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ABSTRACT The gp41 membrane-proximal external region (MPER) is a target for
broadly neutralizing antibody responses against human immunodeficiency virus type
1 (HIV-1). However, replication-defective virus vaccines currently under evaluation in
clinical trials do not efficiently elicit MPER-specific antibodies. Structural modeling
suggests that the MPER forms an �-helical coiled coil that is required for function
and immunogenicity. To maintain the native MPER conformation, we used reverse
genetics to engineer replication-competent reovirus vectors that displayed MPER se-
quences in the �-helical coiled-coil tail domain of viral attachment protein �1. Se-
quences in reovirus strain type 1 Lang (T1L) �1 were exchanged with sequences en-
coding HIV-1 strain Ba-L MPER epitope 2F5 or the entire MPER. Individual 2F5 or
MPER substitutions were introduced at virion-proximal or virion-distal sites in the �1
tail. Recombinant reoviruses containing heterologous HIV-1 sequences were viable
and produced progeny yields comparable to those with wild-type virus. HIV-1 se-
quences were retained following 10 serial passages in cell culture, indicating that
the substitutions were genetically stable. Recombinant viruses engineered to display
the 2F5 epitope or full-length MPER in �1 were recognized by purified 2F5 antibody.
Inoculation of mice with 2F5-containing vectors or rabbits with 2F5- or MPER-
containing vectors elicited anti-reovirus antibodies, but HIV-1-specific antibodies
were not detected. Together, these findings indicate that heterologous sequences
that form �-helices can functionally replace native sequences in the �-helical tail do-
main of reovirus attachment protein �1. However, although these vectors retain na-
tive antigenicity, they were not immunogenic, illustrating the difficulty of experi-
mentally inducing immune responses to this essential region of HIV-1.

IMPORTANCE Vaccines to protect against HIV-1, the causative agent of AIDS, are
not approved for use. Antibodies that neutralize genetically diverse strains of HIV-1
bind to discrete regions of the envelope glycoproteins, including the gp41 MPER.
We engineered recombinant reoviruses that displayed MPER epitopes in attachment
protein �1 (REO-MPER vectors). The REO-MPER vectors replicated with wild-type effi-
ciency, were genetically stable, and retained native antigenicity. However, we did
not detect HIV-1-specific immune responses following inoculation of the REO-MPER
vectors into small animals. This work provides proof of principle for engineering reo-
virus to express antigenic epitopes and illustrates the difficulty in eliciting MPER-
specific immune responses.
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Despite tremendous strides in understanding human immunodeficiency virus type
1 (HIV-1) pathobiology since its discovery in 1983, an efficacious HIV-1 vaccine

remains elusive. With an estimated 7,000 to 8,000 new infections occurring each day,
an HIV-1 vaccine is our best hope for significantly reducing the global health burden
attributable to HIV-1 (http://www.unaids.org). However, FDA-approved vaccines for
HIV-1 are not available.

Some HIV-1-infected persons produce monoclonal antibodies (MAbs) that neutralize
diverse strains of HIV-1 (i.e., broadly neutralizing). These MAbs bind epitopes in the
gp120 surface glycoprotein or gp41 transmembrane glycoprotein (1–6). Those that
bind the gp41 membrane-proximal external region (MPER) can potently neutralize a
wide spectrum of HIV-1 primary isolates, including strains in clades B and C (2, 7–9). Of
three such MPER-specific MAbs, 2F5 and 4E10 bind to adjacent MPER epitopes and Z13
binds to an epitope overlapping the 2F5 and 4E10 binding sites (Fig. 1A) (8).

MPER sequences are conserved across HIV-1 subtypes (7, 8) and mediate an essential
function in HIV-1 cell entry (8, 10). Following the sequential binding of gp120 to CD4
and a chemokine coreceptor, gp41 undergoes a series of conformational changes that
result in fusion of the viral envelope and cell membrane (8). The ectodomain of gp41
is composed of a fusion peptide, an N-terminal heptad repeat (NHR), a C-terminal
heptad repeat (CHR), and the MPER. Structural modeling suggests that the NHR, CHR,
and MPER form �-helical coiled-coils that are required for function and immunogenicity
(Fig. 1A) (8).

Three lines of evidence support a role for MPER-specific antibody responses in
defense against HIV-1 infection. First, rates of mother-to-child transmission correlate
inversely with reactivity of maternal sera against peptides corresponding to the MPER
and C-terminal heptad repeat of gp41 (11–13). Second, MPER 2F5 epitope-specific IgA
derived from colostral and cervico-vaginal secretions of HIV-infected women prevents
transcytosis of HIV-1 across epithelial barriers in vitro (14). Third, passive immunization
of nonhuman primates with MPER-specific MAbs isolated from HIV-1 subtype
B-infected individuals, including 2F5 and 4E10, protects against infection or disease
progression following simian-human immunodeficiency virus challenge (15–17). De-
spite these findings, a vaccine that induces protective MPER-specific antibody re-
sponses in experimental animals has not been developed.

