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ABSTRACT

Metagenomic studies, greatly promoted by the fast
development of next-generation sequencing (NGS)
technologies, uncover complex structures of micro-
bial communities and their interactions with envi-
ronment. As the majority of microbes lack informa-
tion of genome sequences, it is essential to assem-
ble prokaryotic genomes ab initio aiming to retrieve
complete coding genes from various metabolic path-
ways. The complex nature of microbial composition
and the burden of handling a vast amount of metage-
nomic data, bring great challenges to the develop-
ment of effective and efficient bioinformatic tools.
Here we present a protein assembler (MetaPA), based
on de Bruijn graph searching on oligopeptide spaces
and can be applied on both metagenomic and meta-
transcriptomic sequencing data. When public homol-
ogous protein sequences are involved to guide the
assembling procedures, MetaPA assembles 85% of
total proteins in complete sequences with high pre-
cision of 83% on real high-throughput sequencing
datasets. Application of MetaPA on metatranscrip-
tomic data successfully identifies the majority of ac-
tively transcribed genes validated in related studies.
The results suggest that MetaPA has a good potential
in both metagenomic and metatranscriptomic stud-
ies to characterize the composition and abundance
of microbiota.

INTRODUCTION

Metagenomics, which treats all the genetic materials directly
extracted from environmental microbial samples as a whole
for research (1), has become a significant methodology to
study uncultured microbe in various habitats including hu-
man body, oceans, soil, etc. (2-5). Studies on metagenomics

lead to the knowledge to thousands of previously unknown
microbes and their interactions with habitats, thus promot-
ing further understanding on evolutionary history of life (6)
and bringing out the application to medicine and industry
(7-9). As an essential step in most metagenomic sequenc-
ing projects, identifying coding sequences from vast amount
of next-generation sequencing (NGS) reads, severely af-
fects the profiling of both taxonomic and functional com-
position. However, the intrinsic complexity of microbiome
brings great challenges to the development of efficient and
effective bioinformatic algorithms for short NGS reads as-
sembly, when facing diversified similarities among various
genome sequences.

To our knowledge, there are currently two alternative
approaches to predict genes from raw metagenomic reads.
One type of approaches, e.g. MetaVelvet (10), IDBA-UD
(11), MEGAHIT (12) and metaSPAdes (13), assemble short
NGS reads into longer contigs, from which genes are identi-
fied by utilizing the third-party gene finders (14). Consider-
ing the species abundance variation represented by the un-
even coverage of different prokaryotic genomes, these meth-
ods make great improvement compared with those designed
for the assembly of single genome, e. g. SOAPdenovo?2 (15).
However, these nucleotide based assembly approaches may
fail to obtain complete coding sequences as synonymous
polymorphisms are widely distributed among populations,
species or strains. As a consequence, their final output se-
quences might be fragmentary, especially on metagenomic
samples with complex microbial community structures.

The other type of algorithms, e.g. SFA-SPA (16,17) and
iInGAP-CDG (18), directly deals with peptides or trans-
lated nucleotide sequences via prediction of open reading
frames (ORFs) from short raw reads, aiming to reconstruct
complete protein sequences by assembling short peptide
sequences. As protein coding genes occupy the majority
of the genomes of microbes (19,20), and are highly con-
served across strains within the same species, these meth-
ods advance in obtaining ‘pan-proteome’ in given metage-
nomic samples compared with the nucleotide based assem-
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blers. However, false OR F-prediction, arisen from the short
length of metagenomic reads, unavoidably leads to the gen-
eration of many false gene sequences. Furthermore, cur-
rent available peptide assemblers are designed by utilizing
oligopeptides with fixed-length (k-mers), thus are difficult
to handle a mixture of homologous sequences with various
similarities.

In this study, we present a novel protein assembler,
MetaPA, to predict coding sequences from the high-
throughput metagenomic data by optimizing ORF detec-
tion and peptide assembly simultaneously. MetaPA adopts
a de Bruijn graph based strategy and depends on multi-
ple graphs constructed by k-mers with different lengths (up
to 24 amino acids), whose iteration benefits the correc-
tion of sequencing error and the reduction of false ORF
prediction, and leads to simpler de Bruijn graphs, which
yield more completely assembled proteins. In addition, pub-
lished microbial protein sequences, if available, can be in-
troduced to guide the assembly of metagenomic sequences.
Tested by sequencing datasets of either synthetic or real mi-
crobial communities, MetaPA succeeded in detecting more
complete protein sequences with higher accuracy compared
with other approaches. A case study of metatranscriptomic
samples showed that the majority of raw reads could be
mapped onto the proteins assembled by MetaPA, benefit-
ing accurate estimation of both taxonomic abundance and
functional gene expressions.

