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ABSTRACT

A current question in the high-order organization
of chromatin is whether topologically associating
domains (TADs) are distinct from other hierarchi-
cal chromatin domains. However, due to the un-
clear TAD definition in tradition, the structural and
functional uniqueness of TAD is not well studied. In
this work, we refined TAD definition by further con-
straining TADs to the optimal separation on global
intra-chromosomal interactions. Inspired by this con-
straint, we developed a novel method, called HiTAD,
to detect hierarchical TADs from Hi-C chromatin in-
teractions. HiTAD performs well in domain sensitiv-
ity, replicate reproducibility and inter cell-type con-
servation. With a novel domain-based alignment pro-
posed by us, we defined several types of hierarchical
TAD changes which were not systematically stud-
ied previously, and subsequently used them to re-
veal that TADs and sub-TADs differed statistically in
correlating chromosomal compartment, replication
timing and gene transcription. Finally, our work also
has the implication that the refinement of TAD defi-
nition could be achieved by only utilizing chromatin
interactions, at least in part. HiTAD is freely available
online.

INTRODUCTION

Recent years have seen rapid development in exploring
high-order organization of chromatin due to the chro-
mosome conformation capture (3C) technique (1) and its
derivatives, such as 4C (2,3), 5C (4), ChIA-PET (5), Hi-C
(6), TCC (7), Capture Hi-C (8) and in situ Hi-C (9), etc.
It is now known that chromatin is neatly packed in nu-
cleus, in which topologically associating domain (TAD) is
a kind of structural unit in linking chromatin organiza-
tion and biological functions, at least in drosophila (10)
and mammalian genomes (11,12). It was reported that TAD

could constrain enhancer-promoter targeting in gene regu-
lation (13,14), shape replication timing (15) and determine
pathogenicity of genomic duplications (16). The switch of
TAD boundary was observed in mouse limb development
(17), and the boundary knockout on mouse model directly
proved that the disruption of TAD boundary led to devel-
opment disease (18). The studies on cancer genomes also re-
vealed that mutations occurred on TAD boundaries could
contribute to oncogene activation (19,20), implying the as-
sociation of TAD disruption with tumorigenesis.

TAD itself is a hierarchical organization which needs to
be further clarified. TAD is traditionally defined as a con-
tinuous chromatin region in which the loci interact with
each other more frequently than the loci outside the re-
gion (11,12,21). However, different levels of chromatin do-
mains satisfy this criterion more or less, especially with
the improvement of data quality and sequencing depth.
By thoroughly investigating specific chromatin regions with
5C, Phillips-Cremins et al. found that there existed smaller
chromatin domains (called sub-TADs) inside the tradi-
tional TADs (22). Further comparisons revealed that TADs
were stable across cell types, whereas sub-TADs could vary
greatly to facilitate gene regulation. By improving Hi-C ex-
perimental pipeline and sequencing depth, Rao et al. ob-
served hierarchical overlapping among different chromatin
domains in the genome-wide scale (9). A recent work also
revealed that TADs exhibited structural heterogeneity and
functional diversity in mammalian genomes (23). These
phenomena suggest the existence of hierarchical domains in
chromatin, which cannot be explained by traditional TADs.

Several methods have been proposed to identify hierar-
chical chromatin domains from Hi-C chromatin interac-
tions. Rao et al. proposed an Arrowhead transformation
on bias-corrected chromatin interaction matrix and then
used dynamic programming to identify chromatin domains
at multiple scales simultaneously (9). TADtree proposed
by Weinreb and Rahpael used a weighted interval schedul-
ing with multiplicities to find TAD forest (24). However,
the high computational complexity in this algorithm limits
its available resolutions. Matryoshka (bioRxiv https://doi.
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org/10.1101/032953) proposed by Malik and Patro identi-
fied various chromatin domains at different resolutions, and
then the consensus hierarchy through domain clustering
was used to generate hierarchical chromatin domains. Re-
cently, a network modularity based method was proposed
to identify hierarchical chromatin domains by utilizing dif-
ferent resolution parameter values (bioRxiv https://doi.org/
10.1101/089011). The method CaTCH identified large lev-
els of hierarchical chromatin domains by using only a single
parameter, reciprocal insulation (25). However, it did not
point out the TAD positions in the hierarchical domains.
Instead, additional data, such as CCCTC-binding factor
(CTCF) enrichment, were needed as references to identify
the TADs. Similarly, HBM identified hierarchical domains
until the given chromatin was merged into a single cluster,
without pointing out the TAD positions (26). Finally, some
methods, such as Armatus (27), spectral method (28), Mr-
TADFinder (bioRxiv https://doi.org/10.1101/097345) and
IC-Finder (29), could identify overlapped or hierarchical
domains across different parameter values, but they did not
automatically reconcile the hierarchy and consensus among
these domains.

The aforementioned methods mainly treat TADs as lo-
cal insulations but neglect their global properties, mak-
ing it hard to judge where the TADs stand in the hierar-
chical domains. In this work, except the local insulations,
we further constrain TADs to the optimal separation on
intra-chromosomal interactions. To facilitate representa-
tion, TAD and its smaller chromatin domains are together
called hierarchical TAD in this work. Inspired by our TAD
constraint, we developed an iterative optimization proce-
dure, called HiTAD, to detect hierarchical TADs from Hi-
C chromatin interactions, and then applied HiTAD to an-
alyzing Hi-C and in situ Hi-C datasets with different se-
quencing depths involving several human and mouse cell
types (Supplementary Table S1). Compared to the selected
two methods (Arrowhead and TADtree), HiTAD can detect
more hierarchical TADs with higher replicate reproducibil-
ity and inter cell-type conservation. With a novel domain-
based alignment strategy, we defined several change types of
hierarchical TADs which were not systematically studied.
Our analyses on these hierarchical TADs show that TADs
and sub-TADs differ in correlating chromosomal compart-
ment, replication timing domain and transcriptional regu-
lation.

