2] [54.9, 56.4] [12.0, 12. 9] [0.7, 1.2] [64.2, 67.1] [2. 8, 3.6]

Interference RT 
(ms)

0.02   0.3 63.5 1.3
[−0.1, 0.1]   [0.1, 0.4] [61.9, 65.1] [1.1, 1.5]

Facilitation RT (ms) 0.6 59.2 −0.3 0.07 62.4 0. 9
[0.5, 0.7] [57.2, 61.3] [−0.5, −0.2] [−0.03, 0.2] [60.8, 63.9] [0.8, 1.0]

Incongruent 
accuracy (%)

0.08 62.8 −0.09 −0.03 65.4 0. 1
[0.07, 0.1] [61.8, 63.8] [−0.1, 0.07] [−0.04, −0.02] [64.2, 66.5] [0.08, 0.1]

Face–Name 
Association

Item recognition 
(%)

0.2 58. 7 0.7 0.08   
[0.1, 0.2] [57.5, 59.9] [0.6, 0.7] [0.06, 0.1]   

Associative 
recognition (%)

−0.2 60.4 −1.1 0.05   
[−0.3, −0.2] [59.4, 61.3] [−1.1, −1.0] [0.02, 0.08]   

Letter–Number 
Alternation 

Completion time 
(seconds)

0.3 62.5 1.0 0.1 63.6 0.56
[0.2, 0.3] [62.0, 63.1] [0.9, 1.0] [0.05, 0.07] [63.1, 64.1] [0.5, 0.6]

Accuracy (%) −0.04 65.3 −0.3 0.05 64.8 0.3
[−0.1, −0.02] [64.2, 66.4] [−0.33, −0.26] [0.04, 0.05] [64.0, 65.5] [0.29, 0.33]

All tasks Mean across tasks 
(z)

0.01 62.6 0.04 0.002 65.5 0.01
[0.01, 0.02] [61.9, 63.2] [0.03, 0.04] [0.001, 0.003] [64. 5, 66.6] [0.009, 0.01]

Note: The slopes can be interpreted as the number of units a measure changes per year of age.
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account for mean performance. The rise in diversity across 
people later in life is an issue for the study of mean perfor-
mance, both statistically (because it influences fit statistics 
and underlying assumptions) and theoretically, but is inter-
esting in itself. Future work is needed to explore the factors 
that produce the increase in diversity, such as socioeco-
nomic status or health factors (e.g., vascular conditions).

The early 60s as a window signaling accelerated de-
cline is applicable to the classification of older adulthood, 
which varies substantially across studies. Some researchers 
classify older adult groups beginning at 50, others at age 
70. Moreover, they fail to justify their age selection. Our 
finding suggests that classifying individuals above 50 as 
older adults underestimates age-related decline on the 
abilities measured, while beginning classification over 70 
misses early decline.

Past cognitive life-span data appear to also identify a 
transition around age 60, although a specific transition was 
not formally assessed (e.g., Myerson et  al., 2003, Figure 
3; Tombaugh, 2004, Figure 1; Uttl & Graf, 1997, Figure 
1). The timing of the transition corresponds with a shift in 
late midlife to accelerated decline in aging of the prefrontal 
cortex (Cabré et  al., 2017; which mediates the attention 
and executive functioning tasks in our battery; Yuan & 
Raz, 2014) and in less segregation of brain systems (Chan 
et al., 2014; which is predictive of episodic memory, also 
measured in our battery). A possible reason is that consid-
erably accelerated decline of some cognitive abilities occurs 
in the early to mid-60s after retirement Xue et al., 2018; 
although other factors also come into play, Denier et al., 
2017. For example, episodic memory showed a twofold de-
cline following retirement, even after adjusting for health, 
age, and wealth (n = 18,575; Clouston & Denier, 2017). 
However, future work is needed to establish causality.

The observed slope estimates are useful to estimate age 
differences by quantifying the magnitude of decline (i.e., 
the change per year of age). For example, on the Letter–
Number Alternation task, adults completed the task 0.3 s 
slower per year of age from age 18 until the 60s, and then 
completed the task 1  s slower per year of age until age 
90. Estimating each age as a timepoint is more informa-
tive than stating that older adults took x seconds longer to 
complete the task than young adults. Gradual changes, al-
though small, can result in subtle changes in everyday skills 
(e.g., driving; Harada et al., 2013). Characterizing normal 
aging also provides a baseline for identifying abnormal 
trajectories.

Modeling Life-Span Age Differences

Given the large sample size, presenting the mean for 
each age and visualizing the pattern via LOESS curves 
is adequate to understand the pattern of age effects in 
a theoretically neutral data-driven manner. The LOESS 
curves are the most reliable of the different modeling ap-
proaches as they do not make any assumptions about 
the underlying distribution. Nevertheless, parametric 

approaches are useful to quantify the nonlinear pattern 
of age effects, with the caveat of making distributional 
assumptions.

