⁵Department of Pediatrics, University of Tokyo, Tokyo, Japan, ⁶Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan, ⁷Department of Pediatrics, St. Marianna University School of Medicine Hospital, Kawasaki, Japan, ⁸Division of Neurosurgery, National Center for Child Health and Development, Tokyo, Japan, ⁹Division of Surgery Oncology, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan, ¹⁰Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan, ¹¹Department of Pathology, National Center for Child Health and Development, Tokyo, Japan, ¹²Department of Pathology, Keio University School of Medicine, Tokyo, Japan

BACKGROUND: Genetic hallmark of atypical teratoid/rhabdoid tumor (AT/RT) is loss-of-function variants or deletions in SMARCB1 gene on 22q11.2 chromosome, which is common to extracranial malignant rhabdoid tumors (MRT). Previous studies demonstrated that approximately one-thirds of AT/RT and extracranial MRT patients harbored germline SMARCB1 variants as the rhabdoid tumor predisposing syndrome. We studied herein intensive analysis of the SMARCB1 gene in AT/RT and extracranial MRT patients focusing on prevalence of germline genetic variants. PROCEDURE: In total, 16 patients were included. Both tumor-derived DNA and germline DNA were obtained from all patients. First, screening for SMARCB1 alterations in the tumor specimens was done by direct sequencing, ddPCR and SNP array analysis. Then, analysis of germline DNA samples focusing on the genomic abnormalities detected in the paired tumors in each case was performed. RESULTS: In eight of 16 cases (50%), genomic alterations observed in the tumor-derived DNA were also detected in the germline DNA. It is worth noting that three patients had germline mosaicism. Two of three patients had mosaic deletion, including SMARCB1 region, and the average copy number of the deleted region in the SMARCB1 gene in the germline was 1.60 and 1.76. For another patient, the fraction of SMARCB1 variants in normal cells was as low as 1.7%. CONCLUSIONS: Approximately half the MRT cases in this study had SMARCB1 germline alterations. Considering the presence of low-frequency mosaicisms which conventional methods might overlook, inherited germline variants in predisposition genes are more important than previously assumed for the pathogenesis of pediatric cancers.

ATRT-13. DIFFERENT CELLS OF ORIGIN PAVE THE WAY FOR MOLECULAR HETEROGENEITY IN RHABDOID TUMORS <u>Monika Graf¹</u>, Marta Interlandi^{2,1}, Natalia Moreno¹, Dörthe Holdhof³, Viktoria Melcher¹, Dennis Kastrati¹, Gerd Meyer zu Hörste⁴, Martin Dugas², Michael C. Frühwald⁵, Thomas K. Albert¹, Ulrich Schüller^{3,6}, and Kornelius Kerl¹; ¹Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany, ²Institute of Medical Informatics, University of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, ⁴Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany, ⁵Swabian Children's Cancer Center, University Children's Hospital Augsburg, Augsburg, Germany, ⁶Research Institute Children's Cancer Center, 20251 Hamburg, Hamburg, Germany

Rhabdoid tumors (RT) are rare but highly aggressive pediatric neoplasms. These tumors carry homozygous loss-of-function alterations of SMARCB1 in almost all cases with an otherwise low mutational load. RT arise at different intracranial (ATRT) as well as extracranial (MRT) anatomical sites. Three main molecular subgroups (ATRT-SHH, ATRT-TYR, ATRT-MYC) have been characterized for ATRT which are epigenetically and clinically diverse, while MRT show remarkable similarities with ATRT-MYC distinct from ATRT-SHH and ATRT-TYR. Even though there are hypotheses about various cells of origin among RT subgroups, precursor cells of RT have not yet been identified. Previous studies on the temporal control of SMARCB1 knockout in genetically engineered mouse models have unveiled a tight vulnerable time frame during embryogenesis with regard to the susceptibility of precursor cells to result in RT. In this study, we employed single-cell RNA sequencing to describe the intra- and intertumoral heterogeneity of murine ATRT-SHH and -MYC as well as extracranial MYC tumor cells. We defined subgroup-specific tumor markers for all RT classes but also observed a notable overlap of gene expression patterns in all MYC subgroups. By comparing these single-cell transcriptomes with available single-cell maps of early embryogenesis, we gained first insights into the cellular origin of RT. Finally, unsupervised clustering of published human RT methylation data and healthy control tissues confirmed the existence of different cells of origin for intracranial SHH tumors and MYC tumors independent of their anatomical localizations.