MATERIALS AND METHODS

Data sources, processing and representation

The in situ Hi-C datasets of human cell types GM12878,
IMR90 and K562 were downloaded from NCBI with acces-
sion number GSE63525 (9). For traditional Hi-C, two inde-
pendently generated datasets of human cell type GM12878
were downloaded from NCBI with accession numbers
GSE48592 (30) and GSE63525 (9) respectively. The datasets
of human cell type IMR90 and mouse cell types mESC and
Cortex were downloaded from NCBI with accession num-
bers GSE43070 (14) and GSE35156 (11) respectively. The
dataset of human cell type Panc1 was downloaded from
ENCODE (31). Raw Hi-C data were processed and cor-
rected by using software hiclib (32). The bins located in gap

regions were removed from calculation but included in visu-
alization. The summary of Hi-C datasets is listed in Supple-
mentary Table S1. With respect to ChIP-Seq and RNA-Seq
datasets, the processed data were downloaded from EN-
CODE (31), including epigenomic and binding peaks from
ChIP-Seq and expression of long RNA contigs from RNA-
Seq. The called domain boundaries of replication timing
were downloaded from public website (http://mouseencode.
org/publications/mcp05/) (33). Human CTCF motif was
downloaded from a database for ENCODE transcription
factors (http://compbio.mit.edu/encode-motifs/) (34), and
mouse CTCF motif was scanned in Fimo (35) by using the
same human PWM as input. The human and mouse refer-
ence genomes hg19 and mm10 were used in sequence align-
ments.

HiTAD overview

The idea behind HiTAD is that TADs are optimal do-
mains to separate intra-chromosomal interactions in global
level. Combining the fact that TADs can also be divided
into smaller domains in a hierarchical way, the detection
of hierarchical TADs can be transformed into an itera-
tive optimization procedure by defining appropriate ob-
jective functions from interaction frequencies (Figure 1).
In this work, the objective function is defined as the en-
richment between intra-domain interaction frequencies and
inter-domain interaction frequencies in a way to reduce
the impact of genomic distance. To speed up the calcula-
tion, an adaptive directionality index (DI)-based Hidden
Markov Model (HMM) is proposed to sensitively generate
a genome-wide pool of bottom domains by using only local
insulation. Then these bottom domains are used as basic el-
ements to detect TADs by using global intra-chromosomal
interactions under given objective function. To better per-
form TAD detection, a recursive formula is used to solve the
optimization problem. These detected TADs are next used
to generate corresponding sub-TADs in a similar way, but
with the bottom domains localized within the TAD as initial
domain pools. Similar procedure is applied to subsequent-
level domain detection until bottom domains are met. Fi-
nally, under a domain-based alignment proposed by us, the
reproducible domains from two replicates are maintained
to guarantee the accuracy in the highly variable Hi-C chro-
matin interactions. HiTAD is a fast and memory-saving
method that can be implemented in PC (Supplementary Ta-
ble S2). Next, we will introduce the detailed implementation
of HiTAD.

Bottom boundaries detected by adaptive directionality index

To sensitively detect the boundaries with various domain
sizes, we proposed adaptive DI by modifying traditional DI
(11,22). Let ( fi j )N×N represent the matrix of chromatin in-
teraction frequencies after bias correction, where N is the
number of bins at the given resolution. For every selected
bin i , the adaptive DI is defined as:

DIi =
1

Wi

∑Wi
k=1 Uk − 1

Wi

∑Wi
k=1 Dk√∑Wi

k=1 (Uk−Ūi )2+∑Wi
k=1 (Dk−D̄i )2

Wi (Wi −1)

(1)
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Figure 1. HiTAD workflow. First, the bottom domains are detected by using adaptive DI-based HMM. Second, under the objective function derived from
chromatin interactions, a recursive formula is applied to searching all possible TADs by using bottom domains as input. Third, TADs are generated by
maximizing the objective function from the searching space. Fourth, sub-TADs and other level domains are generated in a similar way but with localized
bottom domains as input to optimization problem. Finally, the hierarchical domains reproducible from two replicates are maintained. The calculations
were performed at 20 kb resolution on in situ Hi-C dataset IMR90.

where Uk denotes the upstream interaction frequency be-
tween bin i and bin i − k, Dk denotes the corresponding
downstream interaction frequency and Wi is the window
size on bin i . Since domain sizes vary from tens of kilobases
to several megabases at currently available resolutions, the
window size Wi is determined adaptively based on local in-
teraction environment (Supplementary Figure S1). Specif-

ically, let Si (k) = {1, fi−k,i − fi,i+k ≥ 0
0, fi−k,i − fi,i+k < 0 denote the inter-

action bias when comparing upstream bin i − k to down-
stream bin i + k, in which 1 represents upstream bias and 0
represents downstream bias. Then four kinds of state transi-
tions from Si (k) to Si (k + 1) can be observed (0 → 0, 0 →
1, 1 → 0, 1 → 1). Generally, the state transitions should be
statistically same from Si (k) to Si (k + m) if bin i − k − m or
bin i + k + m is located in the same domain with bin i . Let
Ti (k) = 1

k+1

∑ j = k
j = 1 Si ( j ), and then the maximum or mini-

mum values of Ti (k) (k = 1, 2, 3, · · ·) are selected as candi-
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date window sizes. Since Ti (k) is discrete, the maximum or
minimum is determined locally by comparing its 10 nearest
neighbor values, i.e. five neighbors in each side. To further
guarantee the best selection on window size, a chi-square

statistics is constructed as χ2 (i, k) = ∑4
j=1

(Oj (i,k)−Ej (i,k))2

Ej (i,k) ,
where Oj (i, k) is the observed frequency in one of the four
kinds of transitions, Ej (i, k) is the expected frequency which
is set to be (k − 1)/4 and k represents the candidate window
sizes selected above. Then the minimum value of k satisfy-
ing χ2(i, k) ≥ χ2

0.05(3) is selected as the final window size Wi .
Next, the calculated adaptive DIs from Equation 1 are used
as input in HMM to detect bottom boundaries. Five states
(start, upstream bias, no bias, downstream bias and end)
and corresponding state transitions are set in HMM (Sup-
plementary Table S3). Three-distribution Gaussian mixture
is used to emit state and Baum–Welch algorithm is used
to perform training on data. The detected boundaries are
reused to further improve sensitivity through following pro-
cedure. Let B = {b0

