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Nanoscale Brownian heating 
by interacting magnetic dipolar 
particles
Yann Chalopin1, Jean-Claude Bacri2, Florence Gazeau2 & Martin Devaud2

Clusters of magnetic nanoparticles have received considerable interest in various research fields. 
Their capacity to generate heat under an alternating magnetic field has recently opened the way 
to applications such as cancer therapy by hyperthermia. This work is an attempt to investigate the 
collective effects of interacting dipoles embedded in magnetic nano-particles (MNP) to predict their 
thermal dissipation with a liquid. We first present a general approach, based on the tracking of the 
microscopic dipole fluctuations, to access to the dissipation spectra of any spatial distribution of MNPs. 
Without any other assumption that the linear response regime, it is shown that increasing the particle 
concentration (dipolar interactions) dramatically diminishes and blueshifts the dissipation processes. 
This effect originates in a predominance of the coupling energy over the Brownian torques, which create 
a long-range ordering that saturates the response of the system to an external field. Consequently, 
the particle density is of fundamental importance to the control of the absorption of electromagnetic 
energy and its subsequent dissipation in the form of heat.

Magnetic nanoparticles (MNPs) have been proposed in various applications for their ability to generate local 
heating of their environment by converting externally-supplied magnetic energy. The remote activation of 
particles by magnetic fields enables breakthrough approaches in biomedicine as well as catalysis and magnetic 
recording. MNP-mediated heating has been investigated as cell-destructive cancer therapy for decades1 and more 
recently for stimulation of thermosensitive nociceptive ion channels, neuronal modulation, deep brain stimula-
tion, control of cell membrane depolarization, activation of protein expression or drug delivery2–6. A low-intensity 
radiofrequency alternating magnetic field can penetrate into the body without substantial attenuation allowing 
on-demand excitation of biocompatible iron oxide nanoparticles targeted to the desired area. Thermal dissipation 
in the environment depends on intrinsic properties of materials such as magnetization, anisotropy and size but 
also on the interactions of particles with the medium and other particles7. Particularly, when MNPs are encapsu-
lated in drug vectors (liposomes, polymersomes) or embedded in biological environments (cell membrane, cell 
lysosome), they are submitted to dipole-dipole interactions that change their magnetic response to the external 
field in a complex and currently unsolved manner8–10. Going beyond the assumption of negligible interparticle 
interactions in the linear response theory is a burning issue, generally tackled using Monte-Carlo approaches11–13. 
Interparticle interactions are fundamental to many other disciplines including data storage14, geomagnetism, 
biology2–6, 15, composite materials, ferrofluids or magnetic resonance. The physics underlying the dynamics of 
interacting dipoles in systems of microscopic dimension is so rich that tremendous efforts have been devoted to 
address this subject from experimental16, 17 and theoretical18 approaches. Predicting the dynamics of the dipolar 
sets, comprising magnetic and dielectric nanostructures, is an important challenge as the long-range and ani-
sotropic dipolar interactions7 entail a wealth of nonindependent degrees of freedom, difficult to track analyti-
cally. The developments of both numerical and analytical methods assessing the particles response to an external 
field11–13, and powerful enough to handle the complexity of the couplings, are still to be found. The particles are 
usually considered with a finite magnetic anisotropy and the computation of their relaxation properties relies 
on the energy barrier approximation19. In such cases, the relaxation is driven by two processes: The Neel and the 
Brownian relaxation. Regarding the former, many works have reported a shortening of the magnetization relax-
ation time when increasing the dipolar interactions18–21. In addition, various studies have further addressed the 
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case of two-dimensional square arrays20–26 which are suited for experimental investigations24. In a similar fashion, 
dielectric relaxation in systems subjected to rotational Brownian motion remains an important question27, 28.  
It is relevant to the study of dynamic light scattering, Raman scattering and liquid crystals. Some analytical 
approaches have accounted for approximations in which the many-body system is casted in terms of a two-body 
problem29, or a single dipole in a mean field. The former approach is restricted to the case of low dipole densities 
while the latter is irrelevant for 2D or 1D sets.

