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Abstract

Diffusion-weighted magnetic resonance imaging (DW-MRI) of fetal brain is challenged by 

frequent fetal motion and signal to noise ratio that is much lower than non-fetal imaging. As 

a result, accurate and robust parameter estimation in fetal DW-MRI remains an open problem. 

Recently, deep learning techniques have been successfully used for DW-MRI parameter estimation 

in non-fetal subjects. However, none of those prior works has addressed the fetal brain because 

obtaining reliable fetal training data is challenging. To address this problem, in this work we 

propose a novel methodology that utilizes fetal scans as well as scans from prematurely-born 

infants. High-quality newborn scans are used to estimate accurate maps of the parameter 

of interest. These parameter maps are then used to generate DW-MRI data that match the 

measurement scheme and noise distribution that are characteristic of fetal data. In order to 

demonstrate the effectiveness and reliability of the proposed data generation pipeline, we used 

the generated data to train a convolutional neural network (CNN) to estimate color fractional 

anisotropy (CFA). We evaluated the trained CNN on independent sets of fetal data in terms 

of reconstruction accuracy, precision, and expert assessment of reconstruction quality. Results 

showed significantly lower reconstruction error (n = 100, p < 0.001) and higher reconstruction 

precision (n = 20, p < 0.001) for the proposed machine learning pipeline compared with standard 

estimation methods. Expert assessments on 20 fetal test scans showed significantly better overall 

reconstruction quality (p < 0.001) and more accurate reconstruction of 11 regions of interest (p < 

0.001) with the proposed method.
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1. Introduction

In utero fetal brain imaging can provide unique insights into brain development and 

disorders before birth. In this regard, diffusion-weighted magnetic resonance imaging (DW

MRI) is a powerful non-invasive tool that can reveal detailed information about brain 

microstructure and connectivity (Basser and Pierpaoli (2011), Johansen-Berg and Behrens 

(2013)). Over the past two decades, many studies have used in utero DW-MRI to study 

normal and abnormal fetal brain development. Early works used a small number of DW 

measurements to compute parameters such as apparent diffusion coefficient (ADC) and 

fractional anisotropy (FA) (Righini et al. (2003), Bui et al. (2006), Baldoli et al. (2002)). 

Those works demonstrated the potential of DW-MRI for studying fetal cerebral white matter 

maturation and degeneration. With improved imaging and image reconstruction techniques, 

more recent studies have used diffusion tensor imaging (DTI) and more complex models to 

produce detailed pictures of fetal brain microstructure and connectivity (Khan et al. (2019), 

Deprez et al. (2019), Kasprian et al. (2008)).

Fetal DW-MRI faces challenges that distinguish it from non-fetal imaging: 1) the fetal and 

maternal motions can be significant, 2) the signal to noise ratio (SNR) is very low due to 

the fetal head being embedded in the mother’s body, 3) imaging artifacts and geometric 

distortions can be significant, and 4) the number of measurements is small because scan 

times have to be short to minimize maternal discomfort (Deprez et al. (2019), Gholipour 

et al. (2014)). There have been significant progress in faster acquisition methods and more 

accurate fetal head tracking and slice-to-volume registration (SVR) techniques (Jiang et 

al. (2009), Oubel et al. (2012), Marami et al. (2017)). However, existing methods fail to 

fully compensate for the motion and artifacts. Therefore, the quality of data are usually not 

sufficient for accurate and robust estimation of parameters of interest. Moreover, previous 

studies have used voxel-wise least squares (LS)-based methods for parameter estimation 

(Zanin et al. (2011), Jakab et al. (2015), Marami et al. (2016)). As a result, the accuracy and 

robustness of parameter estimation in fetal DW-MRI lags far behind non-fetal imaging.

Figure 1 shows example scans from a fetal and a pre-term newborn subject of the 

same gestational age and their corresponding reconstructed color fractional anisotropy 

(CFA) images, estimated using the weighted linear least squares (WLLS) method for 

tensor estimation (Koay et al., 2006). The newborn scan is from the developing Human 

Connectome Project (dHCP) dataset (Bastiani, 2019). The dHCP subjects were imaged 

at 280 gradient directions. For this dataset, we estimated the SNR to be 15–20 dB. The 

fetal DWI volume was created from a scan acquired in our institution and processed using 

our motion correction and SVR pipeline (Khan et al. (2019)). In this manuscript, a DWI 

“volume” refers to a 4D array, where the last dimension corresponds to different diffusion

sensitizing gradients. In our fetal scans we are restricted to 24–48 measurements and the 
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SNR is typically in the range 5–16 dB. Consequently, the estimated fetal CFA is noisy and 

lacks much of the details that can be seen in the newborn CFA image of the same age.

