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Abstract

Evolutionary fitness landscapes of several antibiotic target proteins have been comprehensively mapped showing strong
high-order epistasis between mutations, but understanding these effects at the biochemical and structural levels
remained open. Here, we carried out an extensive experimental and computational study to quantitatively understand
the evolutionary dynamics of Escherichia coli dihydrofolate reductase (DHFR) enzyme in the presence of trimethoprim-
induced selection. To facilitate this, we developed a new in vitro assay for rapidly characterizing DHFR steady-state
kinetics. Biochemical and structural characterization of resistance-conferring mutations targeting a total of ten residues
spanning the substrate binding pocket of DHFR revealed distinct changes in the catalytic efficiencies of mutated DHFR
enzymes. Next, we measured biochemical parameters (K., K; and k) for a mutant library carrying all possible
combinations of six resistance-conferring DHFR mutations and quantified epistatic interactions between them. We found
that the high-order epistasis in catalytic power of DHFR (k... and K,,,) creates a rugged fitness landscape under trimeth-
oprim selection. Taken together, our data provide a concrete illustration of how epistatic coupling at the level of
biochemical parameters can give rise to complex fitness landscapes, and suggest new strategies for developing mutant
specific inhibitors.

Key words: antibiotic resistance, molecular evolution, experimental evolution, epistasis, protein evolution.

Introduction

Antibiotic resistance is one of the most important global
health threats (Laxminarayan et al. 2013). According to the
Centers for Disease Control and Prevention, antibiotic resis-
tant pathogens cause over 20,000 deaths and 2 million infec-
tions annually in the United States alone (CDC 2013).
Antibiotic resistance evolves either by resistance-conferring
spontaneous mutations in bacterial genomes or horizontal
transfer of mobile resistance elements (Martinez 2008; Davies
and Davies 2010). These genetic changes typically confer re-
sistance by reducing the affinities of antibiotic molecules to
their targets, deactivating antibiotics by chemical modifica-
tion, and finally decreasing effective antibiotic concentrations
inside bacterial cytoplasm by either efflux pumps or reduced
uptake of antibiotic molecules (Blair et al. 2015). Among
these, understanding how mutations render antibiotics inef-
fective by altering their targets is particularly important from

both clinical and basic science perspectives (Weinreich et al.
2006; Rodrigues et al. 2016).

In pathogenic bacteria, there is only a handful of drug
target proteins, such as DNA gyrases and RNA polymerases
and finding new “druggable” enzymes or novel drugs that can
target resistant bacteria is often a long and extremely difficult
process (Smith and Calvo 1982; Huovinen et al. 1995; Xu et al.
1996; Comas et al. 2012; Hartkoorn et al. 2012). Mutations in
these target proteins such as InhA (Enoyl-ACP reductase),
RNA polymerases, dihydrofolate reductase (DHFR), GyrB
(DNA gyrase subunit B), and the ribosomal protein RpsL
are known to render several important antibiotics ineffective.
Therefore, a mechanistic understanding of resistance-
conferring mutations in antibiotic targets is critical for design-
ing new drugs or drug variants that can inhibit antibiotic
resistant bacteria (Dasgupta et al. 2009; Pokrovskaya et al.
2009). How essential enzymes can preserve their catalytic
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Fic. 1. TMP resistance evolves through sequential accumulation of DHFR mutations. (A) Enzymatic activity of DHFR is crucial for nucleotide and
amino acid synthesis in Escherichia coli. TMP is a competitive inhibitor of DHFR that blocks its enzymatic activity by occupying its active site. (B)
TMP dose fluctuations (cyan filled area) in a morbidostat experiment are shown. Solid black line centering the cyan area represent mean TMP
concentrations, error bars represent daily standard deviations of TMP concentrations, and width of the cyan area reflect the standard error of the
mean of TMP concentrations at a given time. Morbidostat experiments revealed stepwise acquisition of resistance-conferring mutations; a sample
morbidostat trajectory demonstrating temporal changes in TMP resistance. Colored arrows indicate the timing of the first detection of DHFR
mutations. (Insert) Promoter mutations (c-35¢, g-31a) lead to 10- to 20-fold higher DHFR protein amount relative to WT. (C) Mutated DHFR
residues are highlighted in different colors on DHFR structure (PDB ID: 1rx2). (D) Observed frequencies of resistance-conferring mutations plotted
for 33 independent morbidostat experiments (28 populations from this study and 5 populations from a previous study [Toprak et al. 2011]).

activities when they acquire mutations to reduce drug affinity
is another important question for better understanding basic
principles driving protein evolution (Salverda et al. 2010;
Palmer et al. 2015; Schenk et al. 2015; Stiffler et al. 2015;
Rodrigues et al. 2016). In this study, we scrutinize molecular
mechanisms of resistance-conferring mutations in the
Escherichia coli DHFR enzyme and investigate how epistasis
between these mutations shapes the adaptive landscape for
trimethoprim (TMP) resistance evolution.

DHFR is a ubiquitous enzyme in nature with an essential
role in folic acid synthesis (Matthews et al. 1977; Benkovic
et al. 1988; Schnell et al. 2004). Due to its central role in
metabolism (fig. 1A), DHFR is used as a drug target in anti-
bacterial, anticancer, antirheumatic, and antimalarial thera-
pies (Schnell et al. 2004). For instance, pyrimethamine is one
of the few available drugs that can be used for treating malaria
caused by Plasmodium falciparum. Pyrimethamine has
specific toxicity against P. falciparum by binding and inhibit-
ing the P. falciparum dihydrofolate reductase (pfDHFR)
enzyme (Dasgupta et al. 2009; Lozovsky et al. 2009
Yuthavong et al. 2012). However, although pyrimethamine
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was one of the most commonly used drugs for malaria treat-
ment in the past, as of today, it is rarely prescribed because of
the resistance problem (Lozovsky et al. 2009; Hecht and Fogel
2012). The most common resistance-conferring mutations in
pfDHFR are the four point mutations N51I, C59R, S108N, and
[164L (Lozovsky et al. 2009; Yuthavong et al. 2012). The qua-
druple mutant of pfDHFR that carries all four of these muta-
tions is widespread globally and is highly resistant to
pyrimethamine. Similarly, evolution of resistance to TMP, a
bacteriostatic antibiotic molecule that competitively binds to
DHFR and blocks its enzymatic activity, proceeds through
sequential accumulation of resistance-conferring mutations
in the bacterial DHFR enzyme (Toprak et al. 2011; Oz et al.
2014). In our previous work, we showed that E. coli cells
evolved TMP resistance by accumulating up to four DHFR
mutations in a stepwise fashion (Toprak et al. 2011; Oz et al.
2014; Palmer et al. 2015). Since DHFR is an essential enzyme,
the evolution of resistance against DHFR inhibiting drugs is a
search for finding DHFR mutants that have reduced drug
affinity and yet adequate catalytic power for organismal sur-
vival. For better understanding the evolutionary dynamics of


Deleted Text: dihydrofolate reductase (
Deleted Text: )
Deleted Text: trimethoprim (
Deleted Text: )
Deleted Text: trimethoprim

High-Order Epistasis in Catalytic Power of DHFR - doi:10.1093/molbev/msz086

MBE

resistance against DHFR inhibitors, it is important to quanti-
tatively evaluate evolutionary paths leading to antibiotic re-
sistance and characterize resistance at the enzyme structure
level for the ultimate goal of improving human health.