MATERIALS AND METHODS

To obtain complete proteins of multiple microorganisms
from high-throughput metagenomic data, MetaPA per-
forms the assembly of short reads on the amino acid level
based on two considerations. First, due to the complex na-
ture of microbial communities, the assembly of individual
prokaryotic genes greatly reduces the challenges than that
of complete genome sequences, without losing too much
information since the majority of genomic regions of mi-
crobes are coding sequences. Second, the presence of vari-
ations in coding regions or intergenic regions among dif-
ferent prokaryotic strains often leads to difficulties in as-
sembling single-species sequences, while the conservation of
related homologs in amino acid levels decreases the math-
ematical complexity of assembly, e.g. the popular used de
Bruijn graphs adopted in this study. In addition, MetaPA
gradually increases the lengths of k-mers to improve the as-
sembly quality. Organism-specific proteins and nearly iden-
tical ones among species/strains are assembled from graphs
with shorter k-mers, while proteins with lower similarities
are possibly resolved into individual proteins when using
longer k-mers. Briefly, we employ a multiple-step strategy to
process an assembly job (Supplementary Figure S1): (i) pre-
dict ORFs from short nucleotide reads and translate them
to protein segments; (ii) construct de Bruijn graphs in the
space of oligopeptides, where a node denotes a k-mer and
an edge represents a (k+1)-mer to connect two overlapping
k-mers; (iii) simplify the graph and decompose it into sub-
graphs (denoted by connected components), from which the
longest/shortest paths are called to evaluate confidence of
associated k-mers; (iv) for each short read, evaluate ORF
candidates according to summarized confidence score of k-
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mers, then repeat the steps of (i-iv) using longer k-mers; (v)
in the procedure of calling paths from sub-graphs, read se-
quences and paired-end information are utilized to make
decisions when meeting forks or crosses. If not determined,
reference protein sequences are adopted as templates to
guide the procedure of path searching; (vi) remove redun-
dantly assembled proteins and false sequences predicted
from intergenic regions.

Prediction of ORFs from raw reads

MetaPA adopts the universal DNA codon table to trans-
late each query nucleotide sequence into coding sequences
by using a six-frame translation strategy similar to OrfPre-
dictor (21). Each of the six ORF candidates is evaluated by
considering the presence/absence of start/stop codons: an
ORF is directly translated when it has no stop codon; if only
one stop codon is observed, the longer translated segment,
either the one before the stop codon, or the one from the
start codon (following the stop codon) to the end of the
reads, is adopted; ORFs with two or more stop codons are
ignored. After the six ORF candidates have been evaluated,
only the one who has the longest ORF fragment is con-
sidered as the correct translation. Meanwhile, ORFs with
translated protein segments shorter than 20 a.a. are also
ignored from further analyses. In case that more than one
OREF pass the filter, one of them is randomly chosen in this
round of ORF prediction. These ORF candidates are then
further evaluated by comparing with assembled proteins
(see section ”Recalling of ORFs from raw reads under the
guidance of de Bruijn graph”) resolved from reconstructed
de Bruijn graphs to correct false ORF's called previously and
potential sequencing errors in raw nucleotide reads.

Construction of de Bruijn graphs

Oligopeptides (k-mers) are collected from putative ORFs
of query nucleotide reads, to construct a de Bruijn graph,
which is represented by a hash map with k-mers as nodes.
A tip is removed if shorter than twice of the length of k-
mer with read coverage lower than 4x; a bubble is merged
when two subpaths of the bubble have identical length with
a single amino acid difference, e.g. exhibiting sequence sim-
ilarity of (2k — 1)/2k (Supplementary Figure S4). MetaPA
further utilizes information of average insertion length of
the paired-end (PE) sequencing library to predict a poten-
tial path connecting two ends of a read. Translated peptides
of PE reads are mapped to the graph by using a strategy of
spectral alignment (22). To estimate average insert size (the
average distance of two ends of reads, denoted by /) and
its standard variation (denoted by §), the minimal distance
(number of k-mers from N- to C-terminal on the graph) be-
tween the two translated products from the same PE read
is collected for counting distributions of insert sizes. When
[ and § are estimated, distance between two ends of each
PE read in the graph is re-evaluated, a read is considered as
‘normally mapped’ if its insert size falls into range of / £ 36.
DNA libraries usually adopt longer insert size than length
of read sequence, leaving a gap between two ends. When cal-
culating reads coverage on a path, MetaPA fills the gap be-
tween two ends of a normally mapped PE read by putting
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an extra coverage to the uncovered nodes in the gap. This
procedure benefits the assembling of longer proteins while
slightly increases the complexity of related graphs.