The LS methods are based on models of diffusion signal and noise that can be unrealistic for 

fetal data. Moreover, since they estimate the parameter of interest on a voxel-wise basis, they 

fail to exploit the spatial regularity of the parameters. This shortcoming is more important in 

fetal DW-MRI because of low signal quality. Machine learning methods have the potential 

to overcome these limitations: 1) Rather than assuming a known model of signal or noise, 

they can learn the model from data. 2) They can exploit the spatial regularities by learning to 

estimate the parameter of interest based on the measurements in a neighborhood of a voxel.

Many studies have used machine learning for parameter estimation in DW-MRI. Classical 

machine learning methods were used to estimate white matter permeability, for fiber 

orientation estimation, and tractography (Neher et al. (2017), Nedjati-Gilani et al. (2017), 

Schultz (2012)). Recently, deep learning has received increasing attention. Golkov (2016) 

showed that deep learning could reduce the required number of measurements for estimating 

certain diffusion parameters by a factor of 12. Other studies used deep learning to estimate 

FA, generalized FA, mean diffusivity, neurite orientation dispersion index, and kurtosis 

(Gibbons (2019), Ye et al. (2019), Aliotta et al. (2019)). Several recent works have estimated 

diffusion tensor and fiber orientation distribution with deep learning (Karimi et al. (2021b), 

Tian et al. (2020), Koppers and Merhof (2016), Lin (2019)).

The above studies have used high-quality MRI datasets (Ye et al. (2019), Tian et al. (2020)) 

or ex-vivo brain scans and histological dissection (Nat, 2019). Such data are impossible or 

very costly to obtain for fetal DW-MRI. One may use fetal scans and the corresponding 

parameter maps estimated using standard methods. However, such parameter maps would 

be inaccurate. Alternatively, one may use newborn data and parameter maps. However, the 

measurement scheme and noise distribution are different between newborn and fetal data. 

For example, a lower diffusion strength is usually used in fetal imaging, which renders 

newborn data useless for fetal applications. Hence, because of this central limitation in 

obtaining reliable training data with accurate ground-truth, no previous work has employed 

machine learning for fetal DW-MRI.

Our goal is to propose a solution to this limitation, thereby enabling the use of machine 

learning for fetal DW-MRI. Our proposed method uses both fetal scans and high-quality pre

term newborn scans. Although neither fetal nor newborn scans on their own are adequate, 

we show that a combination of the two can be used to generate reliable training data. We 

demonstrate the effectiveness of the proposed approach by using the generated data for 

estimation of CFA, which is widely used in studying fetal brain micro-architecture and 

organization (Wakana et al. (2004), Khan et al. (2019)). We train a convolutional neural 

network (CNN) to estimate CFA from the generated data and compare our method with 

standard methods, both quantitatively and in terms of expert evaluations.
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2. Materials and methods

2.1. Training data generation

Our proposed method generates reliable training data by synergistically combining the best 

that fetal and newborn scans offer: 1) parameter maps estimated from newborn scans, and 

2) measurement scheme and noise distribution from fetal scans. Figure 2 shows our data 

generation pipeline. We explain this pipeline in detail below.

2.1.1. Processing of fetal scans—For this step we used scans of n = 20 fetuses with 

gestational age of 30.9 ± 5.0 weeks (range: [23.4,38.0]). We processed these fetal scans 

using our motion tracking and SVR pipeline (Marami et al., 2016). From the reconstructed 

DW volumes, we estimated the noise probability distribution function (PDF). In non-fetal 

DW-MRI, measurement noise can be accurately modeled as a Rician or non–central chi–

square distribution (Canales-Rodríguez et al. (2015), Dietrich et al. (2008)). In fetal scans 

the noise is stronger and includes residual (uncorrected) motion errors. Since we are 

unaware of the true distribution of noise in the reconstructed fetal volumes, we use kernel 

density estimation (KDE) (Murphy, 2012) to estimate the noise PDF from data. Since the 

noise is known to be signal-dependent, we estimate the noise PDF for signal levels from 

0.01 to 0.99 in steps of 0.01.