Mammalian orthoreovirus (reovirus) forms nonenveloped icosahedral particles com-
posed of two protein shells (18) that enclose 10 segments of double-stranded RNA
(dsRNA) (19). The outer capsid contains four structural proteins, �1, �3, �1, and �2. The
�1 protein is anchored into pentameric �2 turrets at the capsid vertices (18) and
mediates reovirus attachment to target cells (20, 21). Virtually all mammals, including
humans, can be infected with reovirus, but disease is restricted to the very young (22).
Infection with reovirus is common, as the majority of adults have detectable reovirus-
specific immune responses (23–25).

Reovirus attachment protein �1 is a filamentous trimer that is ~480 Å in length
(Fig. 1B) (26–28). It has a modular organization with three tandemly arranged structural
regions: an N-terminal amphipathic �-helical coiled-coil tail (residues 1 to ~170), a triple
�-spiral body interrupted by a short �-helix region (residues ~170 to 309), and a
C-terminal globular head (residues 310 to 455) (28–30). Like other amphipathic
�-helices, the �-helical coiled coil in the �1 tail is formed by recurring sets of 7 amino
acids, called heptad repeats (31). There are 25 heptad repeats in the �-helical coiled-coil
region of strain type 1 Lang (T1L) �1, spanning amino acid residues 7 to 181 (29). The
MPER assumes an �-helical secondary structure (8) similar to that predicted for the �1
tail (27–29).

Viable reovirus can be recovered from cells expressing T7 polymerase following
transfection of plasmid cDNA copies of the viral gene segments under transcriptional
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control of the T7 promoter (32, 33). Neither helper virus nor coexpression of viral
replication proteins is required. Plasmid-derived virus recapitulates properties of native
virus in all cell culture and in vivo models of reovirus infection studied to date. We have
used a reverse genetics system to introduce changes into viral capsid and replication
proteins to define roles of individual amino acids, functional domains, and structural
motifs in receptor utilization (30, 34–36), virion disassembly (32, 37, 38), membrane
penetration (39, 40), interferon induction (41–43), dsRNA synthesis (44–46), viral repli-
cation and spread in vivo (32, 47–50), and neurovirulence (39, 40, 51). Thus, the
technology exists to use reovirus as a replication-competent vaccine vector.

In this study, we recovered reovirus vectors in which �-helical regions in the �1 tail
were replaced with antigenic �-helical regions of the HIV-1 MPER (REO-MPER vectors).
REO-MPER vectors replicated comparably to wild-type virus, were genetically stable
following 10 cell culture passages, and retained the native MPER-specific MAb epitope.
However, the REO-MPER vectors did not elicit HIV-1-specific immune responses in mice
or rabbits. These findings indicate that reovirus can be engineered to serve as a vaccine
vector, and they provide another example of the challenge in raising MPER-specific
immune responses.

RESULTS
Generation of recombinant reoviruses displaying the 2F5 epitope in viral attach-
ment protein �1. Reovirus attachment protein �1 is partitioned into tail, body, and
head domains (28–30) (Fig. 1B). To test the hypothesis that �-helical coiled-coil se-
quences derived from other viruses can be inserted into structurally homologous
regions of the �1 tail and retain native immunogenicity, we replaced two heptad
repeats in �1 with two heptad repeats from the HIV-1 gp41 MPER (Fig. 1B). The MPER
sequences chosen for insertion contain the 2F5 epitope, which in the context of HIV-1
elicits broadly neutralizing antibody responses against HIV-1 (52–54). We replaced
nucleotides encoding amino acids 56 to 69 or 147 to 160 of strain T1L �1 with
sequences encoding residues 656 to 669 of gp160 (the precursor of gp41) from HIV-1

N CFP NHR CHR TM
512 856

656 683

gp41 ectodomain

656

MPER

656-NEQELLELDKWASLWNWFDITNWLWYIK-683
2F5 4E10

Z13

A

B

FIG 1 Structure of reovirus attachment protein �1. (A) Schematic of the HIV-1 gp41 ectodomain. The
gp41 ectodomain is comprised of a fusion peptide (FP), N-terminal heptad repeat (NHR), C-terminal
heptad repeat (CHR), and membrane-proximal external region (MPER) (8). The transmembrane region
also is indicated. MPER-specific 2F5, 4E10, and Z13 MAb epitopes are indicated. N- and C-terminal
boundaries are shown. Numbers represent amino acid positions. (B) A full-length depiction of �1,
generated by appending a predicted trimeric �-helical coiled coil to the amino terminus of the
largest available crystallized �1 fragment (30). The three monomers of the crystallized region are
shown in red, blue, and yellow; the model is shown in gray. Tail, body, and head regions are
indicated. N and C termini are shown. Insertion sites for 2F5 sequences are indicated in purple.
Insertion sites for whole MPER sequences are indicated in green.
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strain Ba-L (656-NEQELLELDKWASL-669) in a �1-encoding S1 gene plasmid vector. This
region spans the entire 2F5 core epitope (662-ELDKWASL-669). Resultant plasmids were
used to generate recombinant strain (rs) reoviruses via reverse genetics (32, 33).
2F5-expressing reoviruses rsT1L/�1 2F5-56 and rsT1L/�1 2F5-147 and wild-type rsT1L
were isolated from cell lysates by plaque purification using murine L cells and purified
using CsCl gradients. Insertion of the 2F5-encoding sequence into the viral genome was
confirmed by sequence analysis of viral dsRNA.