Decomposition of graphs and identification of protein se-
quences

An initial de Bruijn graph constructed from whole metage-
nomic data consists of multiple connected components. For
each connected component, MetaPA traverses each non-
branching node (both in-degree and out-degree < 2) in de-
scending order of reads coverage, and considers the given
node as a seed to extend on both directions (defined as a
subpath) until reaching to a fork or a cross (Supplemen-
tary Figure S2A). The decision of which alternative path to
choose is made according to the following rules (Supple-
mentary Figures S4-S6): (i) Amino acid sequences trans-
lated from raw reads are selected if contain the k-mer ad-
jacent to the fork. The peptides are then ‘aligned’ to each
of the alternative paths to examine if connections of multi-
ple continuous k-mers are supported. Paths not covered by
translated sequences are ignored from subsequent analyses.
(ii) In addition, links of paired ends provide examination
by using longer range connections of k-mers (up to the in-
sert size /) than those of sequences from one end. Paths are
chosen when one or more paired-end links fully span the k-
mer junction in a fork/cross. (iii) Finally, redundant paths
are removed from the collections (Supplementary Figures
S4-S6).

The path search progress of MetaPA is benefitted by us-
ing public protein sequences from organisms with whole
genome information, of which the number is sharply in-
creasing in recent years, to guide the assembly procedure
(Supplementary Figures S1 and S2B). When reference pro-
teins are available as templets, subgraphs sharing 60% k-
mers or more with a reference protein are selected. MetaPA
then employs a dynamic programming strategy to find a
path having the best alignment against the reference protein
for each pair of start/end nodes. These alignments are fur-
ther refined by using a Smith—Waterman algorithm, and the
path with the optimal score is chosen for further evaluation
even when lacking supports from sequences or paired-end
links from reads as described in the above procedure.

Recalling of ORF's from raw reads under the guidance of de
Bruijn graph

To further improve the performance of MetaPA, all the six
ORF candidates of each raw read are compared with the
de Bruijn graph obtained in the previous round to correct
false ORF predictions or potential sequencing errors of raw
reads. When protein sequences are recalled from the refined
prediction of ORFs, longer k-mers are adopted to construct
a de Bruijn graph for distinguishing heterozygous proteins
with higher resolution. The pipeline of the strategy is shown
in Supplementary Figure S3.

First, we download 2463 bacterial genomes from Na-
tional Center for Biotechnology Information (NCBI), and
use inGAP-sv to simulate 2 x 100 bp paired-end short reads
with coverage of 30x. For each species, a de Bruijn graph is
built and all alternative paths are outputted and compared
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with reference proteins. We find the majority of predicted
proteins (62%) with length longer than 300 a.a. are well
matched to reference proteins. On the contrary, 80% of as-
sembled proteins shorter than 150 a.a. lack such supports
(Supplementary Figure S8). Accordingly, we classify pro-
teins called from the previous round of de Bruijn graph into
three classes based on their lengths: proteins of high confi-
dence (300 a.a. or longer), those of low confidence (from 150
a.a. to 300 a.a.) and unreliable ones (150 a.a. or shorter).
Furthermore, we also find that many long false ORFs are
possibly predicted from high GC content regions (60% or
higher, Supplementary Figure S8), and are often associated
with unusual amino acid abundance compared with true
proteins (Supplementary Figure S9). MetaPA thus classifies
those predicted proteins as unreliable ones when they own
high abundance of Arginine (15% or more), Serine (14% or
more), Histidine (7.5% or more) or Glycine (14% or more)
according to the comparison results on the simulated short
reads (Supplementary Figure S9). Next, each k-mer is la-
beled as high/low confident or unreliable ones depending
on their appearance on the predicted proteins with differ-
ent confidence levels in the previous round of assembly, am-
biguous k-mers associated with non-unique labels are ig-
nored from further analysis.

Second, six-frame translations are performed on each
raw read to produce putative proteins for evaluation under
the guidance of the subgraphs of different confident levels.
In details, each frame candidate is compared with all sub-
graphs by using a strategy of spectral alignment (22), and
the numbers of high/low confident and unreliable k-mers
are counted. Among the six potential frames, the ORF can-
didate having the most high-confident k-mers is chosen for
graph construction; the low-confident k-mer numbers will
be an additional criterion when no judgement can be made
by the high-confident k-mers, so as to the unreliable k-mers.
Furthermore, single amino acid inconsistency in assembly
graphs caused by sequencing errors is corrected by using a
similar algorithm as described in (22), which is designed for
nucleotide sequences.