We carried out a comprehensive experimental and com-
putational study to better understand the evolutionary dy-
namics of E. coli DHFR in the presence of TMP. In the
following part of this text, DHFR will be used to refer E. coli
DHFR enzyme. We evolved several antibiotic-naive E. coli
populations against TMP in the morbidostat, a continuous
culture device we developed to quantitatively study evolution
of antibiotic resistance (Toprak et al. 2011, 2013). We then
identified genetic changes in E. coli that were responsible for
TMP resistance. The genetic changes we found were mostly in
the folA gene that encodes for DHFR. We identified ten res-
idues that were frequently mutated in the DHFR as well as
promoter mutations that significantly increased DHFR pro-
tein levels in bacteria. We developed a new biochemical assay
that enabled us rapidly characterize these mutations by quan-
tifying their effects on substrate binding (K,,,), and catalytic
rate (k.,.) of DHFR. We synthesized all possible combinations
for six of these DHFR mutations and quantified epistatic
interactions between these mutations. Finally, we measured
the effects of these mutations on bacterial fitness by replacing
the endogenous folA gene in E. coli with its mutated variants.
Our analyses show that the adaptive landscape of DHFR,
calculated using biochemical properties of DHFR mutants,
deviates from the landscape predicted from the fitness effects
of single DHFR mutations using an independence model,
where fitness effects of multiple mutations are assumed to
be additive (Tekin et al. 2018). We show that this deviation is
mainly because of the high-order epistasis between mutations
altering DHFR catalytic activity and substrate binding. Next,
by running computer simulations, we identified plausible ge-
netic trajectories that reach to TMP-resistant genotypes. Our
simulations suggest that the evolution of TMP resistance can
be impeded by exploiting epistatic interactions between
resistance-conferring mutations and the use of mutant spe-
cific inhibitors. Finally, we carried out molecular dynamics
(MD) simulations to reveal structural changes responsible
for TMP resistance and epistatic interactions between muta-
tions. Analysis of the MD simulations suggests that DHFR
mutations confer resistance by utilizing distinct structural
changes which may be exploited for drug design purposes.

Results

DHFR catalyzes the reduction of 7,8-dihydrofolate (DHF) to
5,6,7,8-tetrahydrofolate (THF) by hydride transfer from nico-
tinamide adenine dinucleotide phosphate (NADPH) (fig. 1A)
(Benkovic et al. 1988; Huennekens 1996; Hammes-Schiffer
2004; Schnell et al. 2004; Boehr et al. 2006, 2008). THF is an
essential precursor for cell growth as it is used in thymidylate
and purine synthesis. Therefore, inhibition of bacterial DHFR
slows down or stops bacterial growth. TMP is a bacterial
DHFR inhibitor which competitively binds to the active site
of DHFR (fig. 1A). It is a commonly used antibiotic compound
for treating bacterial infections and is typically used in

combination with sulfamethoxazole due to synergism in their
combined effects. We and others have previously run labora-
tory evolution experiments to explore evolutionary trajecto-
ries that lead to high levels of TMP resistance in E. coli (Toprak
et al. 2011; Oz et al. 2014; Baym et al. 2016). In these studies, it
was shown that TMP resistance evolved in a stepwise fashion
and all populations acquired multiple mutations in the folA
gene that encodes DHFR. This observation was consistent
with previous studies reporting multiple DHFR mutations
in clinically isolated TMP-resistant pathogens (Maskell et al.
2001; Queener et al. 2013). One of the resistance-conferring
mutations was always in the promoter region and the rest
were in the coding region of folA. Mutations elsewhere in the
genome were rare implying that the evolution of TMP resis-
tance was confined to a small genetic target (Toprak et al.
2011). Although our results suggested a reproducibility in the
temporal order of the DHFR mutations, the number of
evolved populations was small and it was not clear whether
the mutations we observed were covering all possible DHFR
mutations. Besides, since a decrease in DHFR’s catalytic effi-
ciency is expected to decrease bacterial fitness (Reynolds et al.
2011), it was not clear whether evolutionary trajectories
would have been different if the minimum allowed growth
rate in an evolution experiment was changed.

Escherichia coli Populations Evolving under Mild TMP
Selection Follow Less-Constrained Mutational
Trajectories

We evolved 28 initially isogenic and TMP-sensitive E. coli
populations in the morbidostat using different minimum
growth rate constraints (Toprak et al. 2011, 2013).
Morbidostat is an automated continuous culture device
that maintains nearly constant selection pressure throughout
the evolution experiment. This is achieved by continuously
monitoring bacterial growth and clamping bacterial growth
rate by adjusting antibiotic concentrations with the help of
computer-controlled pumps. Addition of plain growth media
or antibiotic containing growth media is periodically done at
constant dilution rates. Therefore, bacterial populations that
cannot grow faster than the dilution rate of the morbidostat
are washed out and hence cannot survive in the morbidostat.
This feature enabled us run evolution experiments at different
dilution settings and controls the minimal growth rate
allowed for the survival of bacterial populations. In our set-
tings, the drug-free exponential growth rate of the parental
E. coli strain (MG1655) was ~08h~ "' (doubling time =
~52 min; M9 minimal media supplemented with casamino
acids and glucose, at ~30°C). We evolved initially isogenic
and antibiotic-naive E. coli populations (Materials and
Methods) at two different dilution rates (0.3h™' [mild selec-
tion, n = 14] and 0.6 h ™' [strong selection, n = 14]) for sev-
eral weeks and asked whether there would be any difference
in the dynamics of TMP resistance evolution. Selection is
stronger in the settings where the dilution rate is adjusted
to be 0.6h ™" as bacterial populations cannot survive in the
morbidostat if they have doubling times longer than
~70min, whereas under mild selection, populations can
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survive in the morbidostat if bacterial cells can double every
140 min or faster.

All E. coli populations in the morbidostat evolved very high
TMP resistance in a stepwise fashion (fig. 1B and supplemen-
tary fig. S1, Supplementary Material online) and they were
able to survive even at ~2.5mg/ml TMP concentration
which is the maximum solubility limit of TMP in our growth
media (M9 minimal media supplemented with casamino
acids and glucose, at 30 °C). All of the populations acquired
two to four mutations in the folA gene (supplementary fig. S1,
Supplementary Material online) and whole genome sequenc-
ing of 13 randomly selected TMP-resistant mutants that were
isolated on the last day of morbidostat experiments revealed
that, although the folA gene with its regulatory region spans
only ~0.013% of the genome, 39 out of 73 mutations (53%)
were observed in  folA (supplementary table S1,
Supplementary Material online). One of the folA mutations
was always a promoter mutation (g-9a, c-15a, g-31a, or ¢-35t)
and these promoter mutations increased DHFR protein ex-
pression levels 10-20 times compared with their wild-type
(WT) ancestor (fig. 1B, insert). The rest of the folA mutations
were in the coding region of folA and targeted total of ten
residues spanning the substrate binding pocket as illustrated
in figure 1C. Among these, the most common mutations
were at the following residues: P21, A26, D27, L28, W30,
and F153 (fig. 1D). When we closely examined population
structures and mutational trajectories of the evolving bacte-
rial cultures, although there were no significant difference in
the final resistance level between the cultures evolved under
strong selection and mild selection, we found that E. coli cells
evolved under mild selection experienced softer sweeps and
acquired more folA mutations compared with E. coli cells
evolved under strong selection (supplementary fig. S1,
Supplementary Material online, ~3.5 % 0.5 mutations vs.
~3.07 = 0.46 mutations, P < 0.01, Student’s t-test). Besides,
we found that populations evolved under strong selection
went through harder sweeps and had relatively less diversity
within the resistance-conferring folA mutations (supplemen-
tary fig. S1, Supplementary Material online). Particularly, un-
der strong selection, the first mutation in the coding region of
folA was dominantly the L28R mutation (9 times out of 14).
However, in the case of mild selection, the early mutations in
the coding region of folA showed more variation (supplemen-
tary fig. S1, Supplementary Material online). This observation
suggested that under strong selection, evolving populations
were more constrained while acquiring resistance-conferring
DHFR mutations.

Resistance-Conferring Mutations Have Diverse Effects
on Catalytic Efficiency of DHFR

Ideally, fitness effects of mutations should be measured at the
organismal level. However, characterizing the evolutionary
fitness landscape for DHFR requires reliable fitness measure-
ments which are not always possible when in vivo assays are
utilized. First, in our experience, several of the bacterial
mutants carrying DHFR mutations survived even at the high-
est possible TMP concentrations we could achieve (~2.5 mg/
ml) making it impossible to measure their true resistance
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levels (Palmer et al. 2015). Second, despite our numerous
attempts, it was not possible to engineer some of the E. coli
strains with desired combinations of DHFR mutations, sug-
gesting that cells with some DHFR alleles are not viable
(Palmer et al. 2015). Third, the strain we engineered by replac-
ing the endogenous folA (the gene that is transcribed into
DHFR) with the WT folA gene had a growth defect compared
with its ancestor MG1655 strain making growth rate meas-
urements less reliable (fig. 2). Fourth, overexpression of DHFR
due to promoter mutations masked the true fitness effects of
mutations found in the coding region of DHFR (Palmer et al.
2015). Finally, it is generally difficult to unequivocally attribute
the effects of mutations to bacterial fitness as cells can com-
pensate deleterious effects of mutations by gene regula-
tion or rearranging metabolic fluxes. Therefore, we
decided to characterize fitness effects of DHFR mutations
at the protein level by utilizing in vitro assays. A total of
eighteen resistance-conferring mutations (spanning ten
residues) in the coding region of the folA gene were
detected. We studied eleven of these single mutations
by choosing the most frequently observed amino acid
replacement in each residue, except W30 where we stud-
ied both W30G and W30R mutations.