1, b0
2, · · · , b0

n} denote the initial bound-
aries from the adaptive DI-based HMM, where b0

l is the
genomic position of the lth boundary and n is the total
boundary number. Let D0

j = [b0
j , b0

j+1] denote the domain
where bin i localizes. The new window size of bin i is set to
Wi = max{i − b0

j , b0
j+1 − i}, and the corresponding adap-

tive DI is recalculated by using Equation 1. All recalcu-
lated adaptive DIs are used as input in HMM to detect
new bottom boundaries and bottom domains. This recal-
culation is repeated until more than 95% boundaries de-
tected from two neighbor steps can be aligned to each other
(see ‘Domain and boundary alignment’ section). Generally,
the convergence is achieved by only one to three iterations.
We also performed comparison between adaptive DI-based
HMM and traditional DI-based HMM. Since traditional
DI depends on the fixed window sizes, different values were
selected for thorough comparisons. The results show that
most boundaries from traditional DI-based HMM can be
detected by adaptive DI-based HMM. By contrast, many
boundaries from adaptive DI-based HMM cannot be de-
tected by traditional one (Supplementary Figure S2 and Ta-
ble S4). The major reason underlying this difference is that
traditional DI cannot reconcile the various domain sizes on
boundary detection by using only one fixed window size.

Hierarchical TAD detection

The finally generated boundary set above is denoted as B =
{b1, b2, · · · , bn}. The TAD identification is transformed
into selecting a best subset Bs = {bs

1, bs
2, · · · , bs

m|m ≤ n}
from set B to generate corresponding TAD set Ds =
{Ds

1 = [bs
1, bs

2], Ds
2 = [bs

2, bs
3], · · · , Ds

m−1 = [bs
m−1, bs

m]}. To
eliminate the impact of genomic distance on interaction
frequency, the arrowhead transformation proposed by Rao
et al. (9) is used to measure the interaction-frequency differ-
ence between intra-domain interactions and inter-domain
interactions:

Ai (k) = fi−k,i − fi,i+k

fi−k,i + fi,i+k
,

where bin i is the genomic position and k is the
genomic distance from bin i . Under this calcu-

lation, the square region of TAD Ds
l = [bs

l , bs
l+1]

should be separated to form an upper-triangle region
Us

l = {(i, k)|i ∈ (bs
l ,

bs
l +bs

l+1
2 ), k ∈ (i − bs

l , bs
l+1 − i )}

and a lower-triangle region Ls
l =

{(i, k)|i ∈ (
bs

l +bs
l+1

2 , bs
l+1), k ∈ (bs

l+1 − i, i − bs
l )}, where

k is the genomic distance dependent on bin i (Supple-
mentary Figure S3). The objective function is defined
as: ⎧⎨

⎩
Rs = ∑l=m−1

l=1
1
2

(
bs

l+1 − bs
l

) (
ĀUs

l
+ ĀLs

l

)
ĀUs

l
= mean (−wi,i+k · Ai (k)) , (i, k) ∈ Us

l
ĀLs

l
= mean (wi−k,i · Ai (k)) , (i, k) ∈ Ls

l

, (2)

where wi,i+k and wi−k,i are the weights on the interaction-
frequency differences and mean(Ai (k)) represents the aver-
age of Ai (k) in the corresponding region. Since Ai (k) in the
upper-triangle region represents the difference between up-
stream inter-domain interaction and intra-domain interac-
tion, it tends to be negative in the TAD region. By con-
trast, Ai (k) in the lower-triangle region represents the dif-
ference between intra-domain interaction and downstream
inter-domain interaction, and tends to be positive. Then the
values in the upper-triangle region are set to −Ai (k).

The weight in Equation 2 is set to fold change between
the observed and expected interaction frequencies, in which
a previous procedure is used to calculate the expected in-
teraction frequency by considering both genomic distance
and local interaction background (23). Briefly, let f (k) =∑

|i− j |=k fi j

bs
l+1−bs

l −k denote the average interaction frequency at ge-
nomic distance k in TAD Ds

l = [bs
l , bs

l+1], and then the
smoothed interaction frequency F(k) is obtained by using
B-Spline approximation. Since the number of chromatin in-
teractions decreases with the genomic distance k, F(k) may
fluctuate when k increases gradually. To alleviate the impact
of these fluctuations, the expected interaction frequency is

defined as Ei j = {F(|i − j |), |i − j | ≤ kr
F(kr ), |i − j | > kr

, where kr is the

first turning point. The final expected interaction frequency
at position (i, j ) is calculated by following a previous win-
dow strategy to take local interaction background into con-
sideration (9):

where 2p + 1 and 2w + 1 are the two square-window
sizes centered at (i, j ) with p = 1 and w = 3. Then the
corresponding weight is defined as w∗

i j = fi j/E∗
i j

. Finally, all

weights in the TAD Ds
l = [bs

l , bs
l+1] are normalized by using

a piecewise function:

Wi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, w∗
i j ≥ wu

0.5 · w∗
i j −1

wu−1 + 0.5, 1 ≤ w∗
i j < wu

0.5 · w∗
i j −wl

1−wl
, wl < w∗

i j < 1
0, 0 < w∗

i j ≤ wl

, (3)

where, wu and wl are the 99 percentile and 1 percentile re-
spectively to reduce the impact of outliers. If w∗

i j = 1 in
Equation 3, the corresponding weight is set to 0.5. The same
value (0.5) is set to the chromatin interactions within bot-
tom domains to avoid their over impacts on objective func-
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tion since Ai (k) in bottom domains are generally large due
to very high interaction frequencies. The chromatin inter-
actions with fi j = 0 are excluded from weight calculation
and objective function.