At last, the updated ORFs are used to construct a new
graph based on (k+1)-mers to refine protein assembly. The
procedures are repeated until the length of k-mers reaches
to a maximum value defined by users.

Calculation of CDS sequences and refining protein callings

Raw reads are aligned to assembled proteins by using a fast
alignment tool, Diamond (23), only those reads showing
high similarities (fully aligned, up to 2 mismatches and no
gap allowed) with the targeted proteins are adopted for fur-
ther analysis. Nucleotide sequence of each protein is called
by calculating consensus sequences upon mapped reads, on
which each nucleotide is evaluated according to a Bayesian
model (24) for detection of potential polymorphisms. For
each CDS, MectaPA employs a similar strategy as inGAP-
sv (25) does to find break points, where lack coverage of
paired-end reads with normal distance and strands. A CDS
is split into fragments to avoid chimeric protein callings
when meeting two requirements: it exhibits one or more
break points; a pair of neighbouring spited fragments have
different targets of the reference protein database. Proteins
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with similarity threshold of 95% are considered as redun-
dant sequences and are removed by using CD-HIT (26).
CDS sequences are further compared to remove assembled
products from antisense strand of coding genes by using
CD-HIT-EST (26) with options of ‘-G 0 -¢c 0.95 -aS 0.9’.
In addition, MetaPA applies a model of supporting vector
machine (SVM) trained by intergenic regions of the 2463
species from NCBI, to recognize pseudo proteins assembled
by translated sequences of non-coding short reads.

Datasets of real sequences

Dataset 1 (a synthetic sequencing data). To compare
the performance of MetaPA with that of other meth-
ods upon real sequencing data of microbial communi-
ties (27), a dataset sequenced on Illumina platform (with
accession number as SRR606249, 11.1 Gb) is down-
loaded from the NCBI Short Reads Archive. The raw
reads are trimmed to remove adaptor sequences and low-
quality reads by using Trimmomatic 0.36 (28) with the
parameter ‘LEADING:3 TRAILING:3 SLIDINGWIN-
DOW:4:15 MINLEN:50’. These filtered reads are then
mapped onto the reference database including 64 complete
prokaryotic genomes by using BWA (29) to profile species
compositions under the synthetic conditions. Those reads
lacking matches on the reference genomes are ignored from
the analyses. Performance of MetaPA and other metage-
nomic assemblers upon these short reads are evaluated
by comparing the assembled proteins/contigs with the 64
reference proteomes. Another 5872 prokaryote proteomes
from NCBI, excluding the 64 proteomes, are downloaded
to guide the assembly procedure of MetaPA.

Dataset 2 (two metagenomic datasets of human stool sam-
ples).  Real metagenomic datasets are adopted to compare
the performance of MetaPA with other methods on pro-
teome assembly. Two datasets of human stool samples (sam-
ple SRS078176 and SRS022524) are downloaded from the
NCBI Short Reads Archive. Both of them are sequenced on
Illumina platform and produce 2 x 95 bp and 2 x 100 bp
paired-end reads, respectively. Sample SRS078176, consist-
ing of 10.1 Gb sequencing data, is expected to exhibit higher
sequencing depth per species than sample SRS022524 con-
taining only 2.3 Gb sequencing data, since they owe com-
parable microbial community complexities. The raw reads
are trimmed under the same procedure as in Dataset 1. The
HMP project releases a list of 2307 reference genome as-
semblies (30-32), which are adopted for evaluation of per-
formance of all the methods. We download 5936 prokaryote
genomes from NCBI to provide an independent database
for guiding the assembly procedure of MetaPA.

Dataset 3 (a metagenomic and a metatranscriptomic datasets
of the same stool sample). Compared with metagenomic
data, which profile structure of microbial communities,
metatranscriptomic data provide snapshot of their tran-
scription activity. To validate the utilization of MetaPA for
assembling proteins from either DNA-seq or RNA-seq se-
quences, we download a metagenomic dataset (SRS302292,
SRS302293, SRS302298 and SRS302307) and a metatran-
scriptomic dataset (SRS302300, SRS302306, SRS302315
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and SRS302319) from NCBI in a study of human stool sam-
ples by Giannoukos ez al. (33). These two datasets are se-
quenced from the same stool sample, constituting data of
5.0 Gb and 7.9 Gb, respectively, providing a cross valida-
tion for examining the performance of these methods. The
raw reads are trimmed under the same procedure as in the
above datasets. The assembly analyses of MetaPA are guide
by using 5936 prokaryote proteomes adopted in Dataset 2.