Considering this broad setting, our interest focuses on the problem of evaluating the effect of the interactions 
between rigid dipoles carried by particles damped by a viscous torque30. Our analysis thus aims at identifying to 
what extent the Brownian relaxation process is affected by the particle interactions without any restriction on 
their density. For this purpose, we have formulated a statistical approach based on numerical simulations that 
reproduce the equilibrium orientational fluctuations of dipoles interacting in a heat bath. Hence, by means of the 
fluctuation-dissipation theorem, we have predicted the frequency-dependent imaginary part of the susceptibility 
of the system, subjected to an external ac field 

��
B1. We anticipate our conclusion by revealing that (1), interactions 

yield an additional relaxation rate and reduce the amplitude of susceptibility spectra and that (2), as the dipole 
pair energy grows, the magnetic stability of the system increases against the effect of the thermal agitation by the 
liquid, so that the absorption and the dissipation dramatically decrease.

Model
We have considered a square array of N = 100 magnetic rigid dipoles µ��i carried by spherical particles with volume 
V and inertia momentum I, immersed in a liquid with viscosity η at the temperature of 320 K. With the help of the 
fluctuation-dissipation theorem, it is possible to formulate a general approach to derive the macroscopic 
non-equilibrium response of the system by tracking numerically the microscopic equilibrium fluctuations of the 
dipoles µ��i. The Hamiltonian of the system can be written as
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A priori, both the rotation and the translation31 of the particles are sources of dissipation. We nevertheless only 
consider the rotation of the magnetic dipoles in this study: the dipoles have a position fixed in a two-dimensional 
square lattice along the (x, y) plane, with the nearest neighbor distance d, entailing a dipole surface density 
ρ = 1/d2. Each dipole µ µ=

�� �ei i undergoes a viscous torque ζωΓ = −
�� ��

vis i p i, , , with ω��p i,  the instantaneous rotation 
vector of dipole µ��i and ζ η= V6  the angular viscous friction coefficient. In addition to this damping, each dipole 
i is subjected to a magnetic torque µ ×
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To account for the collisions with the liquid molecules, we have considered an angular Langevin equation with 
a stationary random torque Γ

��
rnd i,  acting on µ��i. The correlation time of this torque is consequently the collision 

time, which remains much smaller than the relaxation time of the angular velocity ω��p i, . Γ t( )rnd  is thus 
delta-correlated in time: τ ζ δ τΓ Γ + =t t k T( ) ( ) 2 ( )rnd rnd B . The complete set of differential equations describing 
the dynamics of the magnetic dipoles damped in a liquid is
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In principle, it would be possible to study the response of the system illuminated by an external alternating 
field ω

��
B ( )l  along direction l by including explicitly Bi in Eq. (4). The dynamics of a magnetic dipole in an oscillat-

ing field has been studied with a similar approach32. Practically, this procedure requires too many calculations to 
determine the whole spectrum of the magnetic susceptibility tensor α(ω) defined as:

ω α ω ω= .
��� ��
M B( ) ( ) ( ) (5)k kl l

Instead, we propose to integrate Eq. (4) in the absence of external field to access to the equilibrium fluctuations 
of the rigid dipoles. Thanks to the fluctuation-dissipation theorem33, 34 (FDT), the components of the imaginary part 
of the magnetic susceptibility tensor α′′ = Im(α(ω)) can be obtained from the time correlation function of 

���
M  as:
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∈k l x y z, { , , } and N is the number of particles considered. This approach has a significant advantage as the cor-
relation function of the magnetization is trackable experimentally35. More importantly, from a single simulation, 
one thus predicts the spectral response of the system when excited by any small external field, by tracking the 
microscopic time fluctuations of the response without the field.

