
Review of Computational Methods and Database Sources for
Predicting the Effects of Coding Frameshift Small Insertion and
Deletion Variations
Fang Ge,* Muhammad Arif, Zihao Yan, Hanin Alahmadi, Apilak Worachartcheewan,
and Watshara Shoombuatong*

Cite This: ACS Omega 2024, 9, 2032−2047 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Genetic variations (including substitutions, insertions, and
deletions) exert a profound influence on DNA sequences. These variations
are systematically classified as synonymous, nonsynonymous, and nonsense,
each manifesting distinct effects on proteins. The implementation of high-
throughput sequencing has significantly augmented our comprehension of the
intricate interplay between gene variations and protein structure and function,
as well as their ramifications in the context of diseases. Frameshift variations,
particularly small insertions and deletions (indels), disrupt protein coding and
are instrumental in disease pathogenesis. This review presents a succinct review
of computational methods, databases, current challenges, and future directions
in predicting the consequences of coding frameshift small indels variations. We
analyzed the predictive efficacy, reliability, and utilization of computational
methods and variant account, reliability, and utilization of database. Besides, we
also compared the prediction methodologies on GOF/LOF pathogenic variation data. Addressing the challenges pertaining to
prediction accuracy and cross-species generalizability, nascent technologies such as AI and deep learning harbor immense potential
to enhance predictive capabilities. The importance of interdisciplinary research and collaboration cannot be overstated for devising
effective diagnosis, treatment, and prevention strategies concerning diseases associated with coding frameshift indels variations.

1. INTRODUCTION
Genetic variations, expressed as nucleotide substitutions,
insertions, or deletions within DNA sequences, are systemati-
cally classified as follows: synonymous, nonsynonymous, and
nonsense. While synonymous variations do not alter the AA
sequence, both nonsynonymous and nonsense variations bring
about changes in the AA sequence, consequently modifying the
resulting protein structure.1 These modifications can give rise
to a diverse range of functional consequences, spanning from
LOF (Loss of Function) or GOF (Gain of Function), thereby
potentially contributing to genetic disorders or oncogenesis.2,3

The advent and widespread utilization of advanced
sequencing techniques have catalyzed the production and
dissemination of vast gene variation data, consequently
enriching our comprehension of protein structure, function-
ality, and disease predisposition.4,5 Some variations have the
potential to initiate significant changes in protein structures,
thereby affecting their functions. The precise location of a
variation within a gene can significantly influence these
outcomes, especially if it resides within structural domains or
protein−protein interaction interfaces.6−8
Frameshift variations, particularly small indels, represent a

critical category of gene variations. These variations occur

when an insertion or deletion event disrupts the DNA
sequence reading frame, causing a shift in the frame. During
translation, if these events do not occur in multiples of three,9

the entire protein amino acid sequence may be affected. This
disruption could lead to LOF, introduce nonsense variations,
or generate structurally defective proteins, all of which have
implications in diseases such as Duchenne muscular dystrophy,
cystic fibrosis, and hereditary breast cancer.10 To predict the
impacts of these small frameshift indels variations, numerous
computational methodologies and databases have been
developed. Notable examples include MutationTaster2,11

PROVEAN,12 SIFT Indel,13 CADD,14 DDIG-IN,15 VEST-
Indel,16 MutPred-LOF,17 PredCID,18 SPD_Pred,19 PRO-
FOUND,20 ClinVar,21 dbSNP,22 1000GP,23 ExAC,4 gno-
mAD,24 COSMIC,25 HGMD,26 dbVar,27 DGVa,27 OMIM,28
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LOVD,29 DECIPHER,30 VarSome,31 and Ensembl.32 Each of
these resources possesses unique strengths, including capa-
bilities for large-scale data handling and the provision of
comprehensive variant annotations. However, they also face
common challenges, primarily associated with prediction