To determine whether the substituted 2F5 sequences affect replication of the
recombinant reoviruses, we quantified viral yields following infection of L cells (Fig. 2).
Progeny yields of rsT1L/�1 2F5-147 were comparable to those obtained for wild-type
rsT1L at 24 and 48 h postinfection. However, yields of rsT1L/�1 2F5-56 were markedly
reduced relative to rsT1L. Sequence alterations were not detected in the S1 gene of
either 2F5-containing virus following 10 serial passages in culture (data not shown).
Together, these data indicate that �-helical sequences in �1 can be replaced with
heterologous sequences that contain a similar secondary structure and that the sub-
stitutions are genetically stable.

To determine whether the 2F5 epitope is exposed on the surface of recombinant
reovirus particles, we used a fluorophore-linked immunosorbent assay (FLISA) to detect
the binding of MAb 2F5 to immobilized reovirus virions (Fig. 3). In these experiments,
MAb 2F5 bound to viruses with insertions at either site in the �1 �-helical coiled-coil
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FIG 2 Reoviruses that display the HIV-1 2F5 epitope in attachment protein �1 replicate efficiently
in cell culture. L cells were adsorbed with rsT1L, rsT1L �1/2F5-56, or rsT1L �1/2F5-147 at an MOI of
1 PFU/cell. Viral titers in cell lysates were determined by plaque assay at 0, 24, and 48 h postad-
sorption. Results are expressed as the mean viral yield for triplicate samples. Error bars indicate
standard deviations. *, P < 0.05 compared with rsT1L (Student’s t test).
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FIG 3 The 2F5 epitope is displayed by reovirus vectors encoding single 2F5 substitutions. Wells of FLISA plates
were coated with 1011 particles of rsT1L, rsT3D, rsT1L �1/2F5-56, or rsT1L �1/2F5-147 and incubated with a
T1L �1 head-specific polyclonal antiserum (A) or MAb 2F5 (B) at 37°C for 1 h. Antibody binding to the
immobilized virus was detected following incubation with fluorophore-conjugated donkey anti-human IgG.
FLISA signals were quantified using a LI-COR Odyssey infrared imaging system.
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domain but not to rsT1L. Both 2F5-expressing viruses also were detected by FLISA using
a T1L �1 head-specific antiserum (Fig. 3). These data indicate that the HIV-1 2F5 epitope
retains the native conformation in the context of the reovirus �1 protein.

Immunogenicity of REO-2F5 vectors. To determine whether the REO-2F5 vec-
tors elicit 2F5-specific humoral immune responses, we inoculated BALB/c mice perorally
with 107 PFU of rsT1L, rsT1L/�1 2F5-56, or rsT1L/�1 2F5-147. Booster doses were
administered 21 and 42 days following the initial immunization. Blood was collected on
the day of inoculation (day 0) and on days 14 and 70 postinoculation. Pre- and
postimmunization serum samples were tested for the presence of reovirus-specific and
2F5 peptide-specific antibodies by FLISA (Fig. 4). As anticipated, we detected significant
increases in reovirus-specific antibody titers from day 14 to day 70 in sera from mice
inoculated with wild-type virus and each REO-2F5 vector (Fig. 4A). Although sera from
mice inoculated with rsT1L/�1 2F5-56 or rsT1L/�1 2F5-147 displayed detectable bind-
ing to two 2F5-containing peptides (Fig. 4B and C), the levels were comparable to those
detected in sera from mice inoculated with rsT1L. Moreover, the 2F5 peptide binding
activity in sera of mice inoculated with rsT1L, rsT1L/�1 2F5-56, or rsT1L/�1 2F5-147 did
not exceed the levels of binding detected with the negative-control peptide (Fig. 4D).

We next tested whether the REO-2F5 vectors were capable of inducing 2F5-specific
humoral immune responses in rabbits, which represent a preferred small-animal model
for studies to evaluate induction of HIV-1-specific humoral immune responses (55).
Rabbits were inoculated perorally with 109 PFU of rsT1L or rsT1L/�1 2F5-147. Booster
doses were administered 21 and 42 days following the initial immunization. Blood was
collected on the day of inoculation (day 0) and on days 35 and 56 postinoculation. Due

0

5

10

15

Time post-immunization  (d)

rs
T1

L 
bi

nd
in

g
(R

ec
ip

ro
ca

l l
og

2)

0 14 70

rsT1L
rsT1L/ 1 2F5-56
rsT1L/ 1 2F5-147

0

5

10

15

Time post-immunization  (d)

Pe
pt

id
e 

bi
nd

in
g

(R
ec

ip
ro

ca
l l

og
2)

rsT1L
rsT1L/ 1 2F5-56
rsT1L/ 1 2F5-147

0 14 70

0

5

10

15

Time post-immunization  (d)

Pe
pt

id
e 

bi
nd

in
g

(R
ec

ip
ro

ca
l l

og
2)