Under the objective function defined in Equation 2, TAD
detection is transformed into searching the solution with
maximum value. Then a recursive formula is used to solve
this optimization problem. Specifically, for the first bottom
domain d1, the objective function is calculated by:

R1 = 1
2

(b2 − b1)
(

ĀUD1 + ĀLD1

)
,

where D1 represents the set of all kinds of TAD selections
on domain d1 in the first step, and UD1 and LD1 are the cor-
responding upper-triangle and lower-triangle regions de-
fined previously. Actually, the start domain d1 can only be
an independent TAD or merged with consecutive down-
stream bottom domains (Supplementary Figure S4a). The
set of TAD selections on domain d1 in the initial step is used
in next step. In step l on domain dl , the objective function
is calculated:

Rl =
{ 1

2 (bl+1 − bl )
(

ĀUDl + ĀLDl

) + max (Rl−1) , Dl ∈ S (I)
1
2 (bl+1 − bl )

(
ĀUDl + ĀLDl

) + Rl−1, Dl ∈ S (I I)
,

where S(I) and S(II) represent two subsets for domain dl .
In subset S(I), domain dl is independent on the candidate
TADs generated in previous steps, whereas in subset S(II),
dl has already been contained in previous steps and should
be re-evaluated (Supplementary Figure S4b). The ultimate
goal is to find the boundary subset Bs to maximize objec-
tive function Rn−1, which can be written as max

Bs
Rn−1. To

fasten the calculation, the maximum TAD size is limited to
4 Mb in the aforementioned search procedure in this work.
However, different selections on TAD-size limitation only
slightly influence the accuracy of TAD detection (Supple-
mentary Table S5).

The sub-TADs in each TAD Dl are detected by using
the same procedure as TAD detection except that the in-
put boundary set is replaced by the boundary subset BDl =
{bk|bl−1 ≤ bk ≤ bl , bk ∈ B}, where bl−1 and bl are the up-
stream and downstream boundaries of TAD Dl respectively.
The subsequent level domains in each sub-TAD are de-
tected in the similar way until bottom domains are met. Fi-
nally, the TADs and other domains reproducible from two
replicates are maintained to form hierarchical TADs. The
reproducibility is calculated by using following alignment
strategy.

Domain and boundary alignment

Traditionally, domain and boundary are aligned by match-
ing boundaries with nearest genomic positions between two
Hi-C datasets. This strategy generally assigns a threshold in
advance, but neglects the usage of domain themselves. To
facilitate the domain and boundary matching for hierarchi-
cal TADs, a domain-based alignment strategy is proposed
in this work by considering all domains in the same time.

Specifically, let B1 = {b1
1, b1

2, · · · , b1
m} and B2 =

{b2
1, b2

2, · · · , b2
n} denote two boundary sets. For chro-

matin region d1
i = [b1

p, b1
q ] (q > p) in set B1 and chromatin

region d2
j = [b2

u, b2
v] (v > u) in set B2, let (b1, b2, b3, b4)

represent the ascending order of corresponding genomic
positions (b1

p, b1
q , b2

u, b2
v). The overlap ratio between these

two regions is defined as:

OR
(
d1

i , d2
j

) =
{

0, b1
q = b2 or b2

v = b2
b3−b2
b4−b1

, b1
q �= b2 and b2

v �= b2
.

Correspondingly, for region d1
i in set B1, the best map-

ping in set B2 is defined as d2
i ′ satisfying OR (d1

i , d2
i ′) =

max
d2

k

{OR(d1
i , d2

k )}, where d2
k represents any chromatin re-

gion in set B2. This directional mapping is denoted as
{d1

i } → {d2
i ′ }. The reverse mapping {d2

j } → {d1
j ′ } from set

B2 to set B1 can be defined in the same way. If d2
j = d2

i ′

and d1
i = d1

j ′ , then chromatin regions d1
i and d2

j are defined
as bidirectional mapping, i.e. {d1

i } ↔ {d2
j }. When perform-

ing alignment, the selected bottom domain in one bound-
ary set can be mapped to a chromatin region composed
of several consecutive bottom domains in another bound-
ary set. By integrating the two directional mappings, the
consecutive bottom domains in the same boundary set are
combined to form the combinatorial bidirectional map-
ping. As shown in Supplementary Figure S5, there are
three bottom domains {d1

i , d1
i+1, d1

i+2} and {d2
j , d2

j+1, d2
j+2}

in boundary set B1 and set B2 respectively. According to
the mapping definition, the domain mapping from set B1 to
set B2 is {d1

i } → {d2
j , d2

j+1}, {d1
i+1} → {d2

j+1} and {d1
i+2} →

{d2
j+2}, and the reverse mapping is {d2

j } → {d1
i }, {d2

j+1} →
{d1

i , d1
i+1} and {d1

j+2} → {d2
i+2}. Combing these two di-

rectional mappings yields the combinatorial bidirectional
mapping: {d1

i , d1
i+1} ↔ {d2

j , d2
j+1} and {d1

i+2} ↔ {d2
j+2}.

The hierarchical TAD alignment is based on the map-
ping strategy defined above. First, bidirectional mapping
is performed for all bottom domains in two boundary sets
B1 and B2, including the combinatorial bidirectional map-
ping. Second, for each chromosome, starting from the first
TAD in the domain set D1 generated from boundary set
B1, the bottom domains of current TAD are extracted and
bidirectional mapping is searched in the other domain set
D2 generated from boundary set B2. If not all bottom do-
mains are bidirectionally mapped, the TAD and its down-
stream TAD are merged to search bidirectional mapping
again. This TAD merging and mapping iteration is repeated
until bidirectional mapping is achieved. Then the hierarchi-
cal levels of mapped bottom domains in domain set D2 are
extracted and recorded for corresponding TADs in domain
set D1. All level sub-domains in current TAD or merged
TADs are extracted and the same mapping procedure is per-
formed. Third, the next TAD without performing mapping
is selected as a new start to repeat above procedure until
all TADs in the selected chromosome undergo hierarchical
mapping, including all level sub-domains. Fourth, the next
chromosome is selected to perform the same hierarchical
mapping until all chromosomes are done.

Other calculations in HiTAD analysis

In method comparison, the hierarchical TAD detection in
TADtree is performed by using recommended parameters.
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Reproducibility is defined as the number of reproducible
domains dividing the maximum domain number in two
replicates. Conservation ratio between two cell types is de-
fined in the similar way by using the domain numbers in two
cell types to replace those in two replicates. In method eval-
uation, the random hierarchical TADs are generated by us-
ing the following iterative shuffling procedure. To preserve
original hierarchies, the TAD sizes and corresponding sub-
domain sizes are recorded for each chromosome. The TAD
positions are shuffled according to the recorded TAD sizes
in each chromosome, and then the sub-TAD positions are
shuffled in each TAD according to the recorded sub-TAD
sizes. The above shuffling is repeated until no hierarchical
levels are recorded in the original hierarchical TADs. As for
boundary analysis, the enrichments of epigenomic peaks,
CTCF peaks and CTCF motifs are calculated by follow-
ing previous works (11,36) and the compartments are cal-
culated at 200 Kb resolution by using package hiclib (32).

