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Analysis of sites of newly integrated DNA in cellular genomes
is important to several fields, but methods for analyzing and
visualizing these datasets are still under development. Here,
we describe tools for data analysis and visualization that
take as input integration site data from our INSPIIRED pipe-
line. Paired-end sequencing allows inference of the numbers of
transduced cells as well as the distributions of integration sites
in target genomes. We present interactive heatmaps that allow
comparison of distributions of integration sites to genomic
features and that support numerous user-defined statistical
tests. To summarize integration site data from human gene
therapy samples, we developed a reproducible report format
that catalogs sample population structure, longitudinal
dynamics, and integration frequency near cancer-associated
genes. We also introduce a novel summary statistic, the
UC50 (unique cell progenitors contributing the most
expanded 50% of progeny cell clones), which provides a single
number summarizing possible clonal expansion. Using these
tools, we characterize ongoing longitudinal characterization
of a patient from the first trial to treat severe combined immu-
nodeficiency-X1 (SCID-X1), showing successful reconstitution
for 15 years accompanied by persistence of a cell clone with
an integration site near the cancer-associated gene CCND2.
Software is available at https://github.com/BushmanLab/
INSPIIRED.
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INTRODUCTION
Retroviruses, transposons, and other mobile DNA elements directly
integrate their DNA into the chromosomes of host cells.1–8 Distribu-
tions of newly integrated DNA elements can be characterized using
next-generation sequencing, as is described in the companion paper
in this issue of MolecularTherapy: Methods & Clinical Development9

and in many previous studies (e.g., Bushman,1 Craig et al.,2 Schröder
et al.,3 Mitchell et al.,4 Maldarelli et al.,6 Cohn et al.,8 Wu et al.,10 Hoff-
mann et al.,11 and Biffi et al.12). Contemporary methods take advan-
tage of Illumina paired-end sequencing to report the location of newly
integrated DNA.13–16 Multiple reports have described methods for
quantifying and analyzing such data, but optimal methods for statis-
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tical analysis, data reduction, and data visualization are the topics of
ongoing development.13,14,16–19 Here, we describe a suite of tools for
integration site analysis and visualization that are useful for character-
izing samples from human gene therapy and other applications.

In the case of gene modification in circulating blood cells, it is possible
to sample cell populations from blood longitudinally and sequence
sites of integration of the gene-correcting vector.20–27 An important
question centers on how best to quantify the numbers and types of
gene-modified cell clones contributing blood cells to the periphery.
For example, adverse events have been reported where expanded
cell clones in blood became frank leukemia,28–31 and this can be
tracked using quantitative integration site data. Complicating the
analysis, simply counting the number of integration site sequence
reads does not accurately report clonal abundance because of
distortions resulting from PCR steps in the integration site recovery
procedure.32,33

We have previously described a method for abundance estimation
based on paired-end sequencing of PCR products containing integra-
tion site sequences that allows for accurate quantification of gene-
modified cells.34 DNA is sheared using sonication, DNA linkers are
ligated to free DNA ends, and then samples are amplified using
primers complementary to the integrated vectors and ligated linkers.
Genomic sequence information is acquired from both the linker end
and the integrated vector end. For the case of an expanded clone,
many different DNA breaks and sites of linker ligation are associated
with the unique integration site from the expanded clone. This allows
for the estimation of abundance using the number of different linker
ligation sites as a surrogate for the number of cells sampled. We have
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Figure 1. Diagram of the INSPIIRED Pipeline

File types generated at each step are indicated on the right. RData files of Unique Sites, Multihit Clusters, and Annotated objects contain GRanges objects from the Bio-

conductor GenomicRanges R package.