We developed a rapid in vitro assay for calculating k., and
K, values for mutated DHFR enzymes (fig. 2 and supplemen-
tary figs. S2 and S3, Supplementary Material online).
Measuring substrate affinity (K,,,) and catalytic rate (k) of
an enzyme typically requires enzymatic activity measure-
ments at various substrate concentrations and predicting k¢,
and K, values by fitting a Michelis—Menten function to the
resulting data (Reynolds et al. 2011; Bershtein et al. 2012;
Rodrigues et al. 2016). Depending on the enzyme, this can
be a laborious and expensive task. The standard assay used for
measuring DHFR activity benefits from spectroscopic changes
in the cofactor (NADPH) and substrate (DHF) of DHFR as
THF is produced. Typically, by maintaining a high concentra-
tion of NADPH compared with the DHF, initial reduction rate
of DHFR is calculated by monitoring the absorbance of
NADPH and DHF at 340-nm wavelength. NADPH and DHF
have high absorptions at 340 nm (A4,) but their absorptions
drop upon hydride transfer between them. When DHFR is
mixed with NADPH and DHF, As,, is rapidly reduced until
DHF is completely consumed; this measurement needs to be
repeated at several different substrate concentrations for pre-
dicting k.. and K, values. We realized that this laborious
assay was not necessary for characterizing DHFR activity.
In the presence of saturating concentrations of DHF (10—
20 uM) and NADPH (100-200 uM), DHFR molecules al-
ready sample all possible concentrations of DHF through-
out the progression of the reaction while NADPH levels
are still at saturating levels. Also, the spectroscopic prop-
erties of NADPH and DHF allow us to predict both DHF
and NADPH concentrations during the progression of this
reaction (supplementary fig. S2, Supplementary Material
online). Since the rates of reverse reactions (fig. 2A, coun-
terclockwise direction) in the catalytic cycle are very slow
relative to the forward reaction rates (fig. 2A, clockwise
direction), it is possible to calculate reaction rates at
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Fic. 2. Biochemical characterization of resistance-conferring DHFR mutations. (A) Catalytic cycle of DHFR. Forward reaction rates are obtained
from Schnell et al. (2004). Rate-limiting step in the catalytic cycle is release of THF (red arrow). E stands for DHFR. E-NADPH-DHF (green fonts) is
the state used in our MD simulations. (B) Left panel shows a typical reaction progression curve after absorbance (340 nm) values are converted to
DHF concentration (see Materials and Methods). By utilizing moving time windows, we calculate catalysis rates at corresponding DHF concen-
trations. (C) K, and k.. values are predicted by fitting a Michelis—Menten equation to measured catalysis rates. (D, E) Initial reaction rates in the
presence of various TMP concentrations are used to predict the affinity (K;) of DHFR mutants to TMP molecules. (F) K, kcao and K; values of DHFR
mutants with single amino acid replacements. Error bars show standard error of the mean. Student’s t-test (two tailed) is used to quantify
significance of K, kcar and K; changes relative to the WT DHFR (*P < 0.05, **P < 0.01, and ***P < 0.001). (G) (upper panel) All engineered
Escherichia coli strains carrying single DHFR mutations are viable. Endogenous folA gene was replaced with the WT or mutated folA genes
(Materials and Methods). Cells were grown at ~30 °C in minimal M9 media supplemented with 0.4% glucose and 0.2% amicase in 12 replicates.
Exponential growth rates of all mutants except the I5F and L28R are all significantly lower than the parental MG1655 E. coli strain but higher that
the strain (WT) we engineered by reinserting the WT folA gene. Despite our several attempts, the engineered WT strain had a growth defect most
likely as a result of the selection markers we used for cloning (Materials and Methods). (lower panel) All engineered E. coli strains carrying single
DHFR mutations have elevated TMP resistance. Inhibitory concentrations reducing growth by 90% (ICy,) were measured by growing mutants in a
gradient of TMP using 12 replicates (~30 °C in minimal M9 media supplemented with 0.4% glucose and 0.2% amicase). Student’s t-test (two tailed)
is used to quantify significance of ICy, changes relative to the WT DHFR (*P < 0.05, **P < 0.01, and ***P < 0.001, error bars shows the standard error
on the mean for each mutant).

various DHF concentrations from a single reaction pro- (r=098 and P < 10> for ke, r=0.98 and P < 10> for
gression curve. As shown in figure 2B and supplementary K. Pearson correlation test) with the values we measured
figure S2, Supplementary Material online, we split the using the conventional method that needs measurements
progression curve in equal time windows and calculate at several different DHF concentrations (supplementary
corresponding mean DHF concentrations and DHF reduc- fig. S3 and table S2, Supplementary Material online). In
tion rates for every time interval. We then use these values addition, by measuring DHFR activity at steady state using
to predict ke, and K, values by fitting a Michelis— various TMP concentrations (fig. 2D), we calculated TMP
Menten equation (fig. 2C and supplementary fig. S2, affinities of DHFR mutants (K;) assuming competitive
Supplementary Material online). The k., and K,, values binding kinetics between DHF and TMP (fig. 2E and
we measured using this practical method correlated well eq. 1) (Nelson and Cox 2008).
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All of the mutations except the L28R caused significant
reductions in the substrate affinity (increased K,,) of DHFR
(fig. 2F and supplementary table S3, Supplementary Material
online). Contrary to our expectations, substrate affinity of the
L28R mutant was significantly increased (lower K,,) relative to
the WT DHFR. Changes in the K,,, were generally accompa-
nied with significant changes in the k¢, values. Interestingly,
three of the mutants (P21L, L28R, and R98P) exhibited de-
creased catalytic rates whereas others (D27E, W30G, and
W30R) had increased catalytic rates k... Finally, all of the
mutations but one (M20l) had reduced TMP affinity (in-
creased K;). Although antibiotic resistance via target modifi-
cations is typically attributed to reduced drug and substrate
affinities due to mutations, our measurements summarized in
figure 2F suggest that there could be distinct resistance mech-
anisms. That being said, K; values alone are far from enough
for explaining TMP resistance (supplementary fig. S4,
Supplementary Material online) (Rodrigues et al. 2016). In
the bacterial cell, several other parameters such as DHFR
abundance, catalytic efficiency (k../K:,), thermal stability,
availability of nutrients and metabolites, accumulation of ex-
cess DHF, and the need for THF can contribute to bacterial
fitness in the presence of TMP. Finally, we engineered mutant
E. coli strains by replacing WT folA gene with its variants
carrying single mutations. All of the engineered E. coli strains
with single DHFR mutations were viable (fig. 2G) and had
elevated TMP resistance compared with their parental
MG1655 strain (fig. 2H).

In summary, all DHFR mutations except the L28R and
M20I mutations decreased both substrate and inhibitor bind-
ing with the exception of M20l which did not have a signif-
icantly different K; value compared with the WT DHFR. On
the other hand, the L28R mutation increased substrate affin-
ity and decreased catalytic rate suggesting the existence of
newly formed interactions between the mutated DHFR pro-
tein and its substrate (DHF). The catalytic efficiency of other
DHFR mutants exhibited decreasing or increasing pheno-
types. We conclude that the resistance-conferring mutations
in DHFR are phenotypically diverse suggesting the presence of
distinct resistance mechanisms.