0 14 70

rsT1L
rsT1L/ 1 2F5-56
rsT1L/ 1 2F5-147

0

5

10

15

Time post-immunization  (d)

Pe
pt

id
e 

bi
nd

in
g

(R
ec

ip
ro

ca
l l

og
2)

rsT1L
rsT1L/ 1 2F5-56
rsT1L/ 1 2F5-147

0 14 70

A B

C D

FIG 4 Induction of humoral immune responses in mice by REO-2F5 vectors. Six-week-old, reovirus-seronegative BALB/c mice were
inoculated perorally with 107 PFU of rsT1L, rsT1L/�1 2F5-56, or rsT1L/�1 2F5-147 (n � 3 to 5 mice per group). Blood was collected
on day 0 (preinoculation) and on days 14 and 70 (postinoculation). Serial 4-fold dilutions of sera were tested for reovirus-specific
antibodies using wells coated with rsT1L (A) or 2F5-specific antibodies using wells coated with three different 2F5-containing
peptides (8926, 8927, or 8888) (B, C, and D) by FLISA. FLISA signals were quantified using a LI-COR Odyssey infrared imaging system
and are expressed as the log2 mean reciprocal antibody titers relative to day 0 results. Error bars indicate standard deviations.
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to high levels of background binding of rabbit sera to 2F5 and control peptides, we
tested pre- and postimmunization serum samples for the capacity to neutralize reovirus
and HIV-1 (Fig. 5). Preimmunization samples were negative for reovirus-neutralizing
antibodies. However, at day 35 postimmunization, all rabbits had detectable reovirus-
specific antibodies, with 60% plaque reduction neutralization (PRNT60) antibody titers
ranging from 8 to 14 (the log2 reciprocal titer) (Fig. 5A). Anti-reovirus neutralizing
antibody titers increased slightly at day 70. A modest, but statistically significant, higher
anti-reovirus antibody titer was detected in mice inoculated with rsT1L than in those
inocluated with rsT1L/�1 2F5-147. We used tier 1 and tier 2 Env-pseudotyped reporter
retroviruses (56, 57) to assess the HIV-1 neutralization capacity in serum from reovirus-
inoculated rabbits. No neutralization of tier 1 Env-containing pseudoviruses was de-
tected in any of the samples tested. Neutralization activity against tier 2 Env-containing
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FIG 5 Induction of humoral immune responses in rabbits by REO-2F5 vectors. Six-week-old,
reovirus-seronegative New Zealand White rabbits were inoculated perorally with 109 PFU of rsT1L or
rsT1L/�1 2F5-147 (n � 4 rabbits per group). Blood was collected on day 0 (preinoculation) and on
days 35 and 70 (postinoculation). Serial 4-fold dilutions of sera were tested for reovirus-specific
antibodies by determining the PRNT60 (A) and HIV-specific antibodies by determining the capacity
to neutralize infection of TZM-bl cells by tier 1 HIV-1 Env-pseudotyped viruses (B) or A3R5 cells by tier
2 HIV-1 Env-pseudotyped viruses (C). Results are expressed as the 50% infectious dose (ID50) for
pseudotyped viruses. Error bars indicate standard deviations. *, P < 0.05 compared with rsT1L
(Student’s t test).
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pseudotyped viruses was comparable between sera collected from rabbits inoculated
with rsT1L or rsT1L/�1 2F5-147 (Fig. 5B). Together, these findings indicate that REO-2F5
vectors elicit vector-specific antibodies but fail to stimulate production of HIV-1 2F5
epitope-specific humoral immune responses.

Second-generation reovirus vectors encode the entire MPER. We thought it
possible that the minimal 2F5 epitope inserted into �1 was of insufficient size to elicit
a detectable response. To assess this possibility, we engineered second-generation
reovirus vectors in which a sequence containing four heptad repeats corresponding to
the entire MPER motif from HIV-1 strain Ba-L (656-NEQELLELDKWASLWNWFDITKWLW
YIK-683) was substituted for four heptad repeats in the T1L �1 protein. This region
contains epitopes for three MPER-specific antibodies, 2F5 (662-ELDKWASL-669), 4E10
(669-LWNWFDITKWLWYIK-683), and Z13 (666-WASLWNWFDITK-677) (Fig. 1A). MPER-
specific sequences were introduced into �1 at residues 63 to 90, 98 to 125, or 147 to
174, and recombinant viruses (REO-MPER vectors) were recovered using reverse ge-
netics (Fig. 1B). Viruses with MPER sequences inserted at residues 63 (rsT1L/�1 MPER-
63) and 98 (rsT1L/�1 MPER-98) were viable. However, we were not able to recover virus
containing the insertion at amino acid 147 (rsT1L/�1 MPER-147). Insertion of the
MPER-encoding sequence into the S1 gene segment of viable virus was confirmed by
sequence analysis of viral dsRNA.