Molecular Therapy: Methods & Clinical Development
published statistical tools for analysis of such data and applied these
tools to track several gene therapy trials.20,21,25,26,34–39 Other groups
have also used related methods.6,8,24,40–44

Here, we present tools for integration site sequence analysis and the
quantification of clonal abundance, and describe applications in hu-
man gene therapy. These methods can also be used for tracking
latently infected cells in HIV-positive subjects and monitoring ex-
periments using insertional mutagens, and in mechanistic studies
of DNA integration. We describe a heatmap format for the analysis
of relationships among integration site distributions, genomic
features, and sites of epigenetic modification. These analyses allow
users to carry out numerous custom statistical comparisons with
annotations, random distributions, and other datasets by simply
pointing and clicking. We also present a series of analytical tools
for use with patient samples to characterize integration site popula-
tion structure and possible adverse events. Results are packaged
into reproducible reports (html or pdf file format), allowing for
version tracking of the code, datasets used, and external datasets
queried. Using these tools, we describe examples of tracking a sub-
ject from the first gene therapy trial to treat severe combined im-
munodeficiency-X1 (SCID-X1) deficiency. The data demonstrate
durable reconstitution accompanied by a clonal expansion of cells
18 Molecular Therapy: Methods & Clinical Development Vol. 4 March 201
harboring an integrated vector near the cancer-associated gene
CCND2.25

RESULTS
The INSPIIRED Pipeline

The INSPIIRED pipeline is summarized in Figure 1. The first steps
involve the generation of a sequence library and sequence data
acquisition, genomic alignment, analysis of viral integration sites in
repeated sequences, and quality controls (described in the accompa-
nying paper9). The intSiteCaller program takes FASTQ files as input.
After sequence quality filtering, trimming of DNA sequences added
during library construction, and sequence alignment, unique sites
and integration sites in repeated sequences (“multihits”) are saved
in an intermediary binary format (RData file format). All sites from
each run of the sequencing instrument are uploaded into a MySQL
database (IntSiteDB) for storage and for use in downstream analysis
using a utility script (intSiteUploader). Alternatively, the INSPIIRED
pipeline also supports use of a SQLite database, which is provided
with the software. The IntSiteDB stores genomic locations of integra-
tion sites together with PCR break points and their counts, which is
used for estimation of abundance.34 All downstream analyses are
carried out using genomic locations and sonic break points. The
IntSiteDB schema is shown in Figure S1.
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We use intSiteRetreiver, a key component of the INSPIIRED software
package, to retrieve unique sites andmultihits for chosen samples from
the IntSiteDB for analysis. The database organization allows the com-
bined analysis ofmultiple samples fromdifferent instrument runs. Inte-
gration sites are annotated with the hiAnnotator R software package
(http://bioconductor.org/packages/release/bioc/html/hiAnnotator.
html), which makes use of genomic features compiled by the UCSC
Genome Bioinformatics Group.

For studies of gene therapy subjects, patient metadata and specimen
information are stored in an accompanying gene therapy specimen
management database that includes anonymized patient identifiers,
cell types analyzed, and time point data. These features are then
used in the gene therapy patient reports described below. The separa-
tion of the pipeline into several output products (patient report and
heatmaps) and databases (integration site, patient metadata, and
annotation) provides flexibility in development and use.

Analysis of the Relationship between Integration Site Locations

and Genomic Annotation

We use heatmaps to summarize the relationships between integration
site distributions and genomic annotations (Figures 2, 3, and 4).
These maps were introduced in Berry et al.,35 which presents more
background and examples of their uses. The heatmaps summarize in-
formation on integration site datasets in columns and different
genomic features in rows. For each comparison, integration site dis-
tributions are compared with distributions of randomly selected sites
in the human genome.4,35 Early integration site recovery methods
involved use of cleavage by restriction enzymes, which are unevenly
distributed in the human genome.32,33 For this reason, random con-
trols were matched based on proximity to restriction enzyme cleavage
sites.35 The INSPIIRED pipeline uses random cleavage by sonication,
so purely random control sites are generated in silico and used in the
analysis described here.

In the heatmaps, colored tiles indicate the intensity and direction of
any departures from the distributions of random controls for each
genomic feature in each integration site dataset. Three random sites
are picked per integration site. The locations are then annotated using
the hiAnnotator R package.