ATRT-14. MACROPHAGE-TUMOR CELL INTERACTION PROMOTES ATRT PROGRESSION AND CHEMORESISTANCE Viktoria Melcher¹, Monika Graf¹, Marta Interlandi^{1,2}, Natalia Moreno¹, Flavia W. de Faria¹, Su Na Kim¹, Dennis Kastrati¹, Sonja Korbanka¹, Amelie Alfert¹, Joachim Gerß³, Gerd Meyer zu Hörste⁴, Wolfgang Hartmann⁵, Michael C. Frühwald^{6,7}, Martin Dugas², Ulrich Schüller^{8,9}, Martin Hasselblatt¹⁰, Thomas K. Albert¹, and Kornelius Kerl¹; ¹Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany, ²Institute of Medical Informatics, University of Münster, Münster, Germany, ³Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany, ⁴Department of Neurology with Institute of Translational Neurology, Münster, Germany, 5Gerhard-Domagk-Institute of Pathology, University of Münster, Münster, Germany, 6Swabian Children's Cancer Center, University Children's Hospital Augsburg, Augsburg, Germany, ⁷EU-RHAB Registry Center, Augsburg, Germany, ⁸Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 9Research Institute Children's Cancer Center, Hamburg, Germany, ¹⁰Institute of Neuropathology, University Hospital Münster, Münster, Germany

Atypical teratoid/rhabdoid tumors (ATRT) are pediatric brain neoplasms that are known for their heterogeneity concerning pathophysiology and outcome. The three genetically rather uniform but epigenetically distinct molecular subgroups of ATRT alone do not sufficiently explain the clinical heterogeneity. Therefore, we examined the tumor microenvironment (TME) in the context of tumor diversity. By using multiplex-immunofluorescent staining and single-cell RNA sequencing (scRNA-seq) we unveiled the panmacrophage marker CD68 as a subgroup-independent negative prognostic marker for survival of ATRT patients. ScRNA-seq analysis of murine ATRT-SHH, ATRT-MYC and extracranial RT (eRT) provide a delineation of the TME, which is predominantly infiltrated by myeloid cells: more specifically a microglia-enriched niche in ATRT-SHH and a bone marrow-derived macrophage infiltration in ATRT-MYC and eRT. Exploring the cell-cell communication of tumor cells with tumor-associated immune cells, we found that Cd68+ tumor-associated macrophages (TAMs) are central to intercellular communication with tumor cells. Moreover, we uncovered distinct tumor phenotypes in murine ATRT-MYC that share genetic traits with TAMs. These intermediary cells considerably increase the intratumoral heterogeneity of ATRT-MYC tumors. In vitro co-culture experiments recapitulated the capability of ATRT-MYC cells to interchange cell material with macrophages extensively, in contrast to ATRT-SHH cells. We found that microglia are less involved in the exchange of information with ATRT cells and that direct contact is a prerequisite for incorporation. A relapse xenograft model implied that intermediary cells are involved in the acquisition of chemotherapy resistance. We show evidence that TAM-tumor cell interaction is one mechanism of chemotherapy resistance and relapse in ATRT.

ATRT-15. LY6D – A CANDIDATE FOR NANOPARTICLE-BASED TARGETED THERAPIES OF ATRT

Lea Hagemeier¹, Marthe Sönksen¹, Natalia Moreno¹, Romy Ettlinger², Hana Bunzen², and Kornelius Kerl¹; ¹Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany, ²Institute of Physics, University Augsburg, Augsburg, Germany

Atypical Teratoid Rhabdoid Tumors (ATRT) are aggressive brain malignancies of the infant. Despite intensive multimodal therapy, the overall prognosis remains poor, making investigations on targeted therapies crucial. Arsenic trioxide (ATO) is known to inhibit cell growth of ATRT in vitro and in vivo but its efficacy in solid tumors is limited by its adverse effects. We aimed to characterize whether a nanoparticle-based drug delivery could overcome these limitations. Therefore metal-organic frameworks containing ATO (MOF-ATO) were constructed. To improve drug specificity further, we searched for unique proteins on the surface of ATRT, in order to create antibody-drug-conjugates out of MOF-ATO and an ATRT-specific ligand. ATRT are marked by a biallelic loss of SMARCB1, which results in an activation of the repressive histone methyltransferase EZH2. After chemical inhibition of EZH2 with GSK126, a mass spectrometric based screening for differentially expressed surface proteins was performed. Treatment with ATO, as well as MOF-ATO and GSK126 each reduces the cell viability of ATRT cell lines. It results in a cell cycle arrest and an induction in apoptosis, being analysed via MTT test and flow cytometry. GSK126 treatment causes a significant upregulation of several cell surface proteins, upon them the Lymphocyte antigen 6 family member D (LY6D). Being rarely expressed on other human cells, this protein is an interesting candidate. An antibodydrug-conjugate consisting of MOF-ATO and LY6D-ligands could be a promising approach for future targeted therapies of ATRT.