Figure 3 shows our approach to estimating the noise PDF. Standard SVR methods create 

DW volumes via registering the acquired slices to a common space and using a point spread 

function to assign the measurements in each slice pixel to the right voxels in the volume. All 

fetal scans used in this work were single-shell scans at b = 500. Depending on the available 

scan time and maternal discomfort, in our fetal scans we usually acquire measurements 

at 24–48 diffusion directions. The measurements in one voxel of an SVR-reconstructed DW

MRI volume are shown in Figure 3(a). The variation in the measurements along a certain 

diffusion gradient direction represent noise. We consider all the measurements, X = xi i = 1
n

along the same direction, with a tolerance of 5°, and estimate the PDF for the diffusion 

signal corresponding to a mean signal of mean(X) as:

p(x) = 1
n ∑

i = 1

n
Kℎ x − xi , (1)

where Kℎ is a normalized Gaussian kernel with a standard deviation of h = 1. Example 

estimated PDFs are shown in Figure 3(b). Furthermore, we stored the gradient tables for 

these 20 fetal scans.

2.1.2. Processing of newborn scans—There were 82 pre-term (i.e., gestational 

age<38 weeks at the time of scan) newborns in the dHCP dataset (Bastiani, 2019). The 

gestational age of these subjects was 35.4 ± 2.0 weeks (range: [29.3,38.0]). We estimated 

the diffusion tensor and CFA images for these scans. Each scan in this dataset included 

measurements in three different shells (b = 400, 1000, 2600). Following the standard 

practice (Jones et al., 1999), we used the 88 measurements in the b = 1000 shell from 

this dataset for estimating the tensor and CFA images. Note that the b value used in 
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this estimation would not restrict the b values of the fetal scans used at test time. This 

was because from the newborn scans processed in this stage we used only the estimated 

parameters, and not the measurements. For non-fetal diffusion tensor imaging a b value of 

approximately 1000 is commonly used, whereas for fetal imaging lower b values in the 

range [500,700] are commonly used (Kasprian et al. (2008), Khan et al. (2019)).

2.1.3. Generating training data—We used the fetal and newborn scans processed as 

described above to generate our training data. We performed the following steps to generate 

a training data sample, i.e., a DW-MRI volume and its corresponding CFA image:

1. Randomly select one of the fetal DW volumes, Vk.

2. Randomly select one of the newborn subjects. We use the reconstructed tensor 

and CFA images for this subject, which we denote as Tensork and CFAk, 

respectively.

3. We use CFAk as our target parameter map. We need to synthesize a fetal-style 

DW-MRI volume that matches this parameter map. We initialize an empty 

volume, DWk, with the same size as CFAk in the voxel space to hold the 

synthesized diffusion data. For each voxel in CFAk:

a. Select the tensor, D, from the same voxel in Tensork and a gradient 

table, G, from a voxel in Vk.

b. Estimate the mean signal in each direction g ∈ G using the standard 

diffusion tensor model m = S∕S0 = exp(−bgT Dg), where S is 

the diffusion-weighted signal, and S0 is the baseline non-diffusion

weighted signal. Moreover, b is the diffusion strength, which as we 

have mentioned above is equal to b = 500 in all fetal DW-MRI data in 

this work.

c. The measurement m generated in the above step is noise-free. To obtain 

noisy measurements, we add noise to m by sampling the estimated PDF 

corresponding to m. We do this using the inversion method (Casella 

and Berger, 2021). Denote with pm(x) the probability distribution for a 

signal mean m. The inversion method first computes the cumulative 

probability distribution cm(x). Then, one can generate a uniformly 

distributed random number u ∈ [0, 1] and compute m = cm−1(u) as the 

noisy version of m.

d. Repeat the above steps for all g ∈ G and place the generated noisy 

diffusion signal in the corresponding voxel in DWk.

Note that the above process does not require spatial registration of fetal and newborn scans 

into a common space. The generated data will spatially match the high-quality newborn 

scans. One can obtain a dataset of size K, Dtrain = DWk, CFAk
k = 1
K

, by repeating the steps 

described above K times. Each sample in this dataset will consist of a diffusion-weighted 

volume and its corresponding CFA image. The random selection of Vk, Tensork, and CFAk 

and the random noise added to the synthesized diffusion signal ensure that each data sample 
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is unique. For this work, we synthesized a total of 600 data samples, i.e., K = 600. We used 

500 of these samples for training and validation and used the remaining 100 samples for test. 