The coincidence of genomic feature “J” with each integration site and
random control site is measured. The nonparametric method of esti-
Mole
mating receiver operating characteristic (ROC) curve areas and their
covariance structure of DeLong et al.45 is used. Each integration site is
compared in a pairwise fashion with random control sites, and a
number is assigned indicating the relative rank of the integration
site: 1 if the measurement of J is higher at the integration site than
at a random control site, 0 if the measurement of J is lower at the inte-
gration site than at a random control site, and 0.5 if the measurement
of J is equal for the two sites. All such values are calculated for a data-
set of integration sites and averaged to obtain the overall ROC area for
the feature measured (https://github.com/BushmanLab/hotROCs).
This is equivalent to comparing the ranks of the sites with those of
the controls. In older datasets with integration sites recovered by
cleavage with restriction enzymes, matched random controls based
on proximity to restriction enzyme cleavage sites were used. In that
setting ROC curve areas were based on comparing each site only
with its matched controls.35

An ROC area between 0 and 0.5 indicates the genomic feature occurs
less frequently at or near integration sites than at or near random sites
in the genome and is therefore disfavored. An ROC area between
0.5 and 1 indicates the genomic feature is enriched at integration sites.
An ROC area of exactly 0.5 indicates that integration sites in the
dataset are neither enriched nor depleted with respect to the feature
of interest. The ROC area is converted to a color tile according to
the colorimetric scale shown at the bottom of the heatmap.35 In Fig-
ure 2, positive associations (enrichment compared with random) are
shown as increasingly intense shades of blue, negative associations
(depletion compared with random) as increasing intense shades of
yellow, and no difference from random as black. Each tile represents
a comparison of integration sites with the randomly sampled controls
for one genomic feature (row) in one experimental dataset (column).

Note that we do not present the magnitude of effect in terms of the
original units of measurement. We simply ask whether the average
integration site has a higher rank for a given type of feature than its
matched random control sites. The color indicates the average quan-
tile of each integration site relative to its random controls. This re-
moves skewing effects contributed by non-normal distributions of
the data and also reduces the effect of data points with extreme values
for a feature. Statistical tests are carried out to determine whether the
ROC areas calculated are significantly different from one another or
from 0.5 (indistinguishable from random controls; methods are
further explained in Supplemental Materials and Methods).35,46
cular Therapy: Methods & Clinical Development Vol. 4 March 2017 19
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Figure 3. Probing Statistical Associations between Epigenetic Marks and Integration Site Density Using Interactive Heatmaps

Interactive heatmaps are available in Supplemental Information and Data S1. Labeling is as in Figure 2. Once heatmaps are loaded into an internet browser, clicking on

different points on the image results in specific statistical tests, where results are summarized as asterisks on each tile of the heatmap (*p < 0.05; **p < 0.01; ***p < 0.001). The

heavy black arrow in each panel indicates the selection by point and click. (A) Clicking on the text “Compare to area=0.05” yields statistical tests comparing the value for

integration site data in each cell with random controls. (B) Comparison of outcome for each integration site dataset with the leftmost replicate of the data for lentiviral

integration in HAP-1 cells (clicking on the leftmost HAP-1 column as indicated). All of the SCID-X1 gammaretroviral samples are different for eachmark (indicated by the three

asterisks [***]) except H3K27me3 and H4K20me1. (C) Comparison of distributions of integration sites relative to Pol II with the distribution of integration sites relative to other

marks (click on Pol II). Seven out of eight are different, although for H2AZ in the gammaretroviral data, most show similar distributions (no asterisks).

Molecular Therapy: Methods & Clinical Development
The heatmap shown in Figure 2 compares the integration site distri-
bution at two time points from a gene-corrected patient (patient
1 [P1]) with epigenetic marks mapped in CD133+ progenitor cells.
Patient 1 (P1) was treated with an early gammaretroviral vector,
used to deliver the missing IL2RG gene to treat SCID-X1.47,48 The
two samples were isolated from peripheral blood mononuclear cells
(PBMCs) taken at 177 and 189.5 months after gene therapy. For com-
parison, another sample using a lentiviral-vector-infected human-
derived HAP-1 cell line has been included to illustrate differences
with the lentiviral integration pattern. Quadruplicate assays for
each DNA sample are shown to illustrate reproducibility.
20 Molecular Therapy: Methods & Clinical Development Vol. 4 March 201
The distributions of integration sites datasets (Table S1) were
compared with the distributions of 10 different epigenetic marks
or bound DNA binding proteins.49 Each of these was mapped
by chromatin immunoprecipitation sequencing (ChIP-seq), in
which each protein was covalently cross-linked to DNA, and
bound DNA fragments were recovered by immunoprecipitation,
sequenced, and then mapped to the human genome to identify
relative density. Densities of mapped ChIP-seq annotations were
compared with distributions of integration sites within 10 kb
windows, and the collection of values was used to generate ROC
areas.
7
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ROC areas are shown in the color key at the bottom. The numbers on the left indicate the lengths of genomic intervals used in comparisons with random controls. Oncogene

density (bottom row) involves asking how frequently integration sites are found with 100 kb of transcription start sites for genes in the allOnco gene list (http://www.