RESULTS

Method comparison

To investigate the performance of HiTAD, we first com-
pared HiTAD to two other methods with available soft-
ware, Arrowhead implemented in Juicer (37) and TADtree
(24). Matryoshka and the network modularity based
method were excluded from comparisons due to software-
installation difficulty and code unavailability respectively.
The methods CaTCH (25) and HBM (26) were excluded
since they do not explicitly point out TAD positions. The
methods for traditional domains, such as DI based HMM
(11), HiCseg (38), TopDom (39), TADbit (bioRxiv https:
//doi.org/10.1101/036764), HiCExplorer (bioRxiv https://
doi.org/10.1101/115063), Armatus (27), spectral method
(28), MrTADFinder and IC-Finder (29), were also excluded
since they don not explicitly detect or automatically output
hierarchical TADs. The selected methods were applied to
both traditional and in situ Hi-C datasets under 40 kb reso-
lution since it is pretty hard for TADtree to be run at higher
resolutions. To simplify the statement, traditional and in
situ Hi-C datasets are denoted by different suffixes, such as
GM12878-T and GM12878-I respectively. To clarify hierar-
chical levels, TAD is denoted as level 0, sub-TAD is denoted
as level 1 and subsequent domain level is denoted as level 2,
etc.

HiTAD outperforms the other two methods in domain
sensitivity, replicate reproducibility and inter cell-type con-
servation (Figure 2). HiTAD detects more domains in all
levels for both in situ and traditional Hi-C datasets, espe-
cially in level 0, level 1 and level 2 domains (Figure 2A).
This sensitivity improvement mainly arises from the fact
that HiTAD successfully detects domains in more chro-
matin regions compared to the other two methods (Supple-
mentary Figure S6a). Besides, the different domain size dis-
tributions can also contribute to differences in domain num-
bers. Generally, the domain sizes from HiTAD are smaller
than those from Arrowhead but larger than or comparable
to those from TADtree (Supplementary Figure S6b). Next
GM12878-I and GM12878-T with four biological replicates
available (Supplementary Table S1) were selected to evalu-
ate reproducibility since HiTAD generally needs two repli-

cates to detect hierarchical TADs. The four replicates were
divided into two groups to independently generate two sets
of hierarchical TADs for HiTAD. As for the other two
methods, the two replicates in the same group were merged
in hierarchical TAD detection. Our calculation shows that
HiTAD outperforms the other two methods in the replicate
reproducibility in all hierarchical levels on both GM12878-
I and GM12878-T (Figure 2B). Similarly, the hierarchical
TADs detected by HiTAD are more conserved across cell
types than those detected by the other two methods in level
0, level 1 and level 2 domains (Figure 2C).

Finally, it should be noted that the metrics used in this
work just reflect parts of algorithmic performance. Gener-
ally, higher domain number and chromatin coverage could
only indicate better sensitivity, reproducibility is an impor-
tant aspect of algorithms, and conservation ratio reflects
the biological aspect of hierarchical TADs. We think these
metrics together can reflect the algorithmic performance in
hierarchical TAD detection, but they are not necessarily
equal to algorithmic accuracy. However, there is currently
no golden standard to evaluate the accuracy of hierarchical
TADs. Compared to traditional TADs, it is more difficult to
evaluate hierarchical TADs since this evaluation contains
both chromatin domains and the hierarchies (Supplemen-
tary Figure S7). Better metrics or standards may be devel-
oped in the future.

Method evaluation

To obtain better details, hierarchical TADs were detected
at 20 kb resolution for in situ Hi-C datasets in the following
analyses. Since the numbers of level 2 and level 3 domains
were quite limited, these domains were combined in next
calculations. The shared boundary among different level
domains was classified as lower-level boundary.

We first evaluated HiTAD by measuring the insulation ef-
fects of detected hierarchical boundaries. Two histone mod-
ifications, H3K36me3 and H3K27me3, were selected to rep-
resent active and inactive signals. The boundary insula-
tion was calculated by following a previous procedure (9).
Briefly, in each level of hierarchical TADs, every domain
was divided into 10 bins, and the strength of histone mod-
ification was recorded for every bin. Then an N × 20 ma-
trix was generated, where 20 columns represent the signal
strengths of two consecutive domains and rows represent
all possible consecutive domains. The correlations of the
columns of this matrix reflect how the epigenomic signals
in any two bins are correlated. Our calculations show that
the signals in the same domain are highly correlated to each
other, but the signal correlations between two consecutive
domains are sharply separated in the boundaries (Figure
3A and Supplementary Figure S8). Furthermore, the lower
level boundaries exhibit stronger insulation effects. As for
the controls generated from random shuffling, there are no
such sharp separations in the boundaries. These results to-
gether indicate that the detected hierarchical boundaries, es-
pecially the level 0 and level 1 boundaries, exhibit insulation
effects.