RESULTS

We compared the performance between MetaPA and six
other assemblers, among which SFA-SPA (17) is also
an amino acid based assembler, and all the other five
are nucleotide based approaches, namely IDBA-UD (11),
MEGAHIT(12), metaSPAdes (13), MetaVelvet (10) and
SOAPdenovo?2 (15). SOAPdenovo2, on the other hand, is
an assembler designed for single genome and has been
widely applied on many metagenomic studies like MetaHIT
(34) and HMP (30-32). Contigs obtained by IDBA-UD,
MEGAHIT, metaSPAdes, MetaVelvet, and SOAPdenovo2
were given to FragGeneScan (14) for further prediction of
ORFs and proteins to facilitate the comparisons among dif-
ferent approaches. The length of k-mers were selected as 18
a.a. for MetaPA when dealing with metagenomic datasets
and 14 a.a. for metatransriptomic data. k-mers of 51 nt
were applied for both MetaVelvet and SOAPdenovo2 and
as 6 a.a. for SFA-SPA, while parameters for the other ap-
proaches were set as default.

Performance comparisons on the benchmark data (Dataset
1)

Shakya et al. (27) built a synthetic prokaryotic commu-
nity, owning 16 organisms of Archaea and 48 members of
Bacteria. As this data covered most phyla with published
whole genome information, it was adopted as a benchmark
for the quantitative comparisons among the seven methods.
Briefly, application of MetaPA on this dataset yielded a to-
tal of 177 764 sequences composing of 58.8 Mega amino
acids [Maa], with an average length of 331 a.a. As a com-
parison, the other six methods obtained 178 383-555 551
sequences in total (44.2-63.0 Maa, with an average length
of 113-289 a.a.) (Figure 1, Supplementary Figure S10). It
showed MetaPA outperforms the other methods on ob-
taining longer proteins when yielding similar amount of
total assembly products. In detail, 147 857 sequences by
MetaPA (83.2% of total, Figure 1B and Supplementary Fig-
ure S10B) were full-length proteins (matched 90% or longer
region of reference proteins), which covered 85.9% of the
total reference proteins (Figure 1A, Supplementary Figure
S10A). MetaPA showed the highest recall and precision
rates (85.9% and 83.2%), followed by metaSPAdes (81.5%
and 78.5%), SOAP (67.5% and 59.5%), MetaVelvet (58.1%
and 67.8%), SFA-SPA (51.6% and 35.1%), MEGAHIT
(26.1% and 16.4%), IDBA_UD (25.4% and 16.2%). In ad-
dition, only a few reference proteins were assembled as
fragmented sequences by MetaPA, e.g. 5.2% proteins were
70-90% complete, 1.6% were 50-70% complete, only 0.8%
were 30-50% complete (Figure 1A), illustrating a better per-
formance of MetaPA than those of the other methods. It
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Figure 1. Performance of the seven approaches on a sequencing dataset
of microbial synthetic communities. (A) Recall and (B) precision values of
assembled sequences are displayed, where sequences are classified into four
levels according to their completeness compared with reference proteins.
An assembled sequence is considered to be matched to a reference protein
when over 70% of the query sequence is aligned with identity higher than
80%.

is worth noting that most metagenome assemblers, both
amino acid based and nucleotide based (except IDBA_UD
and MEGAHIT), only produced hundreds of chimeric se-
quences (see definition in Supplemental Figure S7), repre-
senting 0.5% or lower proportion of the total assembled
proteins (Supplementary Figure S11A). Considering redun-
dant sequences, MetaPA outputted slightly higher numbers
(6697) than other methods (313-5,608 proteins) (Supple-
mentary Figure S11B), suggesting some nodes in related
subgraphs are repeatedly adopted in MetaPA. Neverthe-
less, MetaPA performed well as other methods, except SFA-
SPA, in yielding small amount of sequences unaligned to
reference proteins (Supplementary Figure S11C).

The 64 prokaryotes in the synthetic community exhibited
wide range of abundance, from 9.4x for Burkholderia xen-
ovorans to 310.0x for Nanoarchaeum equitans. To provide
detailed comparison of the seven methods for assembling
proteins upon various amounts of short reads from differ-
ent abundant species, the 64 organisms are classified into
three groups: 9 species with 100x or higher coverage, 45
species with abundance from 20x to 100x and 10 organ-
isms under 20 x. As shown in Figure 2A and Supplementary
Table S1, MetaPA successfully assembled most amounts of
prokaryotic proteins (with completeness of 50% or higher)
in all groups, i.e. 90.1% at the high abundance group, 90.4%
at the median and 88.1% at the low abundance group. While
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Figure 2. Evaluation on sequence fragmentation of the output proteins of
the seven approaches in the synthetic metagenomic dataset. (A) Percent-
age of assembled sequences with completeness of at least 50% or (B) full-
length recalled sequences (completeness of 90% or higher) for each of the
64 prokaryotic genomes in the synthetic metagenomic dataset.