To determine whether insertion of the entire MPER sequence into the �1 protein
affects viral replication in cultured cells, we quantified viral titers 48 h after infection of
L cells (Fig. 6). Both rsT1L/�1 MPER-63 and rsT1L/�1 MPER-98 produced yields equiv-
alent to, or greater than, those of wild-type rsT1L. No sequence alterations were
detected in the recombinant reovirus S1 gene sequences following 10 serial passages
in cell culture. Together, these data indicate that the entire MPER of HIV-1 gp41 can be
substituted for �-helical regions of �1. However, the C-terminal portion of the �1 tail
is less amenable to genetic manipulation, suggesting that key determinants of �1
protein stability or function reside in this region of the protein.

To determine whether the MPER epitope in the REO-MPER vectors retains its native
conformation, we stained L cells infected with rsT1L, rsT1L/�1 MPER-63, or rsT1L/�1
MPER-98 with a 2F5 epitope-specific monoclonal antibody (Fig. 7A). Cells infected with
rsT1L/�1 MPER-63 or rsT1L/�1 MPER-98 were stained with the 2F5 antibody, but no 2F5
staining was observed in cells infected with rsT1L. As a positive control, cells infected
with each virus displayed staining with polyclonal reovirus-specific antiserum (Fig. 7B).
These data indicate that the HIV-1 MPER epitope retains its native conformation in the
context of the reovirus �1 protein.

Immunogenicity of REO-MPER vectors displaying the entire MPER motif. To
determine whether REO-MPER vectors elicit MPER-specific humoral immune responses,
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FIG 6 Reoviruses that display the HIV-1 MPER in attachment protein �1 replicate efficiently in cell
culture. L cells were adsorbed with rsT1L, rsT1L �1/MPER-63, or rsT1L �1/MPER-98 at an MOI of
1 PFU/cell. Viral titers in cell lysates were determined by plaque assay at 0 and 48 h postadsorption.
Results are expressed as the mean viral yield for triplicate samples. Error bars indicate standard
deviations. *, P < 0.05 compared with rsT1L (Student’s t test).
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we inoculated rabbits perorally with 109 PFU of rsT1L, rsT1L/�1 MPER-63, or rsT1L/�1
MPER-98. Booster doses were administered 21 and 42 days following the initial immu-
nization. Blood was collected on the day of inoculation (day 0) and on days 14, 35, and
56 postinoculation. Pre- and postimmunization serum samples were tested for the
presence of reovirus-specific and MPER peptide-specific antibodies by FLISA (Fig. 8). As
with the previous experiments, preimmunization samples were negative for both types
of antibodies. At day 14 postimmunization, all rabbits had detectable reovirus-specific
antibodies, with antibody titers ranging from 7 to 10 (reciprocal log2 titer) (Fig. 8A). By
day 56, anti-reovirus antibody titers increased to a range of 12 to 16 (reciprocal log2

titer) per animal. However, we did not detect neutralization activity in serum from
rabbits inoculated with MPER-containing vectors when we used tier 1 or tier 2 Env-
pseudotyped viruses (Fig. 8B and C). Together, these findings indicate that REO-MPER
vectors elicit reovirus-specific antibody responses but not responses specific for the
HIV-1 MPER.

DISCUSSION

Most current HIV-1 vaccine candidates are replication defective, administered intra-
muscularly, and unlikely to induce immune responses at mucosal surfaces. The goal of
this study was to develop an orally administered replication-competent reovirus-based
HIV-1 vaccine that stimulates mucosal and systemic humoral immune responses
against broadly neutralizing epitopes of HIV-1. Reovirus infects intestinal mucosa to
stimulate potent immune responses (58, 59), is naturally attenuated in humans (25, 60,
61), and can be manipulated to express vaccine antigens (32, 33). These features make
reovirus an ideal HIV-1 vaccine vector.

In mice, reovirus initiates infection by traversing M cells overlying Peyer’s patches
(PPs) in the small intestine (62, 63) and undergoes primary replication in adjacent
epithelial cells and PP mononuclear cells (64–66). The reovirus-specific humoral im-
mune response is characterized by mucosal IgA production through priming of B
lymphocytes and development of plasma cells in PPs, mesenteric lymph nodes, and the
spleen (67). IgA and IgG responses are directed against reovirus outer capsid proteins
�1, �3, and �1 (67–70), and reovirus-specific IgA and IgG antibodies prevent viral
intestinal infection and systemic dissemination (68), respectively. Disease associated
with reovirus infection is rare and limited to the very young, who recover without
sequelae (22, 71–73). Preexisting immunity to reovirus is not a barrier to induction of
immune responses, as demonstrated during clinical trials in which reovirus was used as
an oncolytic adjunct to cancer chemotherapy (24).
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FIG 7 Second-generation reovirus vectors display the MPER epitope. L cells plated in 96-well plates were
adsorbed with 10-fold serial dilutions of rsT1L, rsT1L/�1 MPER-63, or rsT1L/�1 MPER-98 over a range of MOIs
(0.01 to 100 PFU/cell). At 24 h postadsorption, cells were fixed and stained with 2F5 epitope-specific
monoclonal antibody (A) or polyclonal reovirus-specific antiserum (B) followed by secondary antibodies
conjugated to AlexaFluor 488. The results were quantified using an Odyssey infrared imaging system and
normalized to the maximum response achieved for each antibody. The data are presented as percentages of
the normalized response.
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We engineered reovirus vectors to display epitopes derived from the HIV-1 gp41
MPER that elicit broadly neutralizing antibodies. The resulting REO-MPER vectors
replicated comparably to wild-type virus in cell culture, retained the inserted sequences
following 10 serial cell culture passages, and were recognized by an MPER-specific MAb
that neutralizes HIV-1 infection in cultured cells and protects against HIV-1 challenge in
animal models. REO-MPER vectors elicit high-titer reovirus-specific antibody responses
in mice and rabbits but fail to induce MPER-specific antibody responses or HIV-1
neutralization activity. Collectively, these data indicate that reovirus can be manipu-
lated to display antigenic epitopes. However, the REO-MPER vectors used in this study
did not yield detectable HIV-1-specific immune responses.