Methods
Our simulations are based on the Langevin stochastic equations of motion (Eq. (4)) which are solved numerically 
using the Verlet method. The dipolar fluctuations are obtained in the canonical ensemble (fixed number of parti-
cles, constant volume and temperature) at T = 320 K. The effect of the rotational friction with the fluid is 
accounted for by a random force generated via a stochastic white noise, plus an effective friction force accounting 
for the water viscosity η = 7 · 10−4 Pa.s−1. The power spectral density of the random force Γrnd is related to the 
friction coefficient by the fluctuation-dissipation theorem36. The integration time step dt =10 ps is large enough 
to capture the diffusion of the dipoles in a reasonable amount of time steps (typically 108 steps), and sufficiently 
small to properly account for the characteristic times associated to the particle damping. We have evaluated the 
interactions by direct summation of the torques in the real space by means of a cutoff. This cutoff corresponds to 
twice the distance by which the dipole pair energy of a particle has converged, considering the highest density. A 
cutoff taken at 100 nm results in an error smaller than 0.02 kBT in estimating the magnetic energy per particle.

A summary of the simulation parameters is presented here on Table 1.

Results
We first consider the case of noninteracting rigid dipoles. It corresponds to the limit where the inter-particle 
distance d → ∞, so that there is no effect of the dipolar interactions and ρ = 0. The dipoles are carried by spherical 
particles of various diameters. Figure 1 depicts the time fluctuations of the components of the magnetization 

���
M t( ) 

and the imaginary part of the susceptibility spectra α′′(ω) extracted from these fluctuations following Eq. (6). As 
expected, it can be observed that α′′(ω) fits with a Debye law according to the formula

α ω ρ α ω ρ ωτ
ωτ

″ = = = =
+

.( , 0) ( 0, 0)
1 ( ) (8)2

The lowest frequencies are attributed to the slowest characteristic times, thus, the longer one increases the 
simulation duration, the better one estimates the lowest frequency part of the spectra (in our case, Ns = 18 steps 
with dt = 1 ms). At the optimal excitation angular frequency ω = τ−1, the dissipation α′′(ρ = 0) reaches its maxi-
mum value α ρ α ω τ ρ α ω ρ″ = ≡ = = = = =−( 0) ( , 0) ( 0, 0)/2max

1 , where τ is the relaxation time of the sys-
tem (Fig. 1b). For MNPs with hydrodynamic diameters ranging from 5 nm to 50 nm, the simulations give 
relaxation times that quantitatively agree with the expected Nerst-Einstein relation τ = τB = ζ/2kBT = 3ηV/kBT 
(Fig. 1c). This result validates the statistical calculation in the well-known case of noninteracting rigid dipoles 
experiencing angular Brownian relaxation. Note that, as expected, the in-plane component of the susceptibility 
α ″n p/  (en and ep being any couple of orthogonal in-plane directions) and the cross-plane components of the suscep-
tibility α ″z  are identical in this case. We have next included the dipole-dipole interactions between MNPs. The 
strength of the interactions is tuned with the particle surface density ρ. Figure 2b displays the anisotropic dissipa-
tion spectra for the two components α ″n  and α ″p  in the plane, and the perpendicular component α ″z , at the density 
of 1.5 · 10−2 nm−2. The corresponding time fluctuations of these magnetization components are illustrated on the 
inset. We have identified on the same figure a range of concentration (grey) where the Knudsen number Kn = Λ/l, 
obtained from the water mean-free-path (Λ = 2.5 · 10−10 m in water) and the edge-to-edge inter-particle distance 
l, is not small enough to guaranty the absence of hydrodynamic effects. As shown on the same plot, this particular 
regime occurs in the restricted case where the particles are in contact (ρ ~ 10−2 nm−2). As we will see later in this 
work, the damping by the liquid is so weak compared to the dipole-dipole interactions that the effect of the liquid 
can be completely neglected.