the performances of metaSPAdes, MEGAHIT, IDBA_UD
and SOAP were also insensitive to species abundance, from
72.4-83.6% (high abundance) to 72.2-88.7% (median abun-
dance) and to 64.5-88.7% in the low abundance group. On
the contrary, only 27.0% and 56.4% proteins were success-
fully assembled by MetaVelvet and SFA-SPA, respectively,
upon bacterial genomes with coverage of under 20x. When
comparing effectiveness of these methods on obtaining full-
length proteins, MetaPA could still recall 85.5%, 85.2%
and 78.2% of reference proteins for species with high, me-
dian and low abundance, respectively, outperform the other
methods with recall of 25.6-74.2%, 25.8-80.6% and 17.6—
73.9% (Figure 2B and Supplementary Table S2).

Performance evaluation on two human gut metagenomic sam-
ples (Dataset 2)

Real metagenomics samples often have relatively complex
community structures by including microbes with highly
variable abundance and/or from a wide spectrum of taxon-
omy. To evaluate the performance of the seven approaches
on real metagenomic datasets, we applied them on two hu-
man gut metagenomic NGS datasets released by the HMP
project (30-32). The two microbiomes show similar com-
munity complexities containing 118 and 92 bacteria, with
100 or more genes per species, as detected in the assembly of
the two datasets by HMP, respectively, but vary in data size.
The predicted coding genes by each approach were aligned
to the reference genomes of HMP for classification and
evaluation. As shown in Table 1, the application of these
methods on the deeper sequenced dataset SRS078176 (10.1
Gb) showed most of algorithms yielded similar amount of
product size (42.7-59.0 Maa in total) except SFA-SPA (32.5
Maa). Moreover, MetaPA obtained 181 925 sequences with
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an average length of 287 a.a. illustrating a better perfor-
mance on the assembly completeness than other methods,
which exhibited 288 053-340 725 sequences with an average
length of 100-173 a.a. Especially, 56 031 sequences yielded
by MetaPA (30.8% of total) were almost of full-length, qual-
ified by reference proteins in the HMP database, more than
those (17 592 to 51 360 sequences) of the other six methods
(Table 1). Consistently, MetaPA outperformed the other
methods by providing fewer fragmented sequences at vari-
ous levels of incompleteness (Table 1). We then compare the
performance of these algorithms on the more challenging
dataset SRS022524, which owns only 2.3 Gb data. MetaPA
yielded similar amount of product size (amino acids) with
the longest average protein length (299 a.a.), providing fur-
ther evidence for the higher effectiveness of MetaPA on de-
tecting more completed protein sequences compared with
the other approaches.

A case study of MetaPA on a sample with both metagenomic
and metatranscriptomic sequencing data (Dataset 3)

To test the performance of MetaPA in dealing with various
types of microbiome data, based on DNA-seq or RNA-seq,
we adopted a pair of metagenome (5.0 Gb) and metatran-
scriptome (7.9 Gb) datasets from one human stool sample
sequenced by Giannoukos et al. (33). Consistent with previ-
ous study, the majority of metagenomic reads (88.5%) from
the microbial community came from 19 bacterial species
belonging to three phyla: Firmicutes (13 species), Bac-
teroidetes (5 species), and Actinobacteria (1 species). Con-
sistently, the 19 species also dominated in the metatranscrip-
tome dataset (94.6% of total reads) but exhibited higher de-
gree of abundance variation, thus providing a cross valida-
tion to measure the effectiveness of the seven methods upon
DNA or RNA based studies. As a result, MetaPA outper-
formed other methods in similar patterns as shown in the
other two datasets (Figure 3 and Table 2).

35694 440 of 39 248 382 metagenomic reads were assem-
bled by MetaPA, yielding 63 977 proteins with an average
length of 315 a.a. A total of 41 471 proteins (64.8%) were
classified into the 19 species from the three phyla of Firmi-
cutes, Bacteroidetes and Actinobacteria (Figure 3, Figure
4A and Table 2), accounting for over 78.7% of the assem-
bled reads, consistent with the observation by Giannoukos
et al. Further examination of the assembled proteins for
each species illustrated that the majority of reference pro-
teins (72.1%) were recalled (30% or longer regions were
covered) although their sequencing depth fluctuated from
7x (Bacteroides sp. 3-1-23) to 484X (Prevotella copri DSM
18205). Moreover, 52.7% proteins of Ruminococcus obeum
were recalled even when its sequencing depth was as low as
4x, while 19.9% proteins were assembled for Clostridium
nexile with depth of 0.7x (Figure 4A).