accuracy, false positives and negatives, and cross-species

prediction transferability. Furthermore, limitations may arise

due to the availability and quality of data, as well as inherent

biases and assumptions within prediction algorithms.33

Figure 1. Coding frameshift small insertion and deletion variations. (A) Normal, (B) frameshift insertion, (C) frameshift insertions, (D) frameshift
deletion, (E) frameshift deletions.
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In this comprehensive review, we present a succinct
overview of computational methodologies, databases, ongoing
challenges, and prospective directions in predicting the
consequences of coding frameshift small indels variations.
Moreover, a comparative analysis of prediction methodologies
was conducted on the GOF/LOF pathogenic variation data.
The field envisions the seamless integration of emerging
technologies such as deep learning and artificial intelligence
into predictive models. These cutting-edge techniques hold
immense promise for the development of next-generation tools
that enhance our comprehension and prognostication of gene
variation impacts, with particular emphasis on frameshift
indels.34

2. CODING FRAMESHIFT SMALL INSERTION AND
DELETION VARIATIONS
2.1. Definitions and Occurrence of Variations in DNA.

Frameshift variations, which encompass small indels in the
DNA sequence, disrupt the conventional reading frame of
three nucleotides responsible for encoding an AA. These
variations commonly occur during critical DNA processes such
as replication, repair, or recombination events, often caused by
DNA polymerase slippage resulting in the insertion or deletion
of bases35 (depicted in Figure 1). In Figure 1A, the normal
reading frame is depicted, while in Figure 1B,C, frameshift
insertions are illustrated, leading to the generation of
premature stop codons and consequently shortening the
encoded protein sequence. Simultaneously, in Figure 1D,E,
frameshift deletions are exemplified, altering the protein
sequence and resulting in different amino acid sequences.
Contributing factors to these variations encompass the

following aspects:
(1) Mistakes in DNA replication and repair processes:

Errors or external factors (e.g., radiation) during DNA
replication and repair can lead to frameshift variations
with erroneous base insertions or deletions.36

(2) Influence of repetitive sequences and DNA crossovers:
DNA regions abundant in repetitive sequences are
susceptible to base insertions or deletions. Nearby
similar base pairs in these locations may induce DNA
polymerase slippage, resulting in frameshift variations.37

Additionally, unequal recombination between chroma-
tids or chromosomes can contribute to frameshift
variations.38

(3) Trans-acting elements instigating frameshift variations:
Transposons and lncRNAs can trigger frameshift
variations. Random insertion or rearrangement of
transposons within the genome,39 along with Alu
sequences associated with genetic diseases due to their
insertion or deletion events,40 plays a significant role.
LncRNAs can provoke local frameshifts by binding to
target mRNA, promoting degradation.39

(4) Frameshift variations originating from point variations:
Base pair replacements can disrupt splice signals, leading
to incorrect splicing of introns or exons, causing
frameshift variations if the insertions or deletions are
not multiples of three.41

(5) Environmental triggers: Factors (such as chemicals,
ultraviolet light, and radiation) can induce frameshift
variations during DNA damage repair. Carcinogens like
polycyclic aromatic hydrocarbons found in cigarette
smoke interfere with base pairing, elevating the risk of

base insertions or deletions.42 Moreover, exposure to
ultraviolet light leads to the formation of thymine
dimers, indirectly contributing to frameshift variations
through effects on DNA replication and repair.43 These
primary factors contribute to the aforementioned
variations and emphasize the importance of under-
standing the mechanisms behind variations in genetic
and environmental contexts.