Parameter value (units)

dt 10 (ps)

η 7 · 10−4 (Pa.s−1

T 320 (K)

Mass density 5 · 103 (kg.m−3)

μ 1.3 · 105(μB)

Table 1.  Simulation parameters.
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Discussion
The dipole-dipole interactions (illustrated in Fig. 2) impact the amplitude of α′′(ω), which is dramatically 
decreased and the maximum of dissipation is shifted towards higher frequencies. In the time domain, orienta-
tional fluctuations of interacting dipoles are both accelerated and limited in amplitude compared to noninteract-
ing dipoles. This is consistent with what has already been reported independently15, 20, 28. The planar distribution 
of the dipole lattice introduces an asymmetry between the in-plane and the cross-plane magnetization, which in 
turn influences their associated fluctuations: the latter being even faster and smaller than the former, less affected 
by the particle interactions. Surprisingly, regardless of the strength of the dipolar coupling, each component of the 
susceptibility still fits with a Debye function: an optimal frequency for dissipation thus corresponds to a single 
relaxation time. To estimate the mass concentration of nanoparticle in g/l from which the effect of the interactions 
becomes observable, we consider the mass density of iron oxide (5 · 103 kg/m3). Dipolar effects occur as soon as 
the inter-particle distances become shorter than roughly three times the particle diameter (this correspondance 
between the dipolar energy cutoff and the particle diameter remains a good approximation even at other sizes, 
when accounting for a volume-dependent dipole moment). Considering the case of an isotropic particle distribu-
tion, the mass concentration is of the order of 250 g/L. Figure 2b presents the amplitude at the maximum of dissi-
pation α ρ″ ( )max  as a function of the density, for each component. These amplitudes are normalized by the 
corresponding values in the noninteracting case. Similarly, Fig. 2c displays the frequency of maximum dissipation 
1/τ as a function of the MNP density. Importantly, above a density threshold of ρ = 4 · 10−4 nm−2, the optimal 
frequency increases with density as ρ3/2, similarly to the coupling energy U which scales as d−3 = ρ3/2. According 
to the Debye structure of the dissipation spectra, we deduce that the relaxation rate of rigid interacting dipoles 
includes an additional term which accounts for the interactions:

τ τ τ ρ= +− − − ( ), (9)B U
1 1 1

with τU(ρ) = ζ/U(ρ), this expression remarkably fits the statistical calculations presented in Fig. 2b,c for both 
the amplitude and frequency of maximum dissipation. However, we have noticed that when the interactions are 
accounted for, the susceptibility becomes anisotropic: each of the three eigenvalues of the imaginary part of α 
undergoes a different decrease of its amplitude in the directions of highest MNP density, as seen on Fig. 2b,c, for 
the two in-plane components (x, y). The spectra reported on Fig. 3a indicate that dipole-dipole interaction leads 
one of the two planar components (n or p) to undergo a singular effect from the interactions. To elucidate this 
particular feature, we have calculated both the average dipole orientation and the local field in the vicinity of each 
particle. By looking at the corresponding figure (Fig. 3b), we deduce that magnetic interactions tend to align the 
dipoles in particular directions, where the dipole density is the highest. In addition, it is observed that an anti-
ferromagnetic phase order occurs as the thermal energy is dominated by that of the dipole pair (Fig. 3b-3)25. As 
depicted on Fig. 3a, this has for effect to saturate the magnetization along that direction (ep) while only the normal 
direction (en) can be associated to a coupling with an external field.

Figure 1.  Noninteracting MNPs (a) Time fluctuations of the components of the magnetization 
���
M t( ). Mx/y and 

Mz denote the in-plane and cross-plane components of the magnetization respectively. (b) Frequency 
dependence of the imaginary part of the susceptibility α(ω, ρ = 0) obtained according to Eq. (6), from the time 
fluctuations of 

���
M t( ). The solid line shows the susceptibility fit with a Debye fonction (Eq. (8)) with a maximum 

for ωmax = 1/τ. (c) Relaxation time τ derived from the Debye fit of the susceptibility exemplified in (b), for 
different MNP radii (squares). The dashed line displays the Nernst-Einstein relation, in agreement with the 
simulations.
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Figure 2.  Interacting MNPs of 5 nm radius. (a) The inset illustrates the center-to-center inter-particle distance d. 
Imaginary part of the magnetic susceptibility α′′(ω, ρ) for ρ = 2.5 · 10−3 nm−2 normalized by its maximum for 
noninteracting MNPs. The magnetic relaxation along the cross-plane direction α ″( )z  is weaker and faster than 
those of the in-plane components α α″ ″( ),n p . The spectra obtained from a single equilibrium simulation (points) 
are fitted with a Debye function (solid lines). (b,c) Evolution of the susceptibilities α ″n p z, ,  as a function of the MNP 
density. Dipole-dipole interactions diminish the absorption amplitude (b) and increase the frequency of maximum 
of dissipation (c). This effect is further enhanced along the cross-plane direction α ″( )z  while an in-plane component 
α ″( )p  is always more affected by the interactions than the other α ″( )n . The grey region indicates concentrations 