We then applied MetaPA on the metatranscriptome
dataset, within which 59 527 614 of 62 883 662 short reads
(94.7%) were utilized to produce 29,726 proteins (Table 2).
Consistently, the majority of assembled proteins (20 475,
68.9%) accounting for 80.3% of assembled reads, came from
the 19 species detected in the metagenomic data, exhibit-
ing similar abundance variation pattern as reported by Gi-
annoukos et al.: Prevotella copri DSM 18205, as the most
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Figure 3. Performance of the seven approaches on real metagenomic se-
quencing data of a human stool sample. (A) Recall and (B) precision values
are displayed in different levels of completeness.
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Table 1. Summary of performance of seven approaches on two metagenomic datasets of human stool samples. All the assembled sequences from the seven
approaches were then blast against the HMP reference genomes

Approach MetaPA metaSPAdes IDBA_UD MEGAHIT MetaVelvet SOAP SFA-SPA
Sample SRS078176 (10.1 Gb)

Total assembled size 52 216 405 59025179 48 410 556 47 462 147 53378 828 42 697 585 32539419
(a.a.)

Total fragments 181925 340 725 294972 288 053 410314 305 629 326 102
Mean length 287.0 173.2 164.1 164.8 130.1 139.7 99.8
Full-length 56 031 51 360 19 231 19174 27947 31 646 17 592
fragments®

70~90%" 8521 8 159 16 291 16 087 10 544 6225 5036
50~70%° 6185 11496 24704 24 871 15789 8810 6179
30~50%4 7351 23313 38419 38 163 28 836 16 370 9659
0-30%° 15481 54 156 41 506 41756 57459 38453 15309
no hit 88356 192 241 154 821 148 002 269 739 204 125 272 327
Time 21h21m 9h55m S5h43m 2h31m 6hlm 1hSIm 29h40m
Sample SRS022524 (2.3 Gb)

Total assembled size 36287 032 38 872956 33029 099 33964 537 37752147 27874 834 14 266 759
(a.a.)

Total fragments 121 331 226 220 199 447 208 275 335125 251574 145 741
Mean length 299.1 171.8 165.6 163.1 112.7 110.8 97.9
Full-length 41467 35707 14129 14 559 18 060 14779 9182
fragments®

70~90%" 8821 6296 11837 12266 7 541 5853 3257
50~70%° 5843 7 894 18 144 19 026 11472 8910 4086
30~50%4 6301 13 645 27417 29 057 21 860 17 630 6693
0-30%° 9557 27768 29172 32 594 46 576 40712 12 785
no hit 49 342 134910 98 748 100 773 229 616 163 690 109 738
Time 6h 4h 2h30m 1h34m 2h 58m 11hd4m
Threads 8 8 8 8 1 8 8

4Refers to assembled sequences covering 90% or more of amino acids on targeted reference proteins.
2-¢ An assembled sequence is considered to be matched to a reference protein in HMP when over 70% of the query sequence is aligned with identity higher
than 80%.

Table 2. Summary of performance of seven approaches on a pair of metagenomic and metatranscriptome samples. All the assembled sequences from the
seven approaches were then blast against a database with 19 bacteria genomes

Approach MetaPA metaSPAdes IDBA_UD" MEGAHIT MetaVelvet SOAP SFA-SPA
Sample SRS302292, SRS302293, SRS302298, SRS302307 (5.0 Gb)

Total assembled size 20 152 734 21056 101 18 875766 20 141 499 15995998 17 856 096 12 865 390
(a.a.)

Total fragments 63977 101 754 114227 120 939 110 834 152258 116 283
Mean length 315.0 206.9 165.2 166.5 144.3 117.3 110.6
Full-length 33320 29 435 9441 10 152 16 497 13815 15068
fragments®

70-90%° 3773 3790 7924 8492 4073 4543 2851
50-70%° 2207 4036 13123 14 060 5195 6584 3336
30-50%¢ 2171 6539 19 592 20 706 8533 12319 4851
0-30%° 2651 10 961 19 327 19 783 14 628 25307 6541

no hit 19 855 46 993 44 820 47746 61908 89 690 83 636
Time 7h57m 3h19m Sh18m 1hllm 1h18m 2h14m 10h43m
Sample SRS302300, SRS302306, SRS302315, SRS302319 (7.9 Gb)

Total assembled size 8 404 524 7817382 7 669 930 7162 149 7705 853 5586267 5472030
(a.a.)