Several vector systems have been designed to display HIV-1 MPER sequences. These
include adenovirus (74), hepatitis A virus (75), hepatitis B virus (76), influenza A virus
(77), papillomavirus (78), potato virus X (79), and rhinovirus (80). However, these
MPER-expressing vectors failed to elicit neutralizing antibody responses in animal
models. In this regard, the MPER epitopes in each vector were displayed as monomeric
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FIG 8 Immunogenicity of REO-MPER vectors. Six-week-old, reovirus-seronegative New Zealand
White rabbits were inoculated perorally with 109 PFU of T1L, rsT1L/�1 MPER-63, or rsT1L/�1 MPER-98
(n � 3 or 4 rabbits per group). Blood was collected on day 0 (preinoculation) and on days 14, 35, and
56 (postinoculation). Serial 4-fold dilutions of sera were tested for reovirus-specific antibodies by
determining the PRNT60 (A) and HIV-specific antibodies by determining the capacity to neutralize
infection of TZM-bl cells by tier 1 HIV-1 Env-pseudotyped viruses (B) or A3R5 cells by tier 2 HIV-1
Env-pseudotyped viruses (C). Results are expressed as the 50% infectious dose (ID50) for pseudotyped
viruses. Error bars indicate standard deviations.
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units within surface-exposed loops of vector capsid components, whereas these
epitopes form �-helical coiled-coil trimers in native gp41 (8). The strategy used here
yielded vectors that displayed MPER sequences in the native trimeric conformation.
Nonetheless, these vectors did not elicit MPER-specific immune responses.

What accounts for the failure of REO-MPER vectors to stimulate production of
MPER-specific antibodies in mice and rabbits? It is possible that the epitope inserted
into �1 is not fully native. Although the �1 tail domain may be sufficient to allow MPER
epitopes to form trimers, additional structural constraints provided by the native gp41
framework could be required for the epitopes to be displayed in an immunogenic
manner. We think this possibility is less likely, as MAb 2F5 is capable of binding
REO-MPER vectors that display amino acid sequences that constitute the 2F5 epitope.
It also is possible that generation of MPER-specific antibodies requires association with
lipid. The MPER is immediately adjacent to the viral membrane (81), and some anti-
bodies that recognize MPER epitopes, including 2F5 and 4E10, require interaction with
lipid along with engagement of gp41 (82, 83). To our knowledge, �1 does not associate
with membranes and, therefore, it may be difficult to engineer MPER-containing �1
molecules with the capacity to elicit MPER-specific antibodies if lipid engagement is
required for immunogenicity. Alternatively, mice and rabbits may be incapable of
producing an MPER-specific antibody response, even following three immunizations
with a vector that appropriately displays the target epitope. MPER-specific antibodies
in humans are characterized by substantial somatic hypermutation (84), which likely
takes a prolonged interval (on the order of months to years) of chronic infection to
develop (85, 86). The immunization protocols used in our study would not likely
recapitulate the exposure of the MPER epitope required to generate an effective
antibody response. Moreover, the CDR3 region of MPER-specific MAbs is much longer
than the corresponding region of mouse or rabbit antibodies, which may preclude
development of MPER-specific antibody responses in these animals (52, 87).

Our findings indicate that reovirus can be engineered to display foreign epitopes.
The �-helical coiled-coil �1 tail domain appears to tolerate insertion of heterologous
sequences as long as the heptad repeat register is maintained. A common theme
among enveloped viruses is utilization of viral proteins that contain �-helical motifs to
mediate fusion of the viral envelope with the cell membrane during virus entry (31). For
many human-pathogenic viruses, including Ebola virus (88) and influenza virus (89),
broadly neutralizing antibodies have been isolated that bind to these �-helical coiled-
coil regions and prevent infection. It is possible that reovirus vectors constructed to
display these sequences will elicit protective immune responses.

MATERIALS AND METHODS
Cell lines. L929 (L) cells were maintained in Joklik’s minimal essential medium (Lonza) supplemented to
contain 5% fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/ml penicillin, 100 �g/ml streptomycin, and
25 ng/ml amphotericin B. HeLa cells were maintained in Dulbecco’s modified Eagle medium (DMEM;
Gibco) supplemented to contain 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin, 100 �g/ml strepto-
mycin, and 25 ng/ml amphotericin B (Invitrogen). BHK-T7 cells were maintained in DMEM supplemented
to contain 5% FBS, 2 mM L-glutamine, 2% minimal essential medium amino acid solution (Invitrogen),
and 1 mg/ml Geneticin (Invitrogen).