We next performed enrichment analysis on different
level boundaries. Two histone modifications, H3K4me3 and
H3K4me1, were selected to represent promoters and en-

https://doi.org/10.1101/036764
https://doi.org/10.1101/115063


PAGE 7 OF 14 Nucleic Acids Research, 2017, Vol. 45, No. 19 e163

Figure 2. Performance comparison. Three methods, Arrowhead, TADtree and HiTAD, are included to perform comparisons. The left and right figures
illustrate the results calculated from in situ and traditional Hi-C datasets respectively. (A) Domain number. (B) Replicate reproducibility. (C) Inter cell-type
conservation.

hancers respectively. The key architectural protein CTCF
was also included since this protein plays an important role
in shaping chromatin domains (40). The calculated results
show that different level boundaries are enriched in pro-
moter signal H3K4me3 and CTCF binding sites but are
a little depleted in enhancer signal H3K4me1 (Figure 3B
and Supplementary Figure S9a), consistent with traditional
TAD analysis (9,11). However, higher level boundaries gen-
erally show lower signals in both boundaries and near-
by background regions. It was reported that the divergent
CTCF motifs shaped the domain boundaries (9,36,41–43),
so we further analyzed the composition of CTCF motif di-

rections in these binding sites. The result shows that differ-
ent level boundaries are enriched in divergent CTCF motifs
in overall (Figure 3C and Supplementary Figure S9b), but
the higher-level boundaries show lower densities on both
total and divergent CTCF motifs. The results from histone
modifications, CTCF binding sites and motif direction to-
gether indicate that almost all level boundaries show simi-
larities with traditional TAD boundaries, but different level
boundaries exhibit different signal strengths. These signal
differences may partially explain the insulation differences
among hierarchical boundaries. However, the limited do-
main numbers and relatively low reproducibility of higher
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Figure 3. HiTAD evaluation by insulation effects and signal enrichments. (A) Boundary insulation measured by signal correlations. There are 20 bins
in each heatmap, in which the first and second 10 bins represent two consecutive domains respectively. The left two heatmaps are calculated from active
signal H3K36me3, while the right two heatmaps are calculated from inactive signal H3K27me3. (B) Signal enrichment in different level boundaries. Three
representative signals are shown, including H3K4me3, H3K4me1 and CTCF peaks. (C) Enrichment of directional CTCF motifs. The divergent CTCF
motifs on boundaries are composed of minus-strand CTCF motifs in upstream regions and plus-strand CTCF motifs in downstream regions.

level domains can influence the reliable analysis on bound-
ary enrichments, and thorough works are needed to further
investigate their functional characteristics in the future.

Boundary-level analysis on structural and functional proper-
ties of hierarchical TADs

Due to limited domain numbers, level 2 and level 3 do-
mains were excluded from calculations in this and follow-
ing sections to simplify analysis. The shared boundaries be-
tween TADs (level 0 domains) and sub-TADs (level 1 do-
mains) were classified as TAD boundaries. When compar-

ing two cell types, TAD boundaries and sub-TAD bound-
aries undergo different structural changes, including con-
served TAD boundary, conserved sub-TAD boundary, dis-
appeared TAD boundary, disappeared sub-TAD boundary
and TAD-to-sub-TAD boundary switch (Supplementary
Figure S10). Statistically, TAD boundaries exhibit quite
high inter cell-type conservation, whereas sub-TAD bound-
aries are quite dynamic across cell types (Figure 4A and
Supplementary Figure S11). Next, we extended traditional
analyses on compartment (44) and replication timing (15)
to investigate the similarities and differences between TAD
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Figure 4. Structural and functional analysis on boundary-level changes. (A) The left and right pie charts illustrate the proportion of hierarchical boundary
changes by using IMR90-I and K562-I as references respectively. The total boundary number is presented in the bracket for each cell type. (B) The top figure
illustrates the enrichment difference between TAD boundaries and sub-TAD boundaries in the same cell type (intra cell-type comparison). The medium
and bottom figures illustrate the relationship between hierarchical boundary changes and compartment boundary changes across cell types (inter cell-type
comparison). The x-axis denotes the genomic distance to compartment boundaries, and the y-axis denotes the probability density. (C) The enrichments on
replication timing boundaries are presented in the same way as compartment boundaries, except that the replication timing transitions are included in each
sub-figure. The x-axis denotes the genomic distance to replication timing boundaries. The left y-axis denotes the probability density of domain boundary
enrichment, and the right y-axis denotes the replicating timing.
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boundaries and sub-TAD boundaries by using both intra
cell-type and inter cell-type comparisons. The presented re-
sults are mainly calculated from IMR90-I and K562-I since
there are replication timing data in human cell types IMR90
and K562.

TAD boundaries but not sub-TAD boundaries mainly
separate higher-order chromosomal compartments.
Lieberman-Aiden et al. proposed A-B (active-inactive)
compartments in original Hi-C work (6), so we performed
enrichment analysis on these compartment boundaries.
Figure 4B illustrates that the A-B compartment boundaries
are enriched in TAD boundaries but depleted in sub-TAD
boundaries when performing intra cell-type analyses on
IMR90-I and K562-I independently. As for inter cell-
type comparisons, different change types were analyzed
separately. The trends in conserved TAD and sub-TAD
boundaries are the same as those from intra cell-type anal-
ysis. If TAD boundaries switch to sub-TAD boundaries
from one cell type to the other, the enrichment-to-depletion
switch is also observed simultaneously. Similarly, if TAD
boundaries disappear in the other cell type, the enrichment
on compartment boundaries also disappears. In the case of
sub-TAD disappearance, the stronger depletion is observed
in the corresponding cell type (Figure 4B and Supplemen-
tary Figure S12a). The same phenomena are observed in
other inter cell-type comparisons (Supplementary Figure
S13). These results together suggest that the changes of
compartment boundaries are mainly accompanied with the
changes of TAD boundaries across cell types. Combining
intra cell-type and inter cell-type analyses, we can conclude
that the TAD but not sub-TAD boundaries are mainly
involved in correlating higher-order compartment.

TAD boundaries but not sub-TAD boundaries mainly
separate replication timing domains. Similar to compart-
ment boundaries, replication timing boundaries are en-
riched in TAD boundaries but depleted a little in sub-TAD
boundaries in both IMR90 and K562 independently (Fig-
ure 4C). As for inter cell-type comparisons, the conserved
TAD boundaries are enriched in replication timing bound-
aries, and the conserved sub-TAD boundaries in overall are
depleted in replication timing boundaries. If TAD bound-
aries in IMR90-I switch to sub-TAD boundaries or even
disappear in K562-I, the enrichments disappear simultane-
ously. No enrichment is observed in the case of sub-TAD
boundary disappearance (Figure 4C and Supplementary
Figure S12b). In summary, the changes of replication timing
boundaries are also mainly accompanied with the changes
of TAD boundaries across cell types, indicating the differ-
ence between TAD and sub-TAD boundaries in correlating
the replication timing boundaries.