2.2. Potential Impact on Protein Structure and
Function. Frameshift variations, especially small indels, play
a significant role in generating phenotypic diversity among
individuals with identical gene variations. These variations are
influenced by various factors, such as genetic predisposition,
environment, and stochastic events, and can lead to diverse
clinical manifestations. An excellent illustration of this
phenomenon is observed in cystic fibrosis patients who carry
CFTR frameshift variations, wherein symptoms can vary from
lung dysfunction to digestive complications.44 The impact of
small indels in frameshift variations on protein structure and its
function can be categorized into three distinct types: (1) LOF:
critical functional domains or protein folding can be
compromised due to inserted or deleted AAs, resulting in
nonfunctional proteins. For example, frameshift-induced indels
in Duchenne muscular dystrophy disrupt the normal structure
and function of muscle cells due to dystrophin deficiency or
abnormality.45 (2) Reduced function: newly synthesized
proteins may retain some level of functionality; However,
their efficiency or stability might be diminished. Structural
variations caused by small indels can impair interactions with
other proteins or ligands, leading to a reduction in overall
function.46 (3) GOF: small indels can facilitate the emergence
of novel protein functions. The introduction of new AA
sequences alters protein structures, resulting in novel functions
that enhance gene diversity,47 and understanding GOF is
crucial for identifying therapeutic and diagnostic targets.48

Comprehending the profound impact of small indels
variation on protein function is pivotal for decoding disease
mechanisms and exploring functional protein diversity. There-
fore, further insightful research is necessitated to illuminate
these specific mechanisms and quantify their effects.
2.3. Association with Genetic Diseases. Frameshift

variations, frequently instigated by small indels, play a
momentous role in a myriad of genetic disorders, including
Duchenne muscular dystrophy (DMD), cystic fibrosis, and
hereditary breast cancer. First, in the context of DMD, around
two-thirds of cases can be attributed to frameshift small indels
variations in the DMD gene, resulting in the synthesis of
dystrophin proteins with impaired functionality, consequently
triggering the onset of the disease.49 Second, cystic fibrosis is
correlated with frameshift variations in the CFTR gene,
disrupting protein production, impairing chloride ion channel
function, and subsequently leading to organ damage,
particularly affecting the pancreas, lungs, and liver.44 Similarly,
frameshift variations in the BRCA1 and BRCA2 genes
significantly increase the susceptibility to hereditary breast
and ovarian cancers. These variations alter protein structure
and thereby influence its function, thereby compromising
DNA repair mechanisms.50 Notably, frameshift variations have
also been associated with complex diseases such as autism and
cancer.51,52 Consequently, understanding the molecular
mechanisms underlying frameshift small indels becomes
imperative, representing a crucial step toward developing
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effective therapeutic strategies for managing these genetic
disorders.

3. COMPUTATIONAL TOOLS AND DATABASE
RESOURCES
3.1. Principles Central to Genome Variation Effect

Prediction. There are six core principles central to genome
variation prediction approaches, as outlined below: (1)
Multiple Sequence Alignment: Advanced tools, such as
HHalign,53 MUSCLE,54 and ECA,55 enhance the prediction
of effects by prioritizing coding frameshift small indels during
sequence alignment. (2) Nucleic Acid and Amino Acid
Sequence Evolution Information: Analyzing evolutionary
features considers the conservation, selection pressure, and
evolutionary rate within frameshift variations. Tools like PAML
and FUBAR56 combine HMMs, PSSMs, and DCA to improve
the prediction of variation impacts.55,57 (3) Functional Domain
Analysis: Utilization of resources like GO58 and the Reactome
pathway database59 improves the prediction accuracy of
frameshift variations’ effects. Integrative analytical methods
and machine learning techniques, such as VarCoPP60 and
PrismNet,61 further refine predictions. (4) Network Analysis:
Estimating the impact of genetic variations is achieved through
biological network analysis targeting protein interactions.
Networks involving domain interaction, protein complex
topology, and metabolic pathways provide critical insights for
accurate predictions.62 The utilization of GNNs helps elucidate
network modifications, crucial for understanding variation
impacts.63 (5) Machine Learning and Ensemble Methods:
Employing advanced deep learning strategies, such as ResNet64