TMP-Free Enzymatic Velocities of DHFR Mutants
Correlate Well with TMP-Free Growth Rates of E. coli
Mutants Carrying Corresponding DHFR Mutations
Resistance-conferring mutations are rarely found in bacteria
isolated from pristine environments and this observation is
generally attributed to the fitness costs of resistance-
conferring mutations. In the case of enzymes such as DHFR,
where multiple resistance-conferring mutations are sequen-
tially fixed, it is not clear how that many mutations can be
tolerated while sufficient enzymatic activity is maintained for
organismal survival. To address this question, we selected six
of the mutations listed in figure 2F (P21L, A26T, L28R, W30G,

1538

W30R, and 194L) and synthesized a DHFR mutant library
where we had all 48 (3" x 2) possible combinations of these
mutations. We selected these six mutations because they had
diverse effects on the catalytic efficiency of DHFR. Fortunately,
we had access to a previously created library of E. coli mutants
with all combinations of the listed DHFR mutations (Palmer
et al. 2015). We purified and characterized all of the mutant
DHFR enzymes as previously described (k.. Kir, and K; values
listed in supplementary table S4, Supplementary Material on-
line). Next, we measured growth rates of the E. coli mutant
library (supplementary fig. S5, Supplementary Material on-
line) that carry the same DHFR mutations in various condi-
tions  (different  temperature,  different  glucose
concentrations, and different casamino acids concentrations)
(supplementary fig. S5, Supplementary Material online). We
found that enzymatic activity of DHFR mutants in the ab-
sence of TMP (V,, eq. 1), calculated at saturating [DHF], cor-
related well with the TMP-free growth rates of E. coli mutants
with  corresponding DHFR mutations (r = 0.46-0.58,
P < 103, Pearson correlation test). The correlations between
growth rates and other biochemical parameters such as k.,
or keae/Km were less significant (for ke, [r=10.33, P < 10 °;
for keae/Km: [r=006, P < 10">], Pearson correlation). We
note that the 12.5-uM DHF concentration is in good agree-
ment with the previously measured in vivo DHF concentra-
tions in which both reduced and oxidized species of folate
concentrations were in the range of ~10uM (Kwon et al.
2008). These experiments and the resulting analyses sug-
gested that V,, the substrate reduction rate of DHFR in the
absence of TMP, is a good predictor of bacterial fitness, par-
ticularly when limited nutrients are provided to bacterial
populations and bacterial cells are grown in the absence of
TMP.

Effects of Mutations on the Catalytic Power of DHFR
Were Largely Context Dependent Due To Epistasis
between Mutations

In order to qualitatively understand the evolutionary trade-
offs in DHFR evolution, we plotted V, values against the
corresponding K; values for DHFR mutants. To our surprise,
V, values exhibited a bifurcation in this geometric represen-
tation (fig. 3A). DHFR mutants either had enzymatic activities
comparable to their WT ancestor or significantly lost their
enzymatic activities, some of which displaying almost no ac-
tivity. All of the mutants that lost enzymatic activity carried
the P21L mutation (fig. 3A, red triangles and circles). This
bifurcation behavior could not be explained by any other
single mutations (supplementary fig. S6, Supplementary
Material online). In addition, none of the mutants that
were detected in the morbidostat (fig. 3A, gray and red circles)
had V, values lower than 4% of the WT V, (fig. 3A, horizontal
dashed line). We note that almost all of the DHFR variants
observed in the morbidostat appeared in the background of a
promoter mutation that increases DHFR levels (fig. 1B, insert).
Therefore, all the observed mutants in the morbidostat are
predicted to have DHFR activity equivalent to 40-80% of the
WT DHFR (V).
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Fic. 3. Combined effects of resistance-conferring mutations deviate from fitness values predicted by additivity model. (A) V,, versus Ki values of the
48 DHFR mutants are plotted. Curved and straight lines are used to separate mutants with different number of mutations. Horizontal dashed line
shows the minimum V, value for a DHFR mutant that was observed in the morbidostat experiment. Red markers show mutants with P21L
mutation. Gray markers show mutants without P21L mutation. Circle markers show mutants that are observed in evolution experiments. V,
values bifurcate depending on the presence of P21L mutation (red thick line). Same symbols are used in all three panels. (B) Predicted V, and Ki
values for multiple DHFR mutants by an additivity model using the V, and Ki values measured for DHFR variant with single mutations (relative to
the WT DHFR). These predictions significantly deviate from experimental observations (both for Vo, and for Ki [Student’s t-test, P < 10~ >]). This
model underpredicts Ki values by a factor of 0.27 = 0.35 and overpredicts V, values by 3.34 = 0.35 (mean = standard deviation; supplementary fig.
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Epistasis can simply be defined as the deviation from ad-
ditivity when two or more genetic or environmental pertur-
bations co-occur. In the absence of epistasis, the effects of
genetic or environmental perturbations are independent and
the effects of multiple mutations should simply add up to the
sum of the individual effects of mutations (supplementary fig.
S7, Supplementary Material online). In order to test the exis-
tence of epistatic interactions among DHFR mutations, we
asked whether the K; and V,, values deviated from the K; and
V,, values predicted by assuming additivity (no epistasis) (Bliss
1939). As shown in figure 3B, when the individual effects of six
single mutations on the WT DHFR are used to calculate K;
and Vj values assuming additivity (Bliss 1939), the predicted
K; and V, values significantly deviate from the experimentally
measured ones (Student’s t-test, P < 10~>). The predicted V,
values do not display a bifurcation and steadily decline as the
number of DHFR mutations increase. Also, the predicted K;
values are not as large as the experimentally measured values
(fig. 3A and B and supplementary fig. S8, Supplementary
Material online). When we instead utilize the mean effects
of single mutations on all possible genetic backgrounds in our
mutant library (supplementary fig. S9 and table S5,
Supplementary Material online), we can better estimate K;
values (fig. 3C). However, the bifurcation we observed in
figure 3A still disappears and several of the mutants have
lower predicted V,, values compared with the experimentally
measured ones (supplementary fig. S8, Supplementary
Material online). These observations clearly suggest the exis-
tence of epistasis among the six DHFR mutations we studied.

High-Order Epistasis in Catalytic Power of DHFR (kg
and K,,,) Creates a Rugged Fitness Landscape under
TMP Selection

We quantified epistatic interactions between the six DHFR
mutations (P21L, A26T, L28R, W30G, W30R, and 194L) by
utilizing a linear regression model (Materials and Methods)
(Poelwijk et al. 2016). Briefly, we attempted to recover fitness
values of all DHFR alleles using epistatic terms between muta-
tions. In a biological system, if effects of mutations are inde-
pendent, there is no epistasis and hence one can predict the
fitness of genotypes with multiple mutations by simply add-
ing the effects of single mutations. As shown in figure 4A,
using linear regression, we were able to effectively predict K;
values for all DHFR mutants with up to five mutations by
using only the first order epistasis terms (yielding ~10-20%
residual error). The extra information we gain from using
higher order epistatic terms was relatively small (fig. 4B) indi-
cating that measuring the mean effects of single mutations on
K; values will suffice to predict K; values of DHFR mutants
with any combination of the six DHFR mutations we studied.
This analysis is consistent with our findings summarized in

figure 3. However, for both k., and K, values, to obtain a
prediction power comparable with what we accomplished for
K;, we needed to use at least up to third order epistatic terms
and yet there was a big variance in the prediction perfor-
mance (fig. 4B). This suggested that the effects of the muta-
tions on DHFR’s catalytic activity were highly context
dependent (supplementary fig. S7, Supplementary Material
online) which make fitness landscape of DHFR rugged
(Palmer et al. 2015). In other words, even knowing all of the
pairwise interactions between these six mutations was not
sufficient to predict fitness of DHFR variants carrying three or
more mutations. Since DHFR fitness in TMP containing en-
vironment is a convoluted function of all k., K., and K;
values, evolution of TMP resistance in the adaptive landscape
becomes mostly unpredictable mainly because of high-order
epistatic interactions in catalytic power of DHFR (k. and
Kim)-

Promoter Mutations Compensate Detrimental Effects
of DHFR Mutations and Largely Increase Number of
Plausible Evolutionary Trajectories