Domain-level analysis on structural and functional properties
of hierarchical TADs

We next investigated domain-level changes and correspond-
ing transcriptional associations for hierarchical TADs.
Compared to boundary-level change, the domain-level
change is more complicated since it covers wider chromatin
region and involves simultaneous changes of several bound-
aries. Through different inter cell-type comparisons, we ob-
served several types of domain-level changes for hierar-

chical TADs, which are defined as conserved TAD, semi-
conserved TAD, merged TAD, split TAD and undefined
TAD in this work. Conserved TAD is conserved completely
in all hierarchical levels, while semi-conserved TAD is con-
served in TAD level but dynamic in sub-TAD level. These
two cases together represent traditional TAD conservation
across cell types. Merged TAD represents the situation that
two or more TADs are merged to form a new TAD from
one cell type to another cell type, while split TAD repre-
sents the reverse situation. The undefined TAD denotes the
other TAD change with no clear definition in this work.
Similar to TAD change, the semi-conserved TAD can be
further classified as merged sub-TAD, split sub-TAD and
undefined sub-TAD (Supplementary Figure S14).

By using IMR90-I as reference, 33.5% TADs are totally
conserved and 11.8% TADs are semi-conserved when com-
paring IMR90-I to K562-I (Figure 5A). Interestingly, the
undefined sub-TAD change is not observed in this com-
parison, and only very few cases are observed in other in-
ter cell-type comparisons in this work (Supplementary Fig-
ure S15). These consistent results indicate that most sub-
TAD changes in semi-conserved TADs only involve sub-
TAD mergence or sub-TAD split without complicated com-
binations. As for TAD-level change, around 31.7% and
8.6% TADs show TAD mergence and split respectively, and
the rest 14.4% TADs undergo complicated domain-level
changes in IMR90-I (Figure 5A). Similar trends are ob-
served in K562-I (Figure 5A) and other inter cell-type com-
parisons (Supplementary Figure S15).

We next investigated the relationship between domain
changes and gene expressions. The undefined sub-TADs
and undefined TADs were excluded from calculation since
there are no consistent domain changes in these two cases.
Compared to conserved TADs, the sub-TAD mergence and
split in semi-conserved TADs exhibit transcriptional upreg-
ulation and downregulation respectively. The similar trends
are observed in TAD mergence and split (Figure 5B and
Supplementary Figure S16). To further reveal the func-
tional roles of TAD mergence and split, we analyzed the
gene expression changes on two consecutive TADs jointly
by using following procedure. First, each TAD was sepa-
rated into 100 bins and the total RNA expression in each
bin was normalized by corresponding bin size. Second, the
RNA expressions on 100 bins were summed and averaged
in each TAD of two consecutive TADs. Then the one with
lower average RNA expression was classified as inactive
TAD, and the other one was classified as active TAD. Third,
the average RNA expression in each bin was calculated by
using all inactive TADs or active TADs respectively. Figure
5C illustrates the calculated results for TAD mergence. Intu-
itively, the transcriptional gap between inactive TADs and
active TADs is quite large in the original cell type IMR90,
but this gap is shrunk after the TAD mergence in cell type
K562. To better show the differences, the 100 average RNA
expression values in the two kinds of TADs were separately
presented by using box plots. Figure 5D clearly illustrates
the significant upregulation and downregulation in the orig-
inally inactive and active TADs respectively. The reverse ef-
fect is observed in TAD split (Figure 5E and F). The same
regulatory effects are also observed in other inter cell-type
comparisons (Supplementary Figure S17). These converged
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Figure 5. Structural and functional analysis on domain-level changes. (A) The left and right pie charts illustrate the proportion of hierarchical domain
changes by using IMR90-I and K562-I as references respectively. The total TAD number is presented in the bracket for each cell type. (B) The transcriptional
fold changes are presented separately for different domain changes when comparing K562 to IMR90. (C) The averaged RNA expressions on merged TADs
are presented in the order of inactive to active TADs. Merged TAD represents that the two consecutive TADs in IMR90 are merged to be a new TAD
in K562. BPKM: bases per kilobase per million mapped bases. (D) Box plots of average RNA expressions on merged TADs illustrate the transcriptional
changes between cell types. The box plots in the left and right figures are calculated from the 100 bins in inactive and active TADs respectively. The Mann–
Whitney U test was used to calculate P-values (*P < 0.05, **P < 1e-3 and ***P < 1e-5). (E) The averaged RNA expressions on split TADs are presented in
the same order as merged TADs. Split TAD represents that a TAD in IMR90 are split into two consecutive TADs in K562. (F) Box plots of average RNA
expressions on split TADs illustrate the transcriptional changes between cell types, in the same way as merged TADs.

results suggest the role of TAD mergence in shrinking the
transcriptional gap between two consecutive TADs. With
respect to sub-TAD mergence and split, we did not observe
completely consistent patterns in all inter cell-type com-
parisons (Supplementary Figure S18). Thorough works are
needed to further clarify the transcriptional difference be-
tween TAD mergence and sub-TAD mergence in the future.

DISCUSSION

A current question in the field of hierarchical chromatin do-
main is whether TADs are structurally and functionally dis-
tinct from sub-TADs and other domains. Since traditional
TAD definition is a little ambiguous, Dixon et al. recently

attempted to define TAD to be stable through cell divisions
and conserved through cell lineages (45). As discussed in
a recent paper (46), this definition is hard to implement
computationally. However, by utilizing only chromatin in-
teractions in one cell type, HiTAD detects TADs and cor-
responding hierarchical domains with pretty high replicate
reproducibility and inter cell-type conservation, partially
satisfying the TAD definition through biological processes.
The detected hierarchical TADs are also evaluated by in-
sulation effects as well as signal enrichments. In summary,
our work suggests that the refinement of TAD definition, in-
cluding hierarchical structure and biological function, can
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be achieved by only analyzing high-quality chromatin inter-
actions, at least in part.