and Transformer,65 significantly forecasts the consequences of
frameshift variations. Models like MutaBind266 and Graph-
DTA67 capture intricate features for precise predictions.
Ensemble Methods combine multiple prediction approaches,
enhancing performance68 with CNNs, RNNs, and exhibiting
robust performance on sequence data.69,70 Techniques like
meta-learning and transfer learning optimize models, further
improving accuracy.71 (6) Multiomics Data for Variation
Impact Evaluation: the integration of multiomics data enables
a comprehensive evaluation of perturbations in biological
systems. Incorporating gene expression, evolutionary features,
and network analysis reveals potential influences on tran-
scription factor binding sites and gene regulatory networks.72

DNA methylation and ChIP-seq data will offer insights into
epigenetic impacts.73

In conclusion, the accurate prediction of the impacts of
coding frameshift small indels necessitates an integrative
approach that incorporates evolutionary features, network
analysis, and ensemble techniques. The potential for future
technological advancements, enriched data resources, and
enhanced computational capabilities holds promise for
fortifying these endeavors. Consequently, such advancements
can significantly contribute to and advance biomedical research
and precision medicine, particularly in the study of coding
frameshift variations. The following two subsequent sections
will present a comprehensive overview of the computational
tools and database resources (Figure 2 illustrates the timeline).
3.2. Computational Tools for Coding Frameshift

Indels Variations Prediction. 3.2.1. Predictors. This section
introduces methods for analyzing coding frameshift small
indels, which are crucial for comprehending their functional
outcomes. For further details, refer to Tables 1, 2, and 3.

(1) PROVEAN74 is an exclusive tool that predicts the
consequences of small indels (from UniProt75) on
protein functionality and phenotype, which employs
machine learning and statistical models to generate a
score indicating the functional impacts of these
variations. PROVEAN74 enables researchers to grasp
the importance of coding frameshift small indels in
protein function and phenotype, and notably its
balanced accuracy was reported at 71.73% and 75.10%
for deletions and insertions variations, respectively.

(2) SIFT Indel,13 implemented with a refined algorithm,
proficiently predicts the ramifications of coding frame-
shift variations, taking into account sequence alignment,
conservation, and protein architecture. By providing the
SIFT scores and p-values, it effectively quantifies
disruptions caused by small indels. Its user-friendly
interface and compatibility with multiple species
facilitate the utilization of pre-existing homologous
data sets. SIFT Indel was demonstrated noteworthy
performance metrics, achieving an accuracy, sensitivity,
specificity, precision, MCC, and AUC of 82%, 81%, 82%,
82%, 0.63, and 0.87, respectively.13

(3) CADD14 provides a comprehensive approach to evaluate
the effect of SNPs and small indels on genomic
functionality at the functional level. By synergizing
multiple biological features and machine learning
algorithms, CADD14 integrates rich features for optimal
predictions, suiting various species and coding variation
classes. The primary data source for CADD is primarily
derived from ClinVar21 and 1000GP.23 Significantly,
CADD has extensively annotated the entire set of 8.6
billion potential substitutions within the human genome
and subsequently generates precise prediction scores for
each substitution possibility.14

(4) DDIG-IN15 presents an exhaustive evaluation of small
indels’ influence. By employing the AdaBoost algorithm
and considering various factors, such as sequence
conservation, structural conservation, and AA free
energy changes, it demonstrates exceptional proficiency
in predicting small indels. DDIG-IN15 offers several
notable advantages: first, it enables a thorough assess-
ment of multiple features, leading to improved
prediction accuracy; second, machine learning is
employed for automatic weight adjustment, thereby

Figure 2. Timeline for coding frameshift indicator databases and
effect prediction tools. (A) Timeline for Tools, (B) Timeline for
Databases.