Viruses. Recombinant reoviruses were recovered by using plasmid-based reverse genetics (32, 33).
Monolayers of BHK-T7 cells at approximately 90% confluence (3 � 106 cells) in 60-mm dishes (Corning)
were cotransfected with nine plasmid constructs representing cloned gene segments from strain T1L:
pT7-L1T1L (2 �g), pT7-L2T1L (2 �g), pT7-L3T1L (2 �g), pT7-M1T1L (1.75 �g), pT7-M2T1L (1.75 �g),
pT7-M3T1L (1.75 �g), pT7-S2T1L (1.5 �g), pT7-S3T1L (1.5 �g), and pT7-S4T1L (1.5 �g), in combination
with 2 �g of pBacT7-S1T1L or S1-MPER constructs. For each transfection mixture, 3 �l of TransIT-LT1
transfection reagent (Mirus) was used per microgram of plasmid DNA. Following 2 days of incubation,
recombinant virus was isolated from transfected cells by plaque purification using monolayers of L cells
(90). To engineer recombinant viruses displaying MPER sequences in �1, pBacT7-S1T1L was altered via
QuikChange (Stratagene) site-directed mutagenesis. Nucleotides encoding amino acids 56 to 69 and 147
to 160 of T1L �1 were exchanged with sequences encoding residues 656 to 669 of gp160 (the precursor
of gp41) from HIV-1 strain Ba-L (656-NEQELLELDKWASL-669) spanning the entire 2F5 epitope. Nucleo-
tides encoding amino acids 63 to 90, 98 to 125, and 147 to 174 (four heptad repeats) of T1L �1 were
exchanged with sequences encoding the entire MPER motif from HIV-1 strain Ba-L (656-
NEQELLELDKWASLWNWFDITKWLWYIK-683). Sequences encoding whole MPER insertions of four heptad
repeats were synthesized by GenScript, introduced into the PstI site of pUC57, and subcloned into
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pBacT7-S1 by using a TaKaRa DNA ligation kit (Clontech). Sequences of mutant viruses were confirmed
using S1 gene cDNAs prepared from viral RNA extracted from purified virions subjected to OneStep
reverse transcription-PCR (RT-PCR; Qiagen) with S1-specific primers. Primer sequences are available from
the corresponding authors upon request. PCR products were analyzed following electrophoresis in
Tris-borate-EDTA agarose gels or purified and subjected directly to sequence analysis.

Purified reovirus virions were prepared using second- or third-passage L cell lysate stocks of
twice-plaque-purified reovirus, as described elsewhere (26). Viral particles were freon extracted from
infected cell lysates, layered onto 1.2- to 1.4-g/cm3 CsCl gradients, and centrifuged at 62,000 � g for 18 h.
Bands corresponding to virions (1.36 g/cm3) (91) were collected and dialyzed in virion storage buffer
(150 mM NaCl, 15 mM MgCl2, 10 mM Tris-HCl [pH 7.4]). The concentration of reovirus virions in purified
preparations was determined from the equivalence of one optical density (OD) unit at 260 nm to 2.1 �
1012 virions (91). Viral titers were determined by plaque assay using L cells (90).

Virus replication assays. For assays of viral yield, L cells (5 � 104 cells/well) seeded in 24-well plates
(Costar) were adsorbed in triplicate with reovirus strains at a multiplicity of infection (MOI) of 1 PFU/cell
at room temperature for 1 h in serum-free medium, washed once with Dulbecco’s phosphate-buffered
saline without calcium or magnesium (PBS; Invitrogen), and incubated in serum-containing medium for
various intervals. Cells were frozen and thawed twice prior to determination of viral titer by plaque assay
using L cells (90). Viral yield was calculated using the following formula: log10 yield at tx � log10(PFU/ml)tx

� log10(PFU/ml)t0, where t is the time postadsorption.
Serial passage of reovirus vectors in cell culture. Recombinant viruses were consecutively

passaged 8 to 10 times in confluent monolayers of L cells cultivated in T-25 tissue culture flasks (Costar)
by inoculating cells with 1 ml of virus stock diluted to provide a low MOI. Cells were lysed by freezing
and thawing twice, and viral RNA from each passage was purified from culture lysates by using an RNA
isolation kit (Roche). RNA was converted to cDNA via OneStep RT-PCR (Qiagen) using S1-specific primers,
and cDNAs were sequenced.