bushmanlab.org/links/genelists) compared with random controls.
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For the gene therapy specimens made by infection of stem cells with a
gammaretroviral vector (patient 1 [P1]), the distribution mostly
favored marks associated with active transcription (H3K9me1,
H3K4me1, H4K20me1, and H3K27me1). Integration was disfavored
near marks associated with repressive chromatin (H3K27me3 and
H3K9me3). However, the gammaretroviruses favor integration near
transcription start sites,10 and H2AZ and H3K4me3 were positively
associated, and RNA polymerase II (Pol II) more strongly than for
lentiviruses.

For the lentiviral infection in HAP1 cells,50 integration is favored near
sites of covalent modifications of histones associated with active tran-
scription, including H3K9me1, H3K4me1, H4K20me1, H3K27me1,
and H3K6me3. Lentiviral integration is favored within transcription
units,1,3,4 where the H3K36me3 mark is found, so integration was
favored near this mark for lentiviral infection, but not gammaretrovi-
ral infection. Repressive chromatin marks were disfavored, including
H3K27me3 and H3K9me3. Marks found near transcription start sites
(H3K4me3 and H2AZ) were either slightly disfavored or neither
favored nor disfavored.51 These patterns parallel those seen previ-
ously for lentiviral vectors in diverse cell types.4,8,11,52,53

An added feature of these heatmaps is that they have been engineered
to allow interactive statistical tests (Figure 3; interactive heatmaps are
available in Supplemental Information and Data S1). Heatmaps are
generated as scalable vector graphics (SVG), which can be opened
in an Internet browser. Users can click on a row or column, and sta-
tistical results appear on the heatmap tiles documenting whether re-
Mole
sults in other rows or columns differ from the query. Users can also
click on a button to the right of the maps to allow comparison of
all tiles with the random control. Results of statistical comparisons
are reported as asterisks on each tile. Some examples are shown in
Figure 3, illustrating comparisons among random (Figure 3A), the
leftmost HAP1 dataset (Figure 3B), or the Pol II ChIP-seq distribu-
tion (Figure 3C).

Figure 4 presents another form of the heatmap that queries the results
of multiple additional features, including mapped DNase I cleavage
site (which reports DNA accessibility), CpG islands (important in
gene regulation), guanine/cytosine (GC) percentage, gene counts as
documented in the refSeq dataset, and proximity to gene boundaries.
For those features that are mapped in intervals (GC percentage over
1Mb, 100 kb, 10 kb, and so on), it is often unknown a priori whatwidth
is the most relevant to the biological question at hand. Thus, for these
features, results for a number of different interval sizes are shown.

All three datasets are compared over their four replicates against these
features (Figure 4). High densities of DNase I hypersensitive sites and
high densities of CpG islands are associated with favored integration
for both lentiviral and gammaretroviral vectors (red coloration). High
GC content is also favored, likely because high GC content is charac-
teristic of gene-rich regions, although for lentiviruses, the preference
switches to local high adenine/thymine (AT), possibly associated with
binding of LEDGF/p75, the tethering cofactor, or wrapping of inte-
gration target site DNA on nucleosomes.11 Paralleling the favored
high GC content, direct measures of gene richness are also positively
cular Therapy: Methods & Clinical Development Vol. 4 March 2017 21
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Figure 5. Excerpts from a Reproducible Report on SCID-X1 Patient 1

(A) Table summarizing sample metadata, including the trial, internal tracking number (GTSP), number of replicates, patient, time point queried, cell type, total number of

sequence reads (TotalReads), inferred number of cells queried from SonicAbundance (InferredCells), the number of integration sites recovered after dereplication