Evolution of TMP resistance is a random search for muta-
tional trajectories that lead to the resistant DHFR genotypes
without sacrificing catalytic activity. We ran computer simu-
lations to visualize and quantify plausible evolutionary trajec-
tories leading to TMP resistance. As demonstrated in figure 5,
for every DHFR allele, we calculated DHFR activity (V) as a
function of TMP concentration. In figure 5A, as a measure for
fitness, we use TMP concentrations necessary to reduce mu-
tated DHFR enzymes’ activities down to 50% of V,, for the WT
DHFR (Vo). In this panel, DHFR mutants are represented as
cylindrical pillars with heights proportional to TMP concen-
trations necessary to reduce mutated DHFR enzymes’ activ-
ities down to 50% of V,, for the WT DHFR (V,""). Colored
filled circles on the upper surface of the cylinder represent
DHFR mutations. We note that this landscape dynamically
changes (supplementary video 1, Supplementary Material on-
line) as we increase TMP concentrations used in our calcu-
lations. In these calculations (eq. 1), we used a saturating DHF
concentration (12.5 M) which is in the physiological range
and we assumed a 10-fold increase in DHFR expression due to
the promoter mutation (fig. 1B, insert). Alleles are grouped
according to the number of mutations they have. We then
ran stochastic simulations where we allow DHFR to acquire
mutations as TMP dosage is gradually increased (fig. 5B). All
simulations start from the WT DHFR allele and the activities
of all DHFR alleles are calculated at every TMP concentration.
In these simulations, we assume that any DHFR mutant that
has activity (V) less than half of the WT DHFR activity (Vo' ",
no TMP) goes extinct unless they acquire a beneficial muta-
tion. In our simulations, we allow DHFR to obtain or lose one

Fic. 3. Continued

S8 and table S4, Supplementary Material online). (C) Predicted V,, and Ki values for multiple DHFR mutants by an additivity model using the
(geometric) mean effects of single mutations on all possible genetic backgrounds (supplementary table S5, Supplementary Material online). This
model overpredicts Ki values by a factor of 6 * 3.96 and underpredicts V, values by 0.35 = 0.39 (mean = standard deviation; supplementary fig. S8
and table S4, Supplementary Material online). The bifurcation observed in panel (A) disappears in both analyses summarized in panels (B) and (C).
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Fic. 4. Epistasis between resistance-conferring DHFR mutations is high order for substrate binding and catalysis (k... and K,). (A) A linear
regression model is used to predict fitness information stored in epistatic terms with increasing orders. Correlations between predicted fitness
values of all genotypes using nth order epistatic terms and the measured fitness values are calculated. (B) Median residual errors for predicted
fitness values as function of degree of epistatic terms used in regression. First order epistatic terms are sufficient to recover experimental K; values
with ~10-20% residual error. However, at least second and third order epistatic terms are required to recover experimental K, and k., values with

~10-20% residual error.

of the seven mutations (promoter, P21L, A26T, L28R, W30G,
W30R, and 194L) if activity of the mutant is about to drop
below half of Vo"". Any of these mutations can be added,
converted (W30R — W30G, W30G —W30R) or reverted
(e.g, L21 mutant to P21). As shown in figure 5, we observed
several genetic trajectories that arrive at local or global max-
ima. We repeated these simulations 10° times and quantified
relative abundance of mutational trajectories (fig. 5 and sup-
plementary table S6, Supplementary Material online).
Mutational trajectories that lead to high TMP resistance
peaks typically accumulated up to five mutations and the
majority of these trajectories reached to the fitness peaks in
five to seven genetic steps. Several viable trajectories included
more than five mutational steps mainly because reverting the
P21L mutation back to WT (L21P) significantly improved
DHEFR fitness in many genetic backgrounds. We then ranked
all of the genetic trajectories that reach to high TMP resis-
tance by taking the least possible number of steps and cal-
culated the likelihood of each mutation in the adaptive
landscape (supplementary table S6, Supplementary Material

online). We have repeated these simulations using lower fit-
ness thresholds (i.e, 1% of V, for the WT DHFR) and showed
that number and length of evolutionary trajectories that
reach to fitness peaks drastically increase if minimum fitness
thresholds are assumed to be lower (supplementary fig. S10,
Supplementary Material online).

We computationally tested the effect of promoter muta-
tions in DHFR evolution (fig. 5C). To do this, we ran simu-
lations where all of the DHFR alleles with promoter mutations
were eliminated and we compared these simulations with
those that allow the promoter mutation. We found that
number of plausible mutational trajectories that lead to
TMP-resistant genotypes significantly diminishes if the pro-
moter mutation is not allowed (fig. 5C). When promoter is
not allowed, only ~1.29% of the simulated trajectories reach
to genotypes that survived in 32-uM TMP which is consid-
ered as resistant in clinical settings. There are only 60 unique
trajectories which acquired one or more DHFR mutations
and increased TMP resistance. However, when promoter mu-
tation is allowed, ~5.59% of the simulated trajectories reach
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Fic. 5. Simulated evolutionary trajectories leading to TMP resistance. (A) DHFR alleles are represented as cylindrical pillars. Atop of pillars, colored
filled circles are used to show DHFR mutation. Heights of the cylinders correspond to TMP concentrations required to reduce the activity of
mutant DHFR enzymes down to half of the V,, for the WT DHFR (V,"'"). Note that several pillars have zero height because their activities never
exceed half of V" even in the absence of TMP. The trajectory represented with solid arrowed lines is one of the shortest and most common
pathways leading to global maximum of the adaptive landscape. The trajectory represented with dashed arrowed lines lead to a local maximum of
the adaptive landscape if the promoter mutation is not allowed. (B) Schematics summarizing the algorithm used in simulations. (C) Simulations
analysis summarized in heat maps. In simulations where the promoter mutation is not allowed (left), trajectories are shorter compared with the
trajectories where the promoter mutation is allowed (right). If the promoter mutation is allowed, an increased number of trajectories lead to
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to genotypes that survived in TMP concentrations between
32 uM and ~2.58 mM. In this case, 2,581 unique trajectories
acquired one or more DHFR mutations and increased TMP
resistance (supplementary table S6, Supplementary Material
online). This reduction effect is mainly due to elimination of
half of the possible genetic combinations between the six
resistance-conferring mutations we studied and also elimina-
tion of the compensatory effect of the promoter mutation.
Thus, number and length of plausible evolutionary trajecto-
ries, as well as the maximum possible TMP resistance signif-
icantly diminish in the absence of the promoter mutation.
Therefore, in the absence of promoter mutation, DHFR evo-
lution becomes more predictable.

We conclude that the first plausible mutation in DHFR
evolution is expected to be one of the promoter, W30R, or
W30G mutations. Indeed, the c-35t and W30R mutations
were previously found in clinically isolated E. coli strains
(Flensburg and Skold 1987). Once the promoter mutation
is fixed, E. coli cells will accumulate a mutation in the
coding region of the folA gene. This mutation can be
any of the mutations we observed in our morbidostat
experiments (fig. 1D and supplementary table S7,
Supplementary Material online) since there will be no
epistatic interactions at this point and the promoter mu-
tation makes the adaptive landscape of DHFR less pre-
dictable by compensating for diminished catalytic
activities of resistance-conferring DHFR mutation(s)
(fig. 5C). After the first mutation in the coding region is
fixed, acquisition of further mutations will largely be dic-
tated by the epistatic interactions. Mutations that have
synergistic or additive epistatic interactions (i.e., L28R)
with other DHFR mutations are more likely to get fixed
in the evolving populations, whereas mutants carrying
mutations that antagonize other DHFR mutations (i.e.
P21L) will most likely be outcompeted due to their
poor catalytic efficiencies.