For proper validation, it was essential to ensure that there was no overlap between training 

and test sets. Specifically in our setting, it was important to ensure that newborn and fetal 

scans used in the generation of training, validation, and test sets had no overlap. Therefore, 

we split the data into training, validation, and test sets at random on a patient-wise basis. 

In other words, the newborn and fetal scans that were used to generate the 100 test samples 

were completely separate from the newborn and fetal scans that were used to generate 

the 500 training samples. This ensured that the training, validation, and test data were 

completely independent. Moreover, we applied our trained method on an independent set of 

20 fetal test scans, described in more detail below, and evaluated it in terms of reconstruction 

precision as well as in terms of expert neuroanatomist assessments. These additional 20 fetal 

test scans had not been used in the generation of our training data in any way.

The data synthesized with our pipeline satisfy the requirements that we desire: 1) the 

synthesized DW-MRI volumes, DWk ∈ Dtrain, follow the noise distribution and measurement 

scheme (i.e., gradient table) of fetal scans, and 2) the corresponding CFA images, 

CFAk ∈ Dtrain, are accurate target parameter maps that are reconstructed from high-quality 

newborn scans. Hence, we expect that this data should be effective for reliable training of 

deep learning models for parameter estimation in fetal DW-MRI.

2.2. Proposed machine learning methods

2.2.1. Resampling of diffusion measurements—In general, the number and 

direction of diffusion-weighted gradients are different between different scans. In fetal 

imaging, because of the SVR process used to generate the DW-MRI volumes, the number 

and directions of measurements are generally different between different voxels of the 

same volume. Therefore, as the first step, measurements obtained using different gradient 

tables need to be transformed into a unified basis or grid in q space. This is necessary 

for the machine learning model to be applicable to scans acquired with different gradient 

tables. There are two common ways of achieving this goal: 1) representation in a spherical 

harmonics basis (Lin, 2019), and 2) interpolation onto a spherical grid (Karimi et al., 2021a). 

In our recent work we found that, for fODF estimation, the interpolation method was 

slightly better than representation in spherical harmonics bases. Therefore, here we use the 

interpolation approach by considering a uniform spherical grid of size 200 as in (Karimi et 

al., 2021a).

We used the Fibonacci spiral sphere method (González, 2010) to construct the spherical 

grid. We represent this grid using the set of unit vectors from the origin to the grid points, 

U = ui i = 1
200 . Consider the DW measurements in a voxel, s qj, b j = 1

n . In this study we only 

work with single-shell measurements, hence b is constant. qj is the unit vector indicating the 

direction of diffusion gradient for the jth measurement. We resample the measured signal s 
onto the sphere U using weighted averaging as follows:
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s ui = ∑
Ωij

wijs qj , wij ∝ 1
∡ qj, ui + ϵ , (2)

where Ωij is the set of M closest measurement directions, qj, to the direction under 

consideration, ui. We set M = 5 in our experiments. ∡(qj, ui) denotes the angle between 

qj and ui, and ϵ = 0.1 rad is meant to avoid division by very small numbers. The weights wij 

are normalized to sum to one.

2.2.2. CNN architecture—The CNN architecture that we used in this work is an 

encoder-decoder architecture in the spirit of UNet (Çiçek et al., 2016). Additional dense 

connections and skip connections have been added, similar to DenseNet (Huang et al., 2017) 

and 3D UNet++ (Zhou et al., 2018). A schematic representation of the architecture is shown 

in Figure 4. The network accepts 3D patches of size 483 voxels from the diffusion volume 

as input and predicts the CFA for that patch. As we have explained above, upon resampling 

of the diffusion measurements, the measurements in each voxel are of size 200. Therefore, 

the CNN input has 200 channels. The CNN output has three channels, for the three (RGB) 

components of the CFA image.

The number of feature maps in the first stage of the network was set to 12, which was the 

largest possible on our GPU memory. During training, we sampled patches from random 

locations in the training DW-MRI volumes and corresponding locations in the target CFA 

images. These were used to compute the loss and update the network weights using the 

Adam optimizer (Kingma and Ba, 2014). As training loss, we used the ℓ2 norm between 

the predicted and ground truth CFA. We used an initial learning rate of 10−3, which we 

reduced by 0.5 every time the validation loss did not decrease after a training epoch. Once 

the network was trained, on a test volume we used a sliding window processing with a stride 

of 16 voxels along each dimension to estimate CFA for a DW-MRI volume of arbitrary size.