Detection of MPER epitopes by FLISA. Black, clear-bottom, 96-well plates (Costar) were coated with
1010 or 1011 particles of either rsT1L or recombinant reovirus strains and incubated with 2.5 �g/ml of
MAb 2F5 (92) and rabbit �1 head-specific antiserum (47) at 37°C for 1 h. Antibody binding to the 2F5
epitope displayed by immobilized virus was detected following incubation with fluorophore-conjugated
donkey anti-human IgG (Rockland). Antibody binding to the �1 head was detected following incubation
with goat anti-rabbit antiserum (LI-COR). FLISA signals were quantified using a LI-COR Odyssey infrared
imaging system and are expressed as the relative signal strength, proportional to the quantity of
dye-labeled antibody bound per well. Background fluorophore-conjugated antibody binding to empty
wells was subtracted from that in particle-coated wells to determine the final integrated intensity values.

Infection of mice and rabbits. Reovirus-seronegative BALB/c mice were obtained from Jackson
Laboratory. Fifteen 6-week-old mice were inoculated with wild-type rsT1L, rsT1L/�1 2F5-56, or rsT1L/�1
2F5-147 diluted in PBS on day 0 and were boosted on days 21 and 42. Blood samples were obtained by
tail vein puncture on day 0 (prior to inoculation) and on days 14 and 70. The dose of reovirus used for
all mouse inoculations ranged from 106 to 107 PFU/ml.

Reovirus-seronegative New Zealand White rabbits were obtained from Covance, Inc. Purified recom-
binant reovirus was emulsified in TiterMax gold adjuvant (Sigma-Aldrich) for the first experiment and PBS
for the subsequent experiment. For the first experiment, eight 14-week-old rabbits were inoculated
intramuscularly in the hind limb with rsT1L or rsT1L/�1 2F5-147 on day 0 and boosted on days 21 and
42. Blood samples were obtained by ear central artery puncture on days 0 (prior to immunization), 14,
35, 56, and 70. For the second experiment, 10 14-week-old rabbits were inoculated intramuscularly in the
hind limb with rsT1L, rsT1L/�1 MPER-63, or rsT1L/�1 MPER-98 on day 0 and boosted on days 21 and 42.
Blood samples were collected on days 0 (prior to immunization), 14, 35, and 56. The dose of reovirus used
for all rabbit inoculations ranged from 108 to 109 PFU/ml.

Animal husbandry and experimental procedures were performed in accordance with Public Health
Service policy and approved by the Vanderbilt University School of Medicine Institutional Animal Care
and Use Committee.

Quantification of reovirus-specific antibody responses. Reovirus-specific antibody responses were
determined in PRNT60 assays with rsT1L and L cells. Serum samples were heat inactivated at 56°C for
30 min, serially diluted 4-fold beginning with a dilution of 1:20, and incubated with an equal volume of
a virus stock containing 100 PFU. After incubation for 1 h, the serum-virus mixtures were inoculated in
duplicate onto confluent L-cell monolayers in 6-well tissue culture plates (Costar). Cells were stained with
neutral red on day 7, and plaques were enumerated (90). Serum reciprocal geometric mean titers capable
of reducing plaque counts by 60% were calculated via regression analysis. Seroconversion was defined
as a �4-fold increase in serum neutralizing antibody titer to rsT1L at study days 14, 35, 56, and 70
compared with the prevaccination PRNT60.

Detection of 2F5 epitope-specific antibodies by immunofluorescence. Pre- and postimmuniza-
tion serum samples from vaccine recipient and control animals were evaluated for MPER-specific
antibodies by FLISA and kinetic enzyme-linked immunosorbent assay (ELISA) (93) using a reference panel
of HIV-1 MPER-specific peptides (15-mers; NIH AIDS Research and Reference Reagent Program). Duplicate
wells were coated with 2F5 epitope-containing peptides 8926 (EQELLELDKWASLWN), 8927 (LELDK-
WASLWNWFDI), or negative-control peptide 8888 (VVQREKRAVGIGAMF). An uncoated well was included
with each test sample to determine the background level of binding, which was subtracted from the test
sample result. A standard curve prepared using a positive rabbit antiserum (provided by G. Ofek, NIH)
was included in each assay as a positive control. The kinetic ELISA was developed by addition of
biotinylated goat anti-rabbit IgG conjugated with streptavidin-horseradish peroxidase, followed by
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addition of the substrate 2,2=-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS).
Binding was quantified using a Molecular Devices microplate reader and Molecular Devices Softmax
software.

Quantification of HIV-1-neutralizing antibody responses. Serum samples from rabbits were
evaluated for the capacity to neutralize a tier 1 HIV-1-Env-containing pseudovirus (W61D TCLA.71) in a
TZM-bl assay (56) or a tier 2 HIV-1-Env-containing Renilla luciferase-encoding infectious molecular clone
(WITO.LucR.T2A.ecto) using A3R5 cells (57, 94). Reagents were obtained from the NIH AIDS Research and
Reference Reagent Program. These assays were performed in a biosafety level 3 laboratory.

Statistical analysis. Means of triplicate samples were compared by using an unpaired Student’s
t test or one-way analysis of variance (ANOVA). Statistical analyses were performed using Prism 6.0
software (GraphPad Software, Inc.). P values of �0.05 were considered statistically significant.

Preparation of the �1 schematic. The full-length schematic of �1 (Fig. 1B) was prepared using the
Chimera program from the University of California, San Francisco (http://www.rbvi.ucsf.edu/chimera).
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