where hydrodynamics effects may occur due to small inter-particle distances defining a larger Knudsen number.
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We conclude that interactions affect the susceptibility in two distinct ways. First, by orienting/reorganizing the 
dipoles in directions where the particle density is maximal. Here, we have two directions defining a square lattice 
in which the magnetization is confined. In addition to the confinement of the dipoles orientation, the ensemble 
of particles becomes increasingly less sensitive to the external field (the susceptibility saturates) as the result of an 
antiferromagnetic phase order that arises as the particle density grows. Again, this long-range ordering occurs 
along the direction where the particle density is high enough to counterbalance the thermal fluctuations. This can 
be further illustrated (Fig. 3-c): by associating each axis of an ellipsoid to the value of a component of the static 
magnetization (in-plane and cross-plane), one obtains a 3D representation of the system response. For instance, 
without interactions, the susceptibility tensor is spherical: the magnetization is isotropic. At weak interactions 
(Fig. 3c-2), the z-response vanishes, while the in-plane response dominates (with a quasi-degeneracy) and the 

 

Figure 3.  Susceptibility correlated with the local fields and dipole orientations. (a) Imaginary part of the in-
plane magnetic susceptibilities α ″p  and α ″n  for the cases of no (1) (ρ = 0 nm−2), medium (2) (ρ = 2.5 · 10−3 nm−2) 
and strong (3) (ρ = 10−2 nm−2) interactions. (b) 2D mapping of the dipoles orientation (blue arrows), local fields 
induced by the interactions (red arrows) and local field intensity (grayscale). (c) Ellipsoidal representation of the 
static magnetic susceptibility tensor for the three densities.
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static susceptibility can be represented by a disc. At high densities (Fig. 3c-3), the antiferromagnetic phase further 
restricts the magnetization of the system along a single in-plane direction (en). We have finally estimated the 
power dissipated (P = ωα′′(ω)) for each frequency (Fig. 4). From this figure, it can be seen that for all densities, 
the energy dissipated in the liquid always increases with frequency until it saturates. The optimum is reached as 
soon as the period associated to the frequency of the external field matches the relaxation rate τ. Even with a weak 
dipole-dipole coupling, the possibility to heat-up a fluid with an external field is almost lost. On the remaining 
dominant absorption component, we see that for an inter-particle distance of the order of the particle diame-
ter, the power dissipated drops from one to two orders of magnitude compared to the free particle case. These 
concluding remarks are of fundamental interest for hyperthermia applications where aggregates are very likely 
to occur. Experimental works have shown that when the particles are observed in situ in their biological envi-
ronments, they are spatially confined. They are likely to behave in the way we have detailed here, that is strongly 
coupled in a highly anisotropic distribution.

In summary, the problem of estimating the collective effects (coupling) between magnetic nanoparticles has 
been solved by means of a statistical approach based on numerical simulations. Considering the equilibrium 
orientational fluctuations of magnetic dipoles, we have demonstrated that one can quantify the Brownian 
dissipation without approximations. Our work suggests that the interactions between magnetic dipoles have 
a dramatic impact on the fundamental mechanisms of dissipation: increasing the dipole pair energy enhances 
the Brownian relaxation rate and diminishes the magnitude of absorption. A microscopic analysis of this phe-
nomena has revealed that in fact, interactions confine the orientations of the dipoles in directions of highest 
particle density. The interactions eventually lead to an antiferromagnetic ordering that completely saturates the 
response of the systems to any external excitation. Practically, these mechanisms are essential in the context of 
hyperthermia research, as it suggests that when the particle separation becomes smaller than a few diameters, 
the heating is achieved by tuning the external field at much higher frequencies. In addition, the amplitude of 
absorption diminishes importantly, while the control of the polarization of the field appears as an essential 
parameter to confort experimentally. A perspective of this work would be to carry this analysis in situ, in order 
to study the heat diffusion in more complex environments, where the intracellular confinement has affected 
the particle concentration.