2.3. Evaluation methods and criteria

We compared our trained model with the following three methods:

• WLLS reconstruction (Koay et al., 2006). This method estimates the diffusion 

tensor, D, in a voxel by considering residuals of the form log si/s0i − bqiTDqi and 

weights that are proportional to the diffusion signal. This method is commonly 

used for estimating the diffusion tensor parameters in non-fetal and fetal DW

MRI (Marami et al. (2017), Khan et al. (2019)).

• onlinear least squares (NLS) reconstruction (Koay et al., 2006). This method 

estimates D by fitting the diffusion signal without log-transformation.

• RESTORE (robust estimation of tensors by outlier rejection) (Chang et al., 

2005). This method iteratively identifies outlier measurements and excludes them 

from the fitting process.

Our evaluations and comparisons are based on three different criteria, described below.
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2.3.1. Reconstruction accuracy.—As mentioned in Section 2.1 above, we left 100 

of the synthesized DW-MRI volumes for test. For these volumes, we had high-quality 

target CFA images. Therefore, we could compute the reconstruction error as the difference 

between the estimated and target CFA. We compared different methods on these test 

volumes in terms of the root mean square of the reconstruction error (RMSE).

2.3.2. Reconstruction precision.—For this evaluation, we used scans of 20 test 

fetuses. These fetuses were different from the 20 fetuses used in the generation of our 

training data described in Section 2.1.1. The scans of these fetuses had not been used in 

generating the training data or in CNN training in any way. The gestational age of these 

fetuses was 31.5 ± 5.3 weeks (range: [24.0,38.7]). For fetal scans we did not have high

quality reference CFA images. Therefore, on these scans we assessed the “reconstruction 

precision”, which we defined as the inverse of variance (Murphy, 2012). Each of these 

fetal scans consisted of 36–60 sets of diffusion measurements. For each fetus, we bootstrap

selected subsets of 24 measurements and reconstructed the CFA image. We used the same 

bootstrap-selected sets for all compared methods. We computed precision as the inverse of 

CFA variance across bootstraps in each voxel (Murphy, 2012). To compute a single value 

of precision for each fetal scan and each reconstruction method, we averaged the precision 

across all voxels.

2.3.3. Expert assessments.—Three experts with extensive experience in fetal 

neuroanatomy assessed CFA images of the 20 test fetuses. These were the 20 independent 

test fetuses, mentioned above in Section 2.3.2, that had not been used in the generation of 

our training data. These assessments included two separate and independent parts.

1. Overall assessment.: We asked one of the expert neuroanatomists to rate the accuracy 

and fidelity of the reconstructions based on her knowledge of fetal neuroanatomy on a 1–5 

scale with 5 being the best quality.

2. Detailed assessment.: A more detailed assessment was conducted by two other 

experts: a board certified pediatric neuroradiologist with expertise in fetal neuroimaging 

and a post-doctoral research fellow with expertise in developmental neuroanatomy. To 

compare the quality of the reconstructions, these two experts evaluated multiple structures: 

cerebral cortex, posterior fossa [middle cerebellar peduncle (MCP), transverse pontine 

fibers (TPF), descending pyramidal tracts in brainstem], large white matter tracts [corpus 

callosum (CC), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus 

(ILF), supratentorial corticospinal tract (CST)], small white matter tracts [fornix, superior 

longitudinal fasciculus (SLF), cingulum], and deep white matter (corresponding to the 

internal and external capsules). To perform this evaluation, for each subject, the experts 

opened the CFA images reconstructed by WLLS and the proposed method side-by-side and 

scrolled through them to view different structures in detail. To compare the reconstructions, 

they used a 5-point scale ranging from −2 to +2, analogous to that used in (Conklin et 

al., 2019). Briefly, in this scoring system −2 strongly favored the WLLS reconstruction, 

+2 strongly favored the CNN reconstruction, and 0 meant no significant difference. To 

determine superiority, the experts evaluated all the above-mentioned regions of interest by 
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considering: (a) conspicuity of the structure, (b) correspondence with known neuroanatomy, 

and (c) accuracy of orientation of the primary eigenvector as represented by standard RGB 

CFA display. In addition to the above-mentioned regions, the presence of artifacts was also 

evaluated using the same scale.