Structural Evaluation of DHFR with Single Mutations
Reveals Distinct Resistance Mechanisms at the
Molecular Level

We utilized MD simulations to study the structural changes
associated with the experimentally observed TMP resistance-
conferring mutations in DHFR. DHFR is formed of eight
stranded [-sheets and four contiguous o-helices (Sawaya
and Kraut 1997; Dams et al. 2000; Heaslet et al. 2009). The
enzyme is divided by the active site cleft into two subdo-
mains: the adenosine binding subdomain and the major sub-
domain. The former (residues 38-88) provides the binding
site for the adenosine moiety of the cofactor (NADPH). The
latter subdomain consists of ~100 residues and contains
three loops on the ligand binding face that surrounds the
active site. Of particular interest is the M20 loop located di-
rectly over the active site, protecting it from the solvent, and
involved in the regulation of the hydride transfer step (Sawaya
and Kraut 1997). It is found in one of three conformations,
known as the open, occluded, or closed states (Sawaya and

Kraut 1997; Miller et al. 2001). In our computer simulations,
we have used the closed state as the starting structure (PDB
ID: 1rx2) (Sawaya and Kraut 1997). For each mutant studied
as well as the WT DHFR, we have compiled MD trajectories
for both the DHFR/NADPH/DHF (fig. 2A, green) and the
DHFR/NADPH/TMP complexes (Materials and Methods)
(Abdizadeh et al. 2017).

We have monitored the WT and all 11 single mutant sets
of MD trajectories corresponding to those listed in figure 2F
to decipher the molecular mechanisms that lead to TMP
resistance. We note that although these mutations are ob-
served with various frequencies in the morbidostat trajecto-
ries as displayed in figure 1D, only nine of them appeared as
the first coding region mutation in folA (supplementary table
S7, Supplementary Material online). Amongst these, D27E,
L28R, and W30R are three most frequently observed muta-
tions in the morbidostat and interestingly, these are also the
only cases where significant structural changes were identified
in the dynamical trajectories (fig. 6).

Amongst the WT and all single mutants we analyzed, the
D27E mutant is the only one where the hydride transfer dis-
tance is kept at an optimal precatalytic range (fig. 6A). We
note that in all mutations we studied, the M20 loop never
leaves the closed conformation in favor of the occluded form
which triggers the reduction of DHF into THF. Nevertheless,
the longer side chain (glutamic acid) of the D27E mutant
renders the moiety more flexible and dynamically maintains
the ligand at an optimal distance, keeping it ready for the
hydride transfer once this rare event takes place, hence
explaining the increase in kg, for the D27E mutant
(fig. 2F). On the other hand, the L28R mutation leads to
the formation of extra hydrogen bonds between the en-
zyme and DHF, thus stabilizing its conformation
(Abdizadeh et al. 2017). In figure 6B, we display the aver-
age distance of hydrogen bonds formed between the en-
zyme and DHF. Although the pterin ring of DHF is
permanently engaged in the binding pocket (as evidenced
by the hydrogen bond distances to 15 and D27), the p-
aminobenzoyl glutamate tail is mobile in WT DHFR. In
contrast, this mobility is significantly reduced in the L28R
mutant due to the extra interactions with the side chain.
Unlike D27E and L28R, the effect of W30R on the dynam-
ics of DHF is indirect. In this case, the R30 side chain of the
mutant forms a salt bridge with the side chain of E139
residing on the B sheet supporting the catalytic region
(fig. 6C). The distance between the two residues is re-
duced from a baseline value of ~8 A to ~2 A. This inter-
action slightly opens the tight binding pocket so that the
DHF p-aminobenzoyl glutamate tail motions are accom-
modated in the region between R52 and R57 residues,
whereas the glutamate tail is more disordered and closer
to R52 residue in the WT DHFR. Reduced interactions
between the p-aminobenzoyl glutamate tail and the en-
zyme leads to weaker substrate binding and higher cata-
lytic rate. In the rest of the DHF-bound MD simulations of
the single mutants, the changes in the dynamics of the
system are subtle.
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Fic. 6. Molecular mechanisms operating in the DHF bound dynamics of DHFR for the three frequently observed DHFR mutations. (A) D27E
replacement alters hydride transfer distance between the cofactor (NADPH) and the substrate (DHF). The measured distance is between the cyan
and blue spheres shown in the inset for the crystal structure positioning of NADPH (black) and DHF, which is readily lost in the WT structure as in
all the other simulations of the single mutants except for D27E. Dynamical motions of NADPH and DHF are displayed on the right. (B) L28R
mutations yields extra direct hydrogen bonds with DHF and stabilizes it in the binding pocket. The distance between the donors and acceptors of
the hydrogen bonds originally present in the crystal structure is monitored throughout the MD trajectories with their averages and standard
deviations displayed. Although the original hydrogen bonds are lost in both the wild type and the L28R mutant, there are many new hydrogen
bond donor sites on the R28 side chain, maintaining a dynamical hydrogen bonding ecology around the substrate. (C) W30R mutation releases the
tension in the tight binding pocket by forming a salt bridge with E139. The distance between the E139 acceptor (O- group) and the closest heavy
atom of residue 30 is plotted for the wild type and the W30R mutant. In the latter case a salt bridge is established between the side groups
frequently, relaxing the tight binding pocket where the substrate resides. As shown on the right, DHF maintains a position between the stabilizing
R52 and R57 side chains in the mutant while the contacts with R57 group is lost in the wild type.

MD Simulations Demonstrate the Context-
Dependent Effects of DHFR Mutations at the
Atomic Level

Epistatic interactions in biological systems are common and
were previously reported by several researchers. However, in
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most cases, the structural basis of epistasis was not sufficiently
explained (Weinreich et al. 2006; Toprak et al. 2011). To study
structural basis of epistasis between resistance-conferring
DHFR mutations, we utilized MD simulations for a subset
of DHFR alleles including all combinations of the mutations
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Fic. 7. Epistasis between resistance-conferring DHFR mutations are largely due to interactions of the mutated enzyme with the p-aminobenzoyl
glutamate tail of DHF. (top) Selected hydrogen bond distances between p-aminobenzoyl glutamate tail of DHF and DHFR for WT and a series of
single and double mutants. (bottom) Representative binding pocket poses. Helix spanning residues 25-37 (H,s_3;), partial loop spanning residues
52-57 and the ligand (gray stick) is displayed in all figures. A26T is neutral, L28R stabilizes DHF by mechanism described in figure 6B. 194L mutation
exacerbates substrate binding of DHFR by altering tight interactions with the p-aminobenzoyl glutamate tail of DHF in the binding pocket,
allowing the R57 side chain to flip out. L28R mutation is a highly epistatic mutation; together with either A26T or 194L, the L28R further stabilizes
the substrate in the pocket. P21L-194L double mutation also rescues the negative effect of 194L, whereas A26T-194L does not.

A26T, L28R, and 194L. In addition, we traced the effect of
adding P21L mutation to some of these mutants to trace
how this mutant drastically reduces enzymatic activity
(fig. 3). Among these, L28R is frequently observed as the first
coding region mutation in the morbidostat, whereas A26T
and 194L are observed later in evolution experiments (supple-
mentary table S7, Supplementary Material online).

We demonstrate the context dependence of the observed
dynamics by focusing on four specific examples involving
double mutations. We traced the signature hydrogen bonds
(H bonds between substrate and the side chains of 15, D27,
R52, and R57) between the enzyme and the substrate (fig. 7)
and found that hydrogen bonds between the I5 and D27 side
chains in the studied mutants were always close to their na-
tive values in the WT DHFR. However, those between the R52
and R57 side chains and DHF showed significant variations
(displayed in figure 7, averaged over the last 100 ns of the
trajectories.) For the single mutants, we do not find any sig-
nificant dynamical changes in the MD trajectories for P21L
and A26T mutations. We note that the common reduction in

the ke, value due to the P21L mutation (fig. 2F) possibly
occurs on time scales slower than the sub-microsecond ob-
servation window of our MD simulations; for example, due to
the modified dynamics of the catalytic M20 loop, whose con-
formational switch occurs on the time scale of ~2-
405 '(Schnell et al. 2004). Meanwhile, the 194L mutant
completely loses interactions with the R57 side chain since
the slight change in the isomerization of the side chain leads
to more prolonged interactions with the aromatic ring of
DHF, distorting the tight binding pocket. As a result, the
R57 side chain flips out of the pocket to the other side of
the helix spanning residues 25-37 (fig. 7).