References
	 1.	 Perigo, E. A. et al. Fundamentals and advances in magnetic hyperthermia. App. Phys. Rev 2, 041302, doi:10.1063/1.4935688 (2015).
	 2.	 Stanley, S. A. et al. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336, 604–608, 

doi:10.1126/science.1216753 (2012).
	 3.	 Amstad, E. et al. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. 

Nano Lett. 11, 1664–1670, doi:10.1021/nl2001499 (2011).
	 4.	 Maier-Hauff, K. et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with 

external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 103, 317–324, doi:10.1007/s11060-
010-0389-0 (2011).

Figure 4.  Influence of the dipole density on the power dissipated. Spectra of power dissipated at low 
(ρ = 10−3 nm−2), medium (ρ = 2.6 · 10−3 nm−2) and high density (ρ = 9.10−3 nm−2), normalized by the maximum 
of power dissipated for noninteracting MNPs as a function of the frequency of the external field. The solid 
blue line corresponds to noninteracting MNPs. The maximum dissipated power is dramatically reduced 
by the interactions. For the sake of clarity, only the dominant in-plane and the cross-plane components are 
represented.

http://dx.doi.org/10.1063/1.4935688
http://dx.doi.org/10.1126/science.1216753
http://dx.doi.org/10.1021/nl2001499
http://dx.doi.org/10.1007/s11060-010-0389-0
http://dx.doi.org/10.1007/s11060-010-0389-0


www.nature.com/scientificreports/

8Scientific Reports | 7: 1656  | DOI:10.1038/s41598-017-01760-x

	 5.	 Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M. & Pralle, A. Remote control of ion channels and neurons through magnetic-field 
heating of nanoparticles. Nat. Nano 5, 602–606, doi:10.1038/nnano.2010.125 (2010).

	 6.	 Chen, R., Romero, G., Christiansen, M., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 347, 
1477–1480, doi:10.1126/science.1261821 (2015).

	 7.	 Di Corato, R. et al. Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials 35, 
6400–6411, doi:10.1016/j.biomaterials.2014.04.036 (2014).

	 8.	 Ovejero, J. et al. Effects of inter- and intra-aggregate magnetic dipolar interactions on the magnetic heating efficiency of iron oxide 
nanoparticles. Phys Chem Chem Phys. 18(16), 10954–63, doi:10.1039/c6cp00468g (2016).

	 9.	 Sanz, B. et al. In silico before in vivo: how to predict the heating efficiency of magnetic nanoparticles within the intracellular space. 
Sci. Rep. 6, 38733, doi:10.1038/srep38733 (2016).

	10.	 Myrovali, E. et al. Arrangement at the nanoscale: Effect on magnetic particle hyperthermia. Sci. Rep 6, 37934, doi:10.1038/srep37934 
(2016).

	11.	 Branquinho, L. et al. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer 
hyperthermia. Sci. Rep. 3, 2887, doi:10.1038/srep02887 (2013).

	12.	 Ruta, S., Chantrell, R. & Hovorka, O. Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic 
nanoparticles. Sci. Rep. 5, 9090, doi:10.1038/srep09090 (2015).

	13.	 Tan, R. P., Carrey, J. & Respaud, M. Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic monte carlo 
simulations: Influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power. Phys. 
Rev. B 90, 214421, doi:10.1103/PhysRevB.90.214421 (2014).

	14.	 Bardotti, L., Tournus, F., Melinon, P., Pellarin, M. & Broyer, M. Self organisation of pt and au clusters deposited on graphite: the role 
of reactivity. Eur. J. Phys. D 63, 221–224, doi:10.1140/epjd/e2011-10579-4 (2011).