(UniqueSites), the method used to break the DNA (shearing in this case), the vector copy number if available (VCN) determined from qPCR, the minimum population size

inferred from sharing among replicates (S.chao1), the asymmetry of clonal distribution (Gini), the diversity summarized as the Shannon index (Shannon), and the number of

unique clones making up the top 50% of the sample abundance (UC50). (B) Stacked bar graph showing the most abundant clones, named after the nearest gene. Genes are

annotated by whether the site is within a transcription unit (*), whether the site is within 50 kb of a cancer-related gene (�), or whether the site is associatedwith a gene strongly

associated with human lymphoma (!). (C) Graph indicating the position of integration sites near CCND2, and their proportions as inferred by SonicAbundance. (D) Word

bubbles summarizing the proportions of integration sites near each named gene. The size of the gene name in the word bubble is a function of the SonicAbundance of that

site. Note that there is an antisense transcript upstream of the CCND2 transcription start site; thus, the integration site upstream is reported as CCND2-AS1 because it is

within the DNA transcribed in the antisense transcript.

Molecular Therapy: Methods & Clinical Development
associated. Integration is disfavored relative to regions with long gene
widths or long intergenic distances, because these are indicative of
gene-sparse regions. The gammaretroviral vector sites are disfavored
relative to long gene boundary distances because they favor integra-
tion near transcription start sites. Integration is favored within genes
(as annotated by the refSeq dataset) for lentiviral vectors,3 but only
weakly favored for gammaretroviral vectors.

Thus, numerous relationships between integration site datasets and
genomic features can be explored statistically using these interactive
heatmaps.

Lists of Cancer-Associated Genes for Annotating Integration

Site Distributions

A question of interest in many therapeutic applications centers on
whether integration sites accumulate near the transcription start sites
of cancer-related genes. A complication is that there are many ways of
defining cancer-associated genes, and most such genes are important
only in specific types of human cancers. For annotating gene therapy
results, we have thus generated multiple lists of cancer-associated
genes that can be queried as appropriate for integration site analysis
(http://www.bushmanlab.org/links/genelists).

In one approach, we created a maximally comprehensive list
(AllOnco) for use in first-pass screening based on the idea that we
cannot predict what cancer-associated genes are most important in
22 Molecular Therapy: Methods & Clinical Development Vol. 4 March 201
the novel clinical setting of human gene modification. The list incor-
porates known human cancer genes and human homologs of cancer
genes in model organisms, and so includes 2,125 total genes, or
roughly 8.5% of all human genes (assuming 25,000 total). Compari-
son with oncogene annotation is summarized using the heatmap
format (Figure 4, bottom row), which scores the frequency of integra-
tion sites within 100 kb of cancer gene transcription start sites in inte-
gration sites versus random sites.

Reports on Integration Site Sample Sets for Tracking Outcome

in Human Gene Therapy

An important application of integration site analysis is tracking
outcome in human gene therapy. For this we have developed a stan-
dardized patient report template that rests on top of the INSPIIRED
pipeline. Use of a reproducible report format allows tracking of data-
sets used in each study and version control of code (which are spec-
ified by dates). The report software takes in integration site and break
point positional information, annotates the sites using hiAnnotator,
and outputs targeted analyses of integration site distributions. An
example of a patient report is provided in Data S2, showing two recent
time points monitored for patient 1 (P1) treated for SCID-X1. Earlier
time points were analyzed by 454 Roche pyrosequencing and were
previously reported.25

Some excerpts from the report are presented in Figure 5. The software
generates a summary table (Figure 5A) that reports the patient, time
7
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point, cell type, patientmetadata, and summary statistics for each sam-
ple. Among these are the total numbers of reads, the number of cells
inferred to have been sampled (sum of break points captured), and
the number of unique integration sites after dereplication. Four statis-
tics summarizing population structure are also calculated for each
sample. The minimum population size is inferred from a Chao1 anal-
ysis with jackknife correction, which takes advantage of the four repli-
cate analyses typically run for each sample.34 Skewing in proportional
abundance is calculated using the Gini index, where 0 indicates a
perfectly even distribution of integration sites over the cells sampled
and increases up to 1 with increasing oligoclonality. Diversity is calcu-
lated using the Shannon index, which summarizes both the number of
different unique integration sites and the evenness of distribution of
cells sampled (SonicAbundance) among integration sites.