L28R mutation leads to the formation of extra hydrogen
bonds with DHF. We found that together with A26T, this
effect becomes even stronger, fixing the position of DHF to
the space between R52 and R57 residues (fig. 7). Thus,
although the A26T mutation alone causes subtle structural
changes in our MD simulations, together with L28R, it bene-
fits from a synergistic effect on DHF binding, with the polar
side chain further stabilizing the network of hydrogen bonds
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in the pocket. The L28R mutation has a similar synergistic
effect on the 194L mutation. Despite the tendency of the 194L
mutant to interact strongly with the aromatic part of DHF,
the binding pocket is not as easy to distort due to the pres-
ence of R28 interactions with the substrate, further stabilizing
DHF. As expected by the outlined mechanism of action, ad-
dition of A26T to the 194L mutation does not lead to the
same synergistic effect. Interestingly, although P21L mutation
mostly impairs catalytic activity of DHFR, the P21L mutation
rescues [94L mutant. In this case, the more flexible L21 allows
distortions of the tight binding pocket without letting the
R57 side chain to flip out (fig. 7). We note that these muta-
tions significantly decrease the binding propensity of the in-
hibitor, as measured by the K; values listed in supplementary
table S3, Supplementary Material online. DHF escapes this
fate due to the extra interactions of the larger ligand with
the side chains of the enzyme. Running longer MD simula-
tions for all possible combinations of DHFR mutations was
beyond our computational capacity but even the analysis of
this small subset of DHFR mutants demonstrated the context
dependent effects of DHFR mutations at the molecular level.

Discussion

DHFR is a ubiquitous enzyme commonly used as a drug tar-
get in antibacterial, anticancer, and antimalarial therapies
(Schnell et al. 2004). Developing a better understanding of
the evolution of drug resistance through sequential accumu-
lation of DHFR mutations is therefore an important scientific
task to help improve drug therapies. Our experimental find-
ings and computational analyses demonstrate that DHFR is a
highly evolvable enzyme that can maintain its catalytic activ-
ity while accumulating multiple resistance-conferring muta-
tions. Experimental and computational analyses of six of these
mutations demonstrate the prevalence of epistatic interac-
tions between them which imply the ruggedness of the adap-
tive landscape (fig. 5) that lead to TMP resistance.

Epistasis between resistance-conferring mutations in E. coli
DHFR and pfDHFR was previously reported and quantified by
engineering all possible combinations of a small number of
resistance-conferring mutations (Lozovsky et al. 2009; Palmer
et al. 2015). A similar analysis was also done for a beta-
lactamase gene in the landmark study of Weinreich et al.
(2006). These studies mainly utilized bacterial growth assays
to quantify fitness effects of mutations and assessed the pre-
dictability for evolution of resistance. In another landmark
study by Lunzer et al, where effects of amino acid changes
in isopropylmalate dehydrogenase’s coenzyme choice were
systematically studied, it was demonstrated that each amino
acid replacement additively contributed to the function of
isopropylmalate dehydrogenase’s enzymatic function, and
that the epistasis comes from nonlinear mappings from en-
zymatic phenotypes to fitness (Lunzer et al. 2005). In this
study, by utilizing both biochemical assays and growth rate
measurements, we deconvolved epistasis between resistance-
conferring mutations and demonstrated that epistasis was
largely due to changes in catalytic activity of the mutant
DHFR enzymes. We also showed that epistatic interactions
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and the compensatory effects of promoter mutations signif-
icantly diminish our ability to predict DHFR evolution in the
presence of TMP-induced selection.

In a recent study, Rodrigues et al. investigated epistasis
between three of the mutations we studied (P21L, L28R,
and W30R) and developed an elegant framework to predict
fitness of E. coli strains carrying DHFR alleles with combina-
tions of these three mutations by using biophysical properties
of DHFR mutations (Rodrigues et al. 2016). However, because
of the small number of possible combinations (2°) of DHFR
mutations they studied, they were not able to detect the
P21L-caused bifurcation in the fitness landscape we report
here (fig. 3). For a larger set of combinations of DHFR muta-
tions that include the P21L, we found that fitness prediction
of DHFR alleles is more challenging. Using the available bio-
chemical fitness values we have, we were able to identify
partial correlation between catalytic power and bacterial
growth rates of DHFR mutants (supplementary fig. S5,
Supplementary Material online). However, we were not
able to demonstrate a direct correlation between TMP resis-
tance and biochemical parameters we measured (supplemen-
tary fig. S4, Supplementary Material online). We note that
predicting TMP resistance levels might be possible by using
extra biophysical parameters such as thermal stability and
abundance of DHFR mutants as was demonstrated by
Rodrigues et al. (2016).

Our analysis suggests that although predicting DHFR evo-
lution is a difficult task, it might still be possible to steer
evolution of TMP resistance towards clinically less challenging
genotypes. Among all the mutations we studied, promoter
and L28R mutations can potentially be targeted to reduce the
number of plausible evolutionary trajectories and TMP resis-
tance. If practical limitations are addressed, specifically target-
ing the promoter mutation by utilizing one of the novel gene
editing tools or sequence-specific morpholino oligomers will
substantially decrease both the number of accessible trajec-
tories and maximum resistance levels (fig. 5 and supplemen-
tary fig. 10, Supplementary Material online) (Jiang et al. 2013;
Ayhan et al. 2016). Also, since the L28R mutation has a dis-
tinct molecular mechanism that increases its relative prefer-
ence for the substrate over the drug molecules (fig. 6), it
might be possible to design L28R-specific DHFR inhibitors
that will mimic DHF without losing its specificity against bac-
terial DHFR. Since L28R mutation is observed in almost 80%
of all morbidostat trajectories and is synergistically interacting
with several mutations, an L28R-specific inhibitor will sub-
stantially impede evolution of TMP resistance.

Materials and Methods

Growth Rate Measurements

All DHFR mutant strains were constructed in MG1655
attTn7:pRNA1-tdCherry (NDL47) (gift from Johan Paulsson,
HMS). Detailed procedures for making mutant strains can be
found in reference (Palmer et al. 2015). Bacterial cultures were
grown at 30 °C in M9 minimal medium supplemented with
0.4% glucose (Fisher Scientific B152-1), 0.2% amicase (MP
Biomedicals 104778), 2-mM MgSO, (Fisher Scientific
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M63-500), and 100 pM of CaCl, (Fisher Scientific S25222A).
Overnight grown cultures normalized to optical density (OD)
of 0.001. Plates were incubated in 30°C with continuous
shaking in Liconic Shaking Incubator and growth is measured
with Tecan Plate Reader Infinite M200. Background optical
density levels (OD ~ 0.04) are substracted from all wells.
Growth rates are calculated by making an exponential fit to
growth curve when bacterial growth is in its exponential
phase.

Intracellular DHFR Protein Abundance Measurements
Escherichia coli NDL47 cells were grown overnight, and final
OD600 was adjusted to unity. These cells were then diluted by
10°fold in 5ml of M9 minimal media (supplemented with
0.4% glucose and 0.2% amicase) and grown for 6 h at 37°C
(220 rpm). Cells were then washed three times with cold PBS
buffer (pH 7.4), and bacterial pellets were lysed in 1x Laemmli
sample buffer (5ml/OD). Equivalent amounts of the cell
lysates (10 pu of the above sample) from each set were electro-
phoresed in a 4-15% precast polyacrylamide gel (561081;
BIO-RAD), and western blotting was performed following
standard procedures. DHFR antibodies are kindly provided
to Kimberly Reynolds by Shimon Bershtein. IR-labeled sec-
ondary antibodies (IRDye 800CW [926-32213] and IRDye
680RD [925-68072]; Li-COR) were used for detection.
DHFR protein amount was quantified using an ODYSSEY
infrared imaging system (LI-COR).