	15.	 Landi, G. Role of dipolar interaction in magnetic hyperthermia. Phys. Rev. B. 89, 14403, doi:10.1103/PhysRevB.89.014403 (2014).
	16.	 MacIsaac, A. B., Whitehead, J. P., De’Bell, K. & Poole, P. H. Phase diagram for a magnetic thin film with dipolar interactions and 

magnetic surface anisotropy. Phys. Rev. Lett. 77, 739–742, doi:10.1103/PhysRevLett.77.739 (1996).
	17.	 Morup, S. & Tronc, E. Superparamagnetic relaxation of weakly interacting particles. Phys. Rev. Lett. 72, 3278–3281, doi:10.1103/

PhysRevLett.72.3278 (1994).
	18.	 Dejardin, P. M. Magnetic relaxation of a system of superparamagnetic particles weakly coupled by dipole-dipole interactions. J. App. 

Phys. 110, 113921, doi:10.1063/1.3665886 (2011).
	19.	 Berkov, D. & Gorn, N. L. Susceptibility of the disordered system of fine magnetic particles: a langevin-dynamics study. J. Phys. 

Condens. Matter 13, 9369–9381, doi:10.1088/0953-8984/13/41/322 (2001).
	20.	 Denisov, S. I. & Trohidou, K. N. Fluctuation theory of magnetic relaxation for two-dimensional ensembles of dipolar interacting 

nanoparticles. Phys. Rev. B. 64, 184433, doi:10.1103/PhysRevB.64.184433 (2001).
	21.	 Brinis, D., Laggoun, A., Ledue, D. & Patte, R. Effects of dimensionality and spatial distribution on the magnetic relaxation of 

interacting ferromagnetic nanoclusters: A monte carlo study. J. App. Phys 115, 173906, doi:10.1063/1.4873298 (2014).
	22.	 Denisov, S., Lyutyy, T. V. & Trohidou, K. N. Magnetic relaxation in finite two-dimensional nanoparticle ensembles. Phys. Rev. B. 67, 

14411, doi:10.1103/PhysRevB.67.014411 (2003).
	23.	 Sugano, R., Matsushita, K., Kuroda, A., Tomita, Y. & Takayama, H. Magnetic properties of 2-dimensional dipolar squares: Boundary 

geometry dependence. J. Phys. Soc. Jpn 76, 44705, doi:10.1143/JPSJ.76.044705 (2007).
	24.	 Stariolo, D. A. & Billoni, O. V. Dipolar interactions and thermal stability of two-dimensional nanoparticle arrays. Phys. D: App. Phys 

41, 20, doi:10.1088/0022-3727/41/20/205010 (2008).
	25.	 Bahia, M., Numes, J., Altbir, D., Vargas, P. & Knobel, M. Ordering effects of the dipolar interaction in lattices of small magnetic 

particles. J. Mag. Mag. Mat. 281, 372–377 (2004).
	26.	 Farrell, D., Ding, Y., Majetich, S. A., Sanchez-Hanke, C. & Kao, C. C. Structural ordering effects in fe nanoparticle two- and three-

dimensional arrays. J. App. Phys 95, 6636–6638, doi:10.1063/1.1688644 (2004).
	27.	 Jimenez, R., Zayas, F., M’Peko, J. & Eiras, J. A. A numerical study of relaxation in a two dimensional dipolar lattice. J. App. Phys 99, 

64102, doi:10.1063/1.2179975 (2006).
	28.	 Zhou, H. & Bagshi, B. Solvation dynamics in a brownian dipole lattice: A comparison between theory and computer simulation. J. 

Chem. Phys. 97, 3610–9320, doi:10.1063/1.463307 (1992).
	29.	 Felderhof, B. U. Rotational brownian motion of a pair of linear molecules or dipoles with anisotropic interaction. J. Chem. Phys. 117, 

3583–3596, doi:10.1063/1.1495396 (2002).
	30.	 Coffey, W. T. & Kalmykov, Y. P. Thermal fluctuations of magnetic nanoparticles: Fifty years after brown. J. App. Phys 112, 121301, 

doi:10.1063/1.4754272 (2012).
	31.	 Jordanovic, J., Jager, S. & Klapp, S. H. L. Crossover from normal to anomalous diffusion in systems of field-aligned dipolar particles. 