HiTAD adopts some strategies different from tradi-
tional methods. First, except the local insulations used
by traditional methods, HiTAD also utilizes global intra-
chromosomal interactions by constraining TADs to the best
separation on individual chromosomes. In other words, the
TAD detection in HiTAD attempts to make use of the ad-
vantages of local and global intra-chromosomal interac-
tions in a concerted way. Second, biological replicates are
used to generate final hierarchical TADs in our method.
The advantage of this strategy is that flexible methods can
be used to generate sufficient bottom domains and corre-
sponding hierarchies for every replicate, instead of consid-
ering the high variations of chromatin interactions in the
initial start. Though the usage of replicate reproducibility
can improve the accuracy and reliability from highly vari-
ant data, it does not mean that the obtained boundaries
and domains are reproducible in all replicates. This is be-
cause two replicates cannot represent all cases in the pop-
ulation. In addition, the replicate reproducibility requires
the comparable data quality from two replicates. Otherwise,
the low quality data will dominate the final results over the
high quality data. In this case, we suggest that the results
from high quality data or merged data should be used. How-
ever, it is not difficult currently to generate Hi-C data with
enough quality for HiTAD due to the improvement of se-
quencing technology and the reduction of sequencing cost.
Third, compared to traditional boundary-based alignment,
domain-based alignment in our method adaptively matches
the domains and boundaries by eliminating the choice of
distance threshold between the two aligned boundaries. The
domain-based alignment also allows unmatched domains
and boundaries automatically.

The change types of hierarchical TADs defined in this
work can pave the way for further studies on chromoso-
mal structures and functions. In this work, we defined sev-
eral inter cell-type changes on boundaries and domains re-
spectively for hierarchical TADs and explored their struc-
tural and functional roles for the first time. Compared
to boundary-level change, the domain-level change gen-
erally covers wider chromatin region and involves several
boundaries. For transcriptional regulation, we used a sim-
ple method to investigate the domain-level relationship be-
tween hierarchical TADs and gene expressions. But for the
chromosomal compartment and replication timing domain,
their inter cell-type changes also involve several boundaries.
In this way, the domain-level analysis will meet the combi-
natorial problem when simultaneously comparing several
boundaries, so the boundary-level enrichments were per-
formed on chromosomal compartment and replication tim-
ing by following previous works (15,44) to simplify analy-
sis. In addition, both boundary-level and domain-level anal-
yses were simplified by only considering two levels, TAD
and sub-TAD. More complicated structural changes can be
observed if taking more hierarchical levels into consider-
ation, but it will be more difficult to depict their biologi-
cal functions, especially with the limited number of higher
level boundaries and domains. In spite of simplified anal-
yses, we still revealed the structural and functional differ-
ences between TADs and sub-TADs by using these hierar-

chical TAD changes. Since these phenomena are quite com-
mon in different inter cell-type comparisons, it is quite pos-
sible that these analyses can be applied to other mammalian
cell types not covered in this work.

TAD and sub-TAD differ in correlating chromosomal
compartment and replication timing. In the chromosomal
structure, the TAD boundaries but not sub-TAD bound-
aries mainly correlate the chromosomal compartments. As
for the replication timing domain, the same trend is ob-
served. These together argue that TADs are the main struc-
tural units in linking higher-order chromosomal organiza-
tion and replication timing. However, this does not neces-
sarily mean that sub-TADs have no effect. The identifica-
tion resolution of compartment is relatively low due to se-
quencing depth, making subtle comparisons difficult. Sub-
compartment was recently proposed through extremely
deep sequencing, but it is hard to perform reliable anal-
ysis on sub-compartment due to the limited data involv-
ing only one cell type GM12878 (9). The analysis on repli-
cation timing domains also meets the resolution problem.
The sub-domains of replication timing, like sub-TADs, may
be observed in the future with technology development.
The structural and functional differences between TAD and
sub-TADs need further investigation with better technolo-
gies and algorithms.

TAD and sub-TAD can separate regulatory activity but
with different insulation effect. TAD boundaries generally
show stronger insulations than sub-TAD boundaries. And
the transcriptional association of TAD mergence/split is a
little different from that of sub-TAD mergence/split when
performing domain-level comparisons. Combining the fact
that TAD is more stable than sub-TAD across cell types,
these results argue that TAD may insulate the global gene
regulation in a relatively stable way and sub-TAD further
facilitates local gene regulation in a dynamic way, consis-
tent with previous work (22). With regard to the potential
mechanism underlying hierarchical TADs, TAD and sub-
TAD boundaries share similar trends in CTCF binding sites
and divergent motifs, but with different density. This may
partially explain the differences in insulation and stability
between TAD boundaries and sub-TAD boundaries. How-
ever, recent research showed that transcription could con-
tribute to the formation of chromatin domains by helping
position another key architectural protein complex, cohe-
sion (47). Further studies are needed to clarify the detailed
relationship among transcription, CTCF binding and hier-
archical TAD.

Finally, our method performs well in detecting TADs and
sub-TADs, but it is less sensitive to detect higher level do-
mains, especially level ≥3 domains. Figure 2 illustrates that
it is currently difficult to sensitively and reproducibly detect
higher level domains. This is because the chromatin inter-
actions are highly variable around the boundary regions of
these small domains. In HiTAD, the locally high variations
and the small window sizes together can make the adaptive
DIs fluctuate around candidate boundary regions, which
leads to the failure in domain reproducibility. Though this
strategy excludes irreproducible domains from two repli-
cates, the percentage of reproducible domains still decreases
in higher level domains when more than two replicates are
used to measure the reproducibility (Figure 2B). In the fu-
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ture, better methods can be utilized or developed to balance
the sensitivity and reproducibility in detecting higher level
domains.

CONCLUSION

In this work, we developed a novel method HiTAD to detect
hierarchical TADs from Hi-C chromatin interactions by
further constraining TAD to optimal chromatin interaction
separation in chromosomal level. HiTAD performs well in
domain sensitivity, replicate reproducibility and inter-cell-
type conservation. We evaluated the detected hierarchical
TADs by calculating insulation effects and signal enrich-
ments on different level boundaries. By defining boundary-
level and domain-level changes for hierarchical TADs, we
systematically investigated the structural and functional dif-
ferences between TADs and sub-TADs. The intra cell-type
and inter cell-type analyses together revealed that TADs
and sub-TADs differed in correlating higher-order com-
partment, replication timing and transcriptional regulation.
With better technology and algorithm, the structural and
functional characteristics of hierarchical TADs can be fur-
ther explored in the near future.
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