Steady-State Kinetic Measurements

Reactants of DHFR reaction (DHF [Sigma-Aldrich D7006] and
NADPH [Sigma-Aldrich N7505]) has absorbance at 340 nm
which the products (THF and NADP™) do not absorb light.
Concentrations of DHF and NADPH have been measured
using molar concentration coefficients of 6200M'cm ™'
at 340nm and 28000M 'cm ™' at 282nm (Fierke et al.
1987). Using LAMBDA 650 UV/Vis Spectrophotometer, we
measured reaction progression with 1-s resolution with two
cells. First cuvette is sample cuvette containing the reaction
components (DHFR, DHF, and NADPH) and the second is
reference cell contains only NADPH and DHFR in it
Biochemical measurements were done at 25°C in MTEN
buffer (pH ~ 7) which includes, 50-mM MES hydrate
(Sigma-Aldrich M8250), 25-mM Tris—Base (Fisher Scientific
B152-1), 25-mM ethanolamine hydrochloride (Sigma-
Aldrich E6133), 100-mM NaCl (Fisher Scientific $271-3), and
5-mM DTT (Fisher Scientific BP172-25) which is added fresh
before starting the reaction. MTEN solution containing DHFR
protein and 200-uM NADPH is prepared and 12.5-uM DHF
and 200-uM NADPH solution is added preceding the data
collection. Data collection is stopped when all the DHF is
consumed which happens when the curve reach a plateau
down below zero. Data analysis is done as explained in the
main text (fig. 2B and C and supplementary fig. S2,
Supplementary Material online). Data analysis software can
be found in https://github.com/ytalhatamer/EnzymeKinetics-
Matlab; last accessed April 16, 2019.

Calculating Inhibition Constant (K;) for TMP

To calculate inhibition constants for TMP, we used initial
rates of the reactions with saturating concentrations of
DHF and NADPH with different TMP concentrations. We
fit equation (1) to predict K; values as demonstrated in
figure 2D and E.

Protein Overexpression and Purification

All combinations of six mutations of folA gene at five sites
(1941, W30R, W30G, L28R, A26T, and P21L) are constructed
by using Quick-Change Site-Directed Mutagenesis kit
(Stratagene). 6XHis Tag is added on C-terminal of the protein
sequence. Constructs are cloned into the expression plasmids
(pET24a-KanR) for further protein purification. BL21 cells are
transformed with pET24a-folA-6xHisTag were grown over-
night in selective media (LB + Kan) and then diluted 100
times into TB media for further growth at 30 °C. Protein
overexpression induced when OD reached 0.6-0.8 using
250-uM IPTG at 18 °C with 220-rpm shaking. Recombinant
proteins are further purified using Ni-NTA columns (Qiagen)
and dialyzed overnight using dialysis buffer containing 50-
mM Tris—Base, pH 8.0, 0.5-M NaCl, and 400-mM imidazole
(Sigma Aldrich 792527).

Epistasis Calculations and Linear Regression Model

A linear regression model is used to predict fitness of DHFR
alleles by using epistatic interactions terms between DHFR
mutations using the following equation:

Y=X:- f+e

Here, Y stands for phenotypes, X stands for regression
matrix, 3 stands for regression coefficients, and € stands for
residual noise terms. X matrix is used to determine which
regression coefficients will be used for a specific genotype and
it can be recursively created as following:

X, O
Xpy1 = (n=0: 6) where X; and X, are
Xo Xn

defined as below.

Xo =1 [(only Wild Type (WT)]); X

1T 0
= l ] (for WT, and 194L),
1 1

10 0 0 0 O

1T 1 0 0 0 O

10 1 0 0 O
X, = for WT, 194L, W30R,
11T 1717 0 0 land W30G; W30R and
1000 1 0 W30G cannot coexist

|11 1.0 0 1 1]

The theory and algorithm is described in detail by Poelwijk
et al. (2016).
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MD Simulations

The NAMD package is used to model the dynamics of the
protein—water systems (Phillips et al. 2005). Solvation is
achieved via the VMD 1.9.1 program solvate plug-in version
1.2 (Humphrey et al. 1996). The protein is soaked in a cubic
solvent box such that there is at least a 10-A layer of solvent in
each direction from any atom of the protein to the edge of
the box. The system is neutralized and 150 mM of ionic
strength in all the simulations is maintained by adding a
suitable number of K™ and CI~ ions. The CharmM22 all-
atom force field is used to model the protein and the
TIP3P potential for water (Brooks et al. 1983; Abdizadeh
et al. 2017). We have adopted the force field parameters for
five-protonated DHF and TMP in two protonation states as
reported in the literature (Garcia-Viloca et al. 2003). Periodic
boundary conditions are imposed on the simulation boxes
that have 60 x 67 x 58-A> dimensions. Long range electro-
static interactions are calculated by the particle mesh Ewald
method (Darden et al. 1999) with a cutoff distance of 12 A
and a switching function at 10A. The RATTLE algorithm
(Andersen 1983) is applied and a time step size of 2 fs in
the Verlet algorithm is used. Temperature control is carried
out by Langevin dynamics with a dampening coefficient of
5 ps” . Pressure control is attained by a Langevin piston. All
systems are first subjected to 10,000 steps of energy minimi-
zation with the conjugate gradients algorithm. The resulting
structures are then run in the NPT ensemble at 1atm and
310K until volumetric fluctuations are stabilized and the de-
sired average pressure is maintained.

MD simulation of the ternary complex of the DHF bound
systems are constructed based on the crystallographic struc-
ture with PDB code 1rx2 (Sawaya and Kraut 1997). DHFR is
complexed with folate and oxidized NADP (NADP™) in this
native form. We protonate NADP and folate so that the for-
mer is in the reduced form (NADPH) and the latter is five-
protonated DHF to model the stable state prior to the
hydride transfer step.

In a separate set of MD simulations, we study the effect of
TMP binding in its unprotonated (TMP) or ground state
(TMP™) on the DHFR conformation. Since there are no crys-
tal structures of E. coli DHFR with TMP, we have docked the
inhibitor based on the coordination of equivalent residues of
the TMP binding region of Staphylococcus aureus DHFR (PDB
code: 2w9g) (Heaslet et al. 2009). Details of TMP binding site
selection is provided in reference (Abdizadeh et al. 2017). For
MD simulations of the various mutants of DHF, TMP, and
TMP™ bound forms of DHFR, we mutated the WT structures
in silico via BIOVIA Discovery Studio 4.0 package using build
and edit protein tool (Dassault Systemes BIOVIA 2015). For
systems with multiple mutations, we substituted the native
positions with the target mutations simultaneously. The sol-
vation, ionization, minimization, and equilibration were per-
formed as described for the WT systems. All MD simulations
are 210-ns long, with the first 10 ns discarded for equilibration.
Simulations for the WT cases were repeated to confirm the
reproducibility of the results.

The mutants studied are as follows: The single mutants I5F,
M20I, P21L, A26T, D27E, L28R, W30G, W30R, 194L, R98P, and
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F153S; all double mutant combinations of the A26T, L28R,
and 194L sets; double mutant combinations of P21L with each
of A26T, L28R, and 194L. Thus, we have carried out 210-ns-
long simulations of 17 sets of mutants, with DHF, TMP, and
TMP* bound, leading to simulations of ~8 s in total, in-
cluding the WT sets.

We use the approach in reference (Abdizadeh et al. 2017)
to confirm the native form of TMP in the DHFR bound state,
by monitoring the distribution of the native hydrogen bonds
in the binding pockets. In all the sets, TMP™ remains tightly
bound, whereas TMP flips in and out of the binding pocket
throughout the simulation. We thus accept the protonated
form of TMP to be the native form in all the systems; note
that this is not the case for D27N and D27S mutants, as
discussed at length in reference (Abdizadeh et al. 2017).

Simulations of Protein Evolution and Visualization
Protein evolution simulations works on a DHFR mutational
space (proteins as nodes and single mutation acquisition,
conversion or reversion as lines). Simulation starts from WT
in no TMP condition. TMP concentration gradually increases
and at each drug concentration fitness landscape of DHFR
mutational space is calculated. When drug concentration hits
a value where enzyme activity is lower than threshold activity
(simulations are separately carried out for 50%, 10%, 1%, 0.1%
of WT enzyme activity at [TMP] = 0nM) a random muta-
tional step is taken (a mutation acquisition, conversion, or
reversion). If the new mutant has lower activity than thresh-
old, the simulation stops, otherwise the new mutation is fixed,
and drug concentration starts increasing again till new
mutants’ activity drops down to the threshold level
(fig. 7B). Simulations are repeated for a million times to sam-
ple all possible unique trajectories. Visualization of the simu-
lations is done by VPython, an open source software package
for interactive 3D graphics (Scherer et al. 2000). Our script for
producing figure 5A, and the supplementary video,
Supplementary Material online, can be found in https://
github.com/ytalhatamer/AdaptiveSeascape; last accessed
April 16, 2019.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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