Here, we introduce a new metric, called the UC50 (unique cell pro-
genitors contributing the most to the expanded 50% of progeny cell
clones). To generate the number, progenitor cell clones (reported as
unique integration sites) are first ranked by the relative abundance
of progeny cells using SonicAbundance (reported by linker ligation
site data). The UC50 then reports the number of unique clones (inte-
gration sites) responsible for making up the top 50% of all cells
sampled. Thus, if a single clone comprises more than 50% of the sam-
ple, the UC50 value will be 1. In contrast, for efficient lentiviral infec-
tions of cells in short-term tissue culture, the UC50 values can be in
the thousands (data not shown).

Finally, where available, the vector copy number per cell (VCN),
determined separately by qPCR, is added to allow assessment of the
efficiency of gene marking in the cell population.

The relative abundance of integration sites in or near specific genes is
summarized in several ways (Data S2). These include two types of
stacked bar graphs (an example is shown in Figure 5B; both are dis-
played in Data S2). Bar graphs either display the number of cells
observed (sonic breaks) that are associated with integration sites in
the samples (scaled to the most abundant sample) or the proportional
abundance of integration sites in each sample, where every sample is
scaled to 100% (Figure 5B). Each high-abundance integration site is
named by the closest gene, which is color coded in the key for each
graph. Genes are annotated by whether the site is within a transcrip-
tion unit (*), is within 50 kb of a cancer-related gene (�), or is asso-
ciated with a gene strongly associated with human lymphoma (!).
This last list consists of 38 human genes commonly involved in
lymphoid cancers and includes most genes previously implicated in
adverse events in human stem cell gene therapy, including LMO2,
MDS/EVI1, and CCND2.29–31

Heatmaps provide another type of visualization (Data S2). These have
the advantage over stacked bar graphs in that each integration site
above a chosen abundance is given equal space, whereas in stacked
bar graphs, rarer sites can be shown as thin bands that may be difficult
to visualize. A third visualization is provided by line graphs (Data S2),
which highlight the behavior of the most abundant clones over time.
Mole
Another set of figures queries integration sites near genes of concern
for adverse events in human gene therapy, including LMO2, CCND2,
HMGA2, andMECOM.29,37 In these visualizations, the distance from
the transcription start site is shown on the x axis, proportional abun-
dance is shown on the y axis, and the time point is color coded. By
this means it can be seen that an integration site near CCND2
achieves >10% abundance near the CCND2 transcription start site
(Figure 5C).

Handling integration sites that map to multiple locations in the hu-
man genome presents a particular challenge. It could be that an inte-
gration site authentically resides in a repeated sequence that is also in
the 50 region of a cancer-associated gene and potentially marking an
adverse event. To accommodate this, reports include an account of
the SonicAbundance of cells with integration sites in repeated se-
quences,34 allowing tracking of possible sites of concern in multihits.

The reports end with word bubbles (Figure 5D), which provide a
visual summary of genes near integration sites in expanded
clones.27 Names of genes that are nearest to the integration sites are
used to construct the word bubble. Word size is scaled by the
SonicAbundance measure for each integration site, and each gene
name is marked with the same integration flags (*, �, and !) used
in earlier plots. By this means, the major clones in the sample are
evident at a glance.

Outcome in the First SCID-X1 Gene Therapy Trial

Figure 5 shows excerpts from a reproducible report summarizing
monitoring of patient 1 (P1) from the first trial to treat SCID-X1. Re-
sults are summarized for PBMCs from two time points, 177 and
189.5 months after gene therapy. Half a million to a million reads
were collected for each sample, allowing investigation of 13,000 cells
associated with about 1,000 integration sites. UC50 values for the two
time points are 10 and 8, indicating the presence of expanded cell
clones.

In early studies based on 454/Roche pyrosequencing, the subject was
found to have an expanded clone with an integration site near
CCND2 (6% of all reads), a gene for which a nearby integration event
was associated with an adverse event in another SCID-X1 gene-cor-
rected patient.25,29 Thus, it was of interest to monitor the behavior
of the clone in this patient over time. Analyses using Illumina
paired-end sequencing are summarized in Figure 5, which shows
that the CCND2 clone has slightly expanded in abundance (nonpara-
metric comparison of replicate medians yields p = 0.029 when
compared by relative abundances and p = 0.057 when compared by
absolute abundances judged by SonicAbundance). The integration
site is 3,241 nt upstream of the CCND2 transcriptional start site.
Thus, longitudinal tracking reveals a stable expanded clone in this
subject.