Phys. Rev. Lett. 106, 038301, doi:10.1103/PhysRevLett.106.038301 (2011).
	32.	 Engel, A., Muller, H., Reimann, P. & Jung, A. Ferrofluids as thermal ratchets. Phys. Rev. Lett. 91, 060602, doi:10.1103/

PhysRevLett.91.060602 (2003).
	33.	 Callen, H. B. & Welton, T. A. Irreversibility and generalized noise. Phys. Rev. 83, 34–40, doi:10.1103/PhysRev.83.34 (1951).
	34.	 Landau, L. & Lifshitz, E. M. Statistical physics. Mir 5 (1980).
	35.	 Grimm, M., Jeney, S. & Franosch, T. Brownian motion in a maxwell fluid. Soft Matter 7, 2076, doi:10.1039/c0sm00636j (2011).
	36.	 Schneider, T. & Stoll, E. Molecular dynamics study of a three-dimensional one-conponent model for distorsive phase transitions. 

Phys. Rev. B 17, 1302–1322, doi:10.1103/PhysRevB.17.1302 (1978).

Acknowledgements
We acknowledge the support of the CNRS under the PEPS project grant.

Author Contributions
Y.C. designed the research project. Y.C. M.D. F.G. J.C.B. derived the theory. Y.C. performed the numerical 
calculations. Y.C. M.D. F.G. J.C.B. analyzed, interpreted the results and wrote the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://dx.doi.org/10.1038/nnano.2010.125
http://dx.doi.org/10.1126/science.1261821
http://dx.doi.org/10.1016/j.biomaterials.2014.04.036
http://dx.doi.org/10.1039/c6cp00468g
http://dx.doi.org/10.1038/srep38733
http://dx.doi.org/10.1038/srep37934
http://dx.doi.org/10.1038/srep02887
http://dx.doi.org/10.1038/srep09090
http://dx.doi.org/10.1103/PhysRevB.90.214421
http://dx.doi.org/10.1140/epjd/e2011-10579-4
http://dx.doi.org/10.1103/PhysRevB.89.014403
http://dx.doi.org/10.1103/PhysRevLett.77.739
http://dx.doi.org/10.1103/PhysRevLett.72.3278
http://dx.doi.org/10.1103/PhysRevLett.72.3278
http://dx.doi.org/10.1063/1.3665886
http://dx.doi.org/10.1088/0953-8984/13/41/322
http://dx.doi.org/10.1103/PhysRevB.64.184433
http://dx.doi.org/10.1063/1.4873298
http://dx.doi.org/10.1103/PhysRevB.67.014411
http://dx.doi.org/10.1143/JPSJ.76.044705
http://dx.doi.org/10.1088/0022-3727/41/20/205010
http://dx.doi.org/10.1063/1.1688644
http://dx.doi.org/10.1063/1.2179975
http://dx.doi.org/10.1063/1.463307
http://dx.doi.org/10.1063/1.1495396
http://dx.doi.org/10.1063/1.4754272
http://dx.doi.org/10.1103/PhysRevLett.106.038301
http://dx.doi.org/10.1103/PhysRevLett.91.060602
http://dx.doi.org/10.1103/PhysRevLett.91.060602
http://dx.doi.org/10.1103/PhysRev.83.34
http://dx.doi.org/10.1039/c0sm00636j
http://dx.doi.org/10.1103/PhysRevB.17.1302


www.nature.com/scientificreports/

9Scientific Reports | 7: 1656  | DOI:10.1038/s41598-017-01760-x

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Nanoscale Brownian heating by interacting magnetic dipolar particles

	Model

	Methods

	Results

	Discussion

	Acknowledgements

	Figure 1 Noninteracting MNPs (a) Time fluctuations of the components of the magnetization .
	Figure 2 Interacting MNPs of 5 nm radius.
	Figure 3 Susceptibility correlated with the local fields and dipole orientations.
	Figure 4 Influence of the dipole density on the power dissipated.
	Table 1 Simulation parameters.