Total fragments 29 726 42 874 54 947 42112 82977 57395 70 095
Mean length 282.7 182.3 139.6 170.1 92.9 97.3 78.1
Full-length 10 929 9468 3301 4306 2993 2427 4179
fragments?

70-90%° 3883 2200 2957 3200 1854 1476 1059
50-70%°¢ 2760 2 660 5070 5169 2923 2317 1364
30-50%¢ 2903 4777 9584 8675 6050 5049 2283
0-30%° 3175 7899 15691 8 575 13704 11 550 3957

no hit 6076 15870 18 344 12187 55453 34 576 57253
Time 26h51m 3h3m 2h48m 52m 2h13m 52m 28h18m
Threads 8 8 8 8 1 8 8

4refers to assembled sequences covering 90% or more of amino acids on targeted reference proteins.

2€an assembled sequence is considered to be matched to a reference protein in 19 bacteria genomes when over 70% of the query sequence is aligned with
identity higher than 80%.

*IDBA-UD and IDBA _Trans were used for predicting sequences from metagenomic and metatranscriptome dataset, respectively.
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transcriptionally active species, occupied 53.9% of total as-
sembled reads, followed by Bacteroides vulgatus ATCC 8482
(11.7%) and Bacteroides dorei 5_1_36/D4 (11.5%). Consid-
ering variation in gene expression, the assembled protein
sequences were classified into ten categories according to
their sequencing coverage (Figure 4B). As a result, the ma-
jority of proteins (77.2-95.1%) were recalled for the genes
with expression level of top 40%, i.e. with sequencing cov-
erage higher than 14 x. The possibility of protein assembly
descended along with the decrease of their abundance from
54.4% (8x) to 30.9% (5x). We also observed that the genes
in the last two categories had average sequencing depth
lower than 0.8x, leading to insufficient coverage of reads
on proteins and fragmented assembling results.

DISCUSSION

In this study, we described MetaPA, a method for the as-
sembly and prediction of protein sequences from metage-
nomic or metatranscriptomic short reads. As the presences
of stop codons lead to the decomposition of de Bruijn graph
into smaller subgraphs, each of which denotes a sequence
cluster representing a few homologous protein sequences,
the complex tasks of assembling whole microbial genomes
were simplified into resolving of single proteins from mess
of multiple homolog sequences. Thus, this strategy makes
MetaPA outperform these nucleotide based assemblers dis-
cussed in this study. In addition, MetaPA is capable of uti-
lizing longer k-mers (12-24 a.a.) compared with another
amino acid based method SFA-SPA, to further simplify the
decomposition procedure of graph thus enhance the effec-
tiveness on calling of complete protein sequences. Actually,
the recall and precision of MetaPA on real metagenomic
datasets were slightly improved along with the increasing
of k-mers lengths and reached the optimum values with the
length of k-mer as 18 a.a. (Supplemental Figure S12), which
occupied approximately half of 100 bp reads. In addition,
the percentage of chimeric sequences produced by MetaPA
decreases when applying longer k-mers and reaches to a
plateau value at 18 a.a. (0.75%). These evaluations suggest
a choice of 18-mer for MetaPA is most effective and effi-
cient when applying upon metagenomic dataset with similar
sequencing amount to these adopted in this study. Adop-
tion of shorter k-mers, e.g. with length of 14 a.a., benefits
protein assembly upon low abundant organisms by sacri-
ficing computation time. Recent studies (35,36) suggest the
challenge can be partially overcome by applying strategies
of flow cytometry and single-cell sequencing, when deal-
ing with microbiome with complex community structure.
If samples exhibiting tens or hundreds of organisms are
extracted, MetaPA is capable of uncovering most of pro-
teins from these mini-metagenomes associated with rela-
tively lower variation on species abundance.

Itis worth noting that MetaPA consists of both functions
of assembling and ORF prediction, while a third-party soft-
ware is necessary for the other five nucleotide based assem-
blers for gene calling. Nevertheless, MetaPA consumes sim-
ilar computational time with them, although MectaPA at-
tempts to iterate construction of de Bruijn graphs by utiliz-
ing various lengths of k-mers to improve its performance.
MetaPA requires up to 50 Gb memory, larger than those of
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other methods but still affordable on many servers, for as-
sembling these metagenomic sequencing data in this study.
Still, a more efficient way of MetaPA when dealing with
long k-mers calls for further study. All analyses were done
on a mini-server with 32 CPUs and 256 Gb memory.
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sourceforge.net/projects/metapal.
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