In order to make our best efforts to achieve a fair comparison, we named the CFA images 

reconstructed with WLLS and our method as “CFA 01” and “CFA 02” at random before 

presenting them to the three experts for evaluation. The experts were told that the names 

were randomized, but they were blind to the naming order.

3. Results and Discussion

3.1. Reconstruction accuracy

On the 100 test images used in this evaluation, the reconstruction RMSE for the proposed 

method was 0.0379 ± 0.0030. For WLLS, NLS, and RESTORE, it was 0.0807 ± 0.0034, 

0.0805 ± 0.0036, and 0.0800 ± 0.0034, respectively. On all 100 test imaged the RMSE 

achieved by the proposed method was lower than WLLS, NLS, and RESTORE. We 

performed paired t-tests to assess the statistical significance of the differences. The tests 

showed that the difference between our method and the other three methods was statistically 

significant (p < 0.001). However, the differences between the other three methods were 

statistically insignificant (p > 0.5). Figure 5 shows CFA images reconstructed with different 

methods on selected test volumes along with the reference images. The images reconstructed 

with the proposed method are much closer to the reference image. Whereas the images 

reconstructed with the three competing methods are noisy and lack some of the important 

details, the images reconstructed with the proposed method display all of the detail that are 

present in the reference image.

3.2. Reconstruction precision

Figure 6 displays example images from the experiments to assess reconstruction precision. 

It shows CFA images reconstructed with our proposed method and the competing methods 

from three different bootstrap-selected measurements of a fetal test scan. The reconstruction 

precision on the 20 independent fetal test scans for the proposed method was 297.8 ± 19.0. 

For WLLS, NLS, and RESTORE, the reconstruction precision was, respectively, 41.1 ± 

5.50, 41.4 ± 5.73, and 40.2 ± 5.70. On all 20 test images, the reconstruction precision for 

our proposed method was higher than the other three methods. Paired t-tests showed that the 

precision of our method was significantly higher than each of the other three methods (p < 

0.001), but the differences between the three competing methods were not significant (p > 

0.5).

3.3. Expert assessments

3.3.1. Overall assessment—Figure 7 displays CFA images reconstructed by WLLS 

and the proposed method on five fetal test scans of different gestational ages. These five 

scans were from among the 20 independent fetal test scans. The figure also shows the scores 

assigned by our expert neuroanatomist. The score assigned to CFA images reconstructed 

with WLLS and the proposed method were, respectively, 1.30 ± 0.46 and 3.85 ± 0.79. The 

Karimi et al. Page 9

Neuroimage. Author manuscript; available in PMC 2021 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



score received by our proposed method was higher than WLLS on all 20 fetal test scans. 

We performed a Wilcoxon signed-rank test on these scores and found that the difference 

between our method and WLLS was statistically significant (p < 0.001).

3.3.2. Detailed assessment—As we mentioned above, the detailed assessment by two 

independent experts focused on neuroanatomic concordance, sharpness, and orientation of 

12 different regions of interest as well as on reconstruction artifacts. Figure 8 shows a 

summary of the results of this assessment, separately for the 12 regions of interest and for 

the presence of artifacts. The scores for both experts and all 20 subjects have been combined 

for generating this plot. The averaged scores from both experts indicated superior quality 

for the images reconstructed with the proposed method for all structures (p < 0.001), except 

for the deep white matter where they were comparable (p = 0.652). Scores were highest for 

cortex, small tracts, and artifact evaluation. There was high interrater agreement between the 

two raters (average ICC 0.777, 95% CI 0.436 – 0.912, p = 0.001).

In terms of computational time, the proposed method estimated the CFA for an entire fetal 

DW-MRI volume in approximately five minutes. Most of the computational time of our 

method was spent on the signal resampling step (Equation (2)). The time taken by the CNN 

computation was less than 10 seconds for a fetal brain. Compared with our method, WLLS 

needed almost twice the computational time, approximately 10 minutes, for a fetal brain.