DISCUSSION
Here, we describe a collection of tools for the analysis and visualiza-
tion of integration site distributions. This tool set takes advantage of
cular Therapy: Methods & Clinical Development Vol. 4 March 2017 23
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the INSPIIRED pipeline described in the accompanying paper.9 Inte-
gration sites are mapped to the human genome, the abundances of
their host cells tabulated using the SonicAbundance method, and re-
sults stored in a database, allowing flexible downstream analysis. Inte-
gration site distributions can then be compared with genomic features
and sites of epigenetic modification as ROC areas. These data are
summarized as interactive heatmaps, allowing comparison with
random distributions, other integration site datasets, or genomic
annotation by simply clicking on a row or column, which outputs
comprehensive statistical tests.

For applications to human gene therapy, interest often focuses on lon-
gitudinal behavior of expanded clones and proximity of integration
sites to cancer-associated genes. A standardized report format was
developed, allowing interactive comparison among patient datasets
and querying multiple aspects of longitudinal behavior. For this, we
introduce the UC50 metric, which is generated by ranking progeni-
tors (integration sites) from most to fewest daughter cells produced
(linker ligation sites) and counting the number of progenitors
contributing to the top 50% of the distribution. Thus, clonal expan-
sion yields low UC50 numbers and highly polyclonal samples high
UC50 numbers. These tools were used to query recent clonal behavior
in a patient from the first SCID-X1 gene therapy trial.29,47,48 The pa-
tient studied has an expanded clone with an integration site near the
proto-oncogene CCND2. The analysis of integration sites from
month 177 to month 189.5 post-treatment revealed stability of this
clone, with possible slow expansion. This analysis illustrates how
the tools described here can be applied to monitor outcomes in
gene therapy.

MATERIALS AND METHODS
Human Subjects

As in Cavazzana-Calvo et al.47 and Hacein-Bey-Abina et al.,48 patient
1 (P1) fulfilled the eligibility requirements for first ex vivo gc gene
therapy trial (1999–2002) at age 11 months. P1 was diagnosed with
SCID-X1 based on his blood lymphocyte phenotype, revealing a
tail-less gc receptor expressed at the membrane (R289 X). Marrow
was harvested and subjected to CD34+ cell separation, obtaining
9.8 � 106 CD34+ cells per kilogram of body weight. Harvested cells
were then exposed to MFG gc vector-containing supernatant
daily for 3 days. P1 was then infused with the treated CD34+ cells
(19 � 106 cells/kg) without prior chemoablation.

Integration Site Analysis

As explained in the companion paper,9 integration sites are identified
by sequencing the LTR-host junctions from genomic DNA after
linker-mediated PCR amplification. Genomic DNA is randomly
sheared by ultrasonication, after which linkers are ligated to the re-
paired DNA for amplification. Nested PCR is used to amplify the
LTR-host DNA junctions by priming from the viral LTR and the
linkers, appending the sequences needed for sequencing. Samples
are sequenced using the Illumina paired-end platform, and the output
sequencing files are processed by intSiteCaller to yield integration site
positions on a host draft genome. Integration site data and ChIP-seq
24 Molecular Therapy: Methods & Clinical Development Vol. 4 March 201
data were mapped onto the hg18 genome draft, to match the original
draft genome used for analysis of the ChIP-seq data. As in Berry
et al.,35 receiver operating characteristic (ROC) areas are used to
compare integration sites with random control sites.

Pipeline Utilization

INSPIIRED is distributed online as a downloadable virtual ma-
chine executable on the Windows, Mac, and Linux operating
systems, as well as a GitHub source code repository supported by a
Conda software environment (see https://github.com/BushmanLab/
INSPIIRED, which also includes detailed instructions for use and
test datasets).

SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Materials and
Methods, one figure, one table, and two data files and can be found
with this article online at http://dx.doi.org/10.1016/j.omtm.2016.
11.003.
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