Our findings offer insights into the comparative fit be-
tween polynomial and segmented models. Both models had 
nearly identical goodness of fit. Polynomial models have 
precedence in the life-span literature, but our findings show 
that what had traditionally been perceived as gradual accel-
eration of cognitive decline is equally well modeled by two 
phases of linear decline.

The comparable fit makes final model selection ambig-
uous. On the one hand, polynomial models are more par-
simonious as they have one parameter less. On the other 
hand, the additional parameter from segmented regression 
offers theoretically interesting information, delineating the 
age range when performance changes from gradual to ac-
celerated decline. Further, for our sample, the segmented 
approach performed better on parsimony criteria for more 
measures than the polynomial approach, despite the addi-
tional parameter.

Our findings do not clarify whether the true underlying 
nonlinear pattern is curvilinear or transitional/piecewise. 
Caution is warranted against overinterpreting the tran-
sition timing without future work to clarify whether the 
observed breakpoints are replicated, and whether the sta-
tistical meaning that they represent (a significant change 
in the slope) holds psychological meaning. Future work 
could also explore segmented curvilinear functions (which 
were not used here as they are currently less accessible to 
fit and to interpret, while segmented regression offers a 
good tradeoff between model complexity and parameter 
interpretability; Cudeck & du Toit, 2002; Muggeo, 2003; 
Zapata, 2019).

Comparison Between Cognitive Abilities

Slightly diverging trajectories were observed on tasks with 
multiple conditions. On the Spatial Working Memory 
task, decline after the 60s was smaller on the second trial 
than the first trial, indicating a slight improvement in 
performance between the trials (possibly from learning 
or task familiarization). On the Face–Name Association 
task, with advancing age, performance relied less on asso-
ciative recognition memory and more on item recognition 
memory, in line with the associative deficit hypothesis and 
past research that older adults may have a specific deficit 
on creating bindings between items and may rely more 
on familiarity with individual items to compensate for de-
cline in remembering associations between items (Naveh-
Benjamin, 2000; Old & Naveh-Benjamin, 2008). On the 
Stroop task, a large effect of age was found on processing 
speed (the neutral condition), a small effect on facilitation 
(the congruent condition after controlling for processing 
speed), and no effect on interference (the incongruent con-
dition after controlling for processing speed). Our finding 
of no effects of age on interference control in the Stroop 
task is in line with past findings and a recent meta-analysis 
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that found no general deficit on inhibition after accounting 
for processing speed, when measured by the Stroop task 
and other tests of inhibition (Rey-Mermet & Gade, 2018; 
Uttl & Graf, 1997). The results fail to support the inhi-
bition deficit hypothesis of a specific age-related deficit 
on inhibiting distracting information (Chiappe et  al., 
2000; Hasher & Zacks, 1988). However, effects of age 
on inhibition are moderated by difficulty, and the number 
naming version of the Stroop that we used is easier than 
the standard color naming version (Bugg et al., 2007).

Our findings across tasks show that there is little 
difference in rates of change and shifts in performance 
between tasks, indicating that a general factor offers a 
parsimonious explanation for some of the observed ef-
fects of age on specific tasks. Further, all tasks loaded 
well onto a single general factor, which supports past 
findings that shared variance across cognitive tasks 
substantially accounts for effects of age on specific 
tasks (Salthouse, 2017; Verhaeghen, 2011). This is con-
sistent with the dedifferentiation hypothesis that in-
dividual cognitive abilities become more correlated in 
old age (Balinsky, 1941; Baltes & Lindenberger, 1997). 
Effects of age on individual tasks were smaller (but still 
present) after controlling for an estimate of general in-
fluences derived from the other measures, which maps 
onto past work showing age differences on individual 
measures after dissociating general and specific influ-
ences (Salthouse, 2017). Our results align with past ev-
idence that age influences on specific cognitive abilities 
cannot be accurately assessed without first accounting 
for general age influences (Salthouse & Meinz, 1995). 
Our finding indicates that effects of age across cogni-
tive abilities occur along a common statistical dimen-
sion but does not indicate a single underlying cognitive 
construct or a single genetic or neurobiological cause 
(Craik et al., 2018; Tucker-Drob et al., 2019).

Limitations and Conclusions

A limitation of the current study is the use of an oppor-
tunity sample of individuals who took the online assess-
ment on the test website. Participants were self-selected 
and motivated to complete the assessment. The assess-
ment was specifically marketed for older adults with 
concerns about cognition, thus participants older than 
60 may have joined because of cognitive concerns, while 
younger participants may have joined out of interest 
in their own cognition. The older participants may be 
lower-functioning than a random sample (from having 
more memory concerns than average), or may be higher-
functioning (from being more informed about memory, 
or having high computer literacy). Finally, the data were 
cross-sectional. Future work with longitudinal data is re-
quired to parse out cohort effects.

Overall, the current findings show a pattern of gradual 
to rapid decline over adulthood, with a transition around 
the 60s, on cognitive tasks that were designed for their 

sensitivity to aging and neurodegeneration. Our results re-
flect the utility of online assessments for rapid and reliable 
cognitive screening, as well as for studying cognitive aging 
in large groups.
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