The rationale behind our proposed method is that such a machine learning-based technique 

can learn to predict the parameter of interest from fetal diffusion signal that suffers from 

strong noise and motion. Moreover, because our model is a CNN, it can exploit the signal 

from neighboring voxels to achieve a more robust estimation. Since we cannot control these 

factors independently, it is hard to judge which of them contribute more to the superiority 

of our method compared with the other techniques. To investigate the effect of motion, we 

estimated the average magnitude of fetal head motion between subsequent slice acquisitions 

based on the slice-to-volume registration transforms in our SVR pipeline. Figure 9(a)–(b) 

shows the reconstruction precision for the proposed method and WLLS as a function of 

motion for the 20 fetal test scans. While the reconstruction precision for the proposed 

method remained almost constant, the precision of WLLS showed a tendency to decrease 

with larger motion. Figure 9(c) shows the average of the two experts’ scores from the 

detailed assessment approach versus the magnitude of motion. As we explained in Section 

2.3.3, this was a relative score that was assigned by comparing the proposed method and 

WLLS, with positive scores favoring the proposed method. Figure 9(c) shows that the 

advantage of the proposed method over WLLS in terms of expert scores increases with 

stronger motion. Overall, this analysis indicates that the advantage of the proposed method 

over WLLS increases with stronger fetal head motion.

Our proposed machine learning-based method estimates the parameter of interest without 

directly solving an inverse problem. The inquisitive reader may wonder about the potential 

shortcomings and pitfalls of the proposed method. For example, in Figure 5 the results 

obtained with the proposed method look less noisy than the reference results. The reader 

may wonder if the proposed method might learn to infer outputs that are not supported by 

data. We have performed extensive experiments to ensure that our method is sound and 
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reliable. In Figure 10 we show an example of these experiments. In this experiment, we 

smeared or added random noise to a small patch of a DWI volume. We then applied our 

method on the smeared or noisy volume. In the figure, we show the original image and the 

images in which the patch has been smeared or added noise to. The location of the patch 

has been marked with a red square on the image of the original volume. We have shown the 

estimated CFA image as well as a zoomed-in section of the CFA image for each case. As 

can be seen in these examples, our method displays the desired behavior: the CFA image 

estimated for the patch that has been smeared or added noise to shows the corresponding 

effect. Therefore, our method does not infer outputs that are not supported by the data. The 

sharper and less noisy reconstructions of our method compared with the reference (Figure 5) 

is due to inherently different approaches that they follow. The reference results are obtained 

on a voxel-wise basis. In other words, the reference parameters in each voxel are estimated 

based on the diffusion signal in that voxel alone. Our method, on the other hand, by seeing 

a large number of noisy data samples during training, can learn to partially factor out the 

effect of noise. Moreover, because our model is a CNN, it has the ability to learn the spatial 

patterns and use the data in neighboring voxels for more accurate and less noisy estimation.

3.4. Limitations and future work

Deep learning models, in general, benefit from larger training datasets. In this work we 

used 20 fetal scans and 82 newborn scans in generating our training data. The imbalance in 

the number of fetal and newborn scans (20 versus 82) was in part intentional, because the 

fetal and newborn scans were used for different purposes in our data generation pipeline. 

Specifically, the fetal scans were used to estimate the noise and to sample the gradient 

tables, whereas the newborn scans were used to generate the parameter maps. Because of 

the high inter-subject variability in the structures of the parameter maps, we decided to use 

a larger number of newborn scans than fetal scans. This allowed our CNN model to see a 

wider range of variability in the spatial patterns of CFA during training. Even though our 

results on independent test data are very good, future works may achieve better results by 

using larger and more diverse datasets. As an example, most of the newborn scans that we 

used in this work were closer to 38 weeks of age. From the 82 newborn scans that we 

used to synthesize our training data, only 15 of them were younger than 34 weeks and the 

youngest was 29.3 weeks. Given this limitation, the fact that our method works well on fetal 

test scans as young as 24 weeks is very promising (Figure 7). Nonetheless, a training dataset 

with a larger number of younger newborn scans may further improve the performance of the 

proposed method on younger fetuses.

Another factor that can be further investigated in future works is the effect of heterogeneity 

in the diffusion data, such as heterogeneity in multi-center data. The 20 fetal scans that 

were used in generating our training data were acquired using Siemens Skyra (n = 18) and 

Prisma (n = 2) scanners. The other 20 fetal scans that were used for testing our method were 

acquired using Siemens Skyra (n = 15), Prisma (n = 3), and Trio (n = 2) scanners. These 

were all 3T scanners. The scans were acquired at three different sites in Massachusetts. 

We did not observe any differences in the performance of our proposed method on scans 

obtained with these three scanners. The variability in multi-center data can be higher than 

the variability in the data used in this study. Therefore, a complete investigation of this issue 
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will require more extensive experiments. Nonetheless, our results are promising with regard 

to the generalizability of our method to multi-center data.

4. Conclusions

DW-MRI continues to play a prominent role in shaping our under-standing of fetal brain 

development and disorders and their impacts on cognitive development and disabilities later 

in life. Therefore, accurate and robust parameter estimation in fetal DW-MRI is of crucial 

importance. In this work, we presented the first successful application of deep learning 

for parameter estimation in fetal DW-MRI. Our main contribution was a methodology 

that enabled us to generate large amounts of reliable training data. Our quantitative and 

qualitative evaluations demonstrated the superiority of the proposed deep learning method 

to the standard estimation methods. While we focused on CFA estimation to demonstrate 

the effectiveness of our proposed methodology, our methods can be extended and adapted 

for estimating other parameters. For other diffusion tensor imaging parameters, for example, 

this can be accomplished by simply replacing CFA with the parameter of interest (e.g., 

fractional anisotropy or mean diffusivity) in the methods described above and other obvious 

necessary changes such as changing the number of CNN’s output channels.
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Fig. 1. 
DW-MRI scans and CFA reconstructions for a newborn subject and a fetal subject of the 

same gestational age (34 weeks). The number of diffusion-sensitized measurements for this 

fetal scan was 36; the number of data points in each voxel is larger than the number of 

measurements because SVR methods use a point-spread function with a width larger than 

one voxel (Kainz et al. (2015), Marami et al. (2017)).
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Fig. 2. 
The proposed pipeline for synthesizing fetal DW-MRI data and corresponding CFA images. 

Top left pane: We estimate accurate CFA and tensor images for a set of high-quality 

pre-term newborn scans. Top right pane: We analyze a set of fetal DW-MRI volumes, 

reconstructed using our SVR pipeline (Marami et al., 2016) in order to estimate the noise 

probability distribution. We also store gradient tables for voxels in these volumes. Bottom 

pane: We use tensor images estimated from the newborn scans to synthesize DW-MRI data 

that follow the acquisition scheme and noise distribution of fetal scans.
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Fig. 3. 
(a) Estimation of noise PDF. We consider measurements that fall along the same diffusion 

gradient direction in a voxel. We estimate the noise PDF using kernel density estimation, 

conditioned on the signal mean. (b) Example noise PDFs for several signal mean values.

Karimi et al. Page 18

Neuroimage. Author manuscript; available in PMC 2021 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The network architecture used to predict the CFA image from a DW-MRI volume. All 

convolutional layers are followed by ReLU activation. The lower right section of the figure 

shows the residual module (RES) with short and long skip connections.
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Fig. 5. 
Comparison of different methods on example test DW-MRI volumes from the data 

synthesized in Section 2.1.
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Fig. 6. 
CFA images reconstructed by different methods from three different bootstrap-selected 

measurements of a fetal test scan.
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Fig. 7. 
CFA images reconstructed with WLLS and the proposed method on five fetal test scans of 

different gestational ages (GA). The gestational age for each subject is shown on the left side 

of the figure. The scores assigned by our expert neuroanatomist are shown on the top left 

corner of each image.
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Fig. 8. 
Detailed assessment of neuroanatomic concordance, sharpness, and orientation of 12 

different regions of interest for the CFA images reconstructed with WLLS and the proposed 

method on 20 fetal test scans.
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Fig. 9. 
(a) and (b) Reconstruction precision for, respectively, the proposed method and WLLS as 

a function of average fetus head motion between slice acquisitions. (c) Average of the two 

experts’ scores from the detailed assessment described in Section 2.3.3 as a function of fetal 

head motion.
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Fig. 10. 
The results of a sanity test to ensure that the method does not learn to produce (i.e., inpaint) 

output values that are not supported by the data. A slice of the original input DW volume 

and the corresponding CFA parameter map is shown in the first row. We smeared or added 

random noise to a small patch of a the volume and applied our method on the smeared or 

noisy volume. The red square on the original volume marks the location of the patch. We 

have shown the estimated CFA image (middle column) as well as a zoomed-in section of the 

CFA image (right column) for each case. Results show that the CFA values estimated for the 

patch that has been smeared or added noise to displays the corresponding effect.
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