ACS Omega http://pubs.acs.org/journal/acsodf Mini-Review

https://doi.org/10.1021/acsomega.3c07662
ACS Omega 2024, 9, 2032−2047

2035

https://pubs.acs.org/doi/10.1021/acsomega.3c07662?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07662?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07662?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07662?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07662?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Table 1. Pred-Technology, Year, and Used Features of Ten Coding Frameshift Small Indels Predictors

tool year Pred-Technologya used features

PROVEAN 2012 Scoring method Clustering score of protein sequences after AA substitutions
SIFT Indel 2013 Decision Tree Conservation score, sequence homology
CADD 2014 SVM Multiple biological features, such as conservation, functional domains, splice signals
DDIG-IN 2015 SVM Gene-level, transcript-level, nucleotide-level, and protein-level features
VEST-Indel 2016 RF Conservation scores, indel length, protein disordered regions and predicted local structural characteristics
MutPred-LOF 2017 neural networks Sequence and evolutionary features, structural and functional property features
PredCID 2021 XGBoost Information on genes, DNA sequences, transcript expression, protein levels
SPD_Pred 2019 RF Structural and evolutionary features, chemical interaction and spatial arrangement features, dynamic and

flexibility features
PROFOUND 2020 positive-unlabeled Fold-level attributes, environment-specific properties, and deletion site-specific properties
MutationTaster2021 2021 RF Conservation at DNA-level and protein-level, protein-domains, splice site

aNote: Pred-Technology: Prediction Technology; PROVEAN, https://www.jcvi.org/research/provean; SIFT Indel, http://sift-dna.org/; https://
sift.bii.a-star.edu.sg/www/code.html; CADD, https://cadd.gs.washington.edu/, https://cadd.gs.washington.edu/api; DDIG-IN, https://sparks-lab.
org/server/ddig/; VEST-Indel, http://cravat.us; MutPred-LOF, http://mutpred2.mutdb.org/mutpredlof/; PredCID, http://www.xialab.
info:8080/PredCID/; SPD_Pred, http://cse.iitkgp.ac.in/~pralay/resources/SPD_Pred/; PROFOUND, http://cse.iitkgp.ac.in/~pralay/
resources/PROFOUND/; MutationTaster2021, https://www.genecascade.org/MutationTaster2021/.

Table 2. Max Data Upload, Software, Web Server, and Variation Types of Ten Coding Frameshift Small Indels Predictors

tool max data uploada
software
availa

webserver
availa type of variations

PROVEAN web-based version has been
retired

YES NO SNV, insertions and deletions (<6AA)

SIFT Indel <100 raw YES YES Insertions and deletions (<5 bp)
CADD <2 MB YES YES SNV, insertions and deletions (<50 bp)
DDIG-IN Multiple Variations NO YES NFS/FS indels, nonsense, nonymous
VEST-Indel 100−1000000 variations NO YES In-frame, frameshift
MutPred-LOF <100 variations YES YES Frameshift stop-loss
PredCID <500 indels YES YES Insertions and deletions
SPD_Pred N.M. NO YES Single point deletions
PROFOUND N.A. YES N.A. deletions
MutationTaster2021 One sample in VCF file N.A. YES noncoding variants, short insertions and deletions (<40 bp), frameshift,

premature stop codons
aNote: Software avail: Software availability; Webserver avail: Webserver availability; YES: the corresponding tool has software or Web server; N.A.,
not applicable; N.M., not mentioned.

Table 3. Evaluation Strategy, Data Set, Genome Reference, and Last Updated of Coding Frameshift Small Indels Predictorsa

predictors evaluation strategy data set
email for
result

genome
reference

last
updated

total
site IF

PROVEAN N.A. Deletions: 729 NO Not provided 7-May-14 2957 3.7
Insertions: 171

SIFT Indel 10-fold CV Indels: 10,184 (neutral: 9,710) YES Genome 37 31-Mar-22 137 3.7
Genome 38

CADD N.M. Insertions: 627,071 YES GRCh37/hg19 31-Jul-18 5780 30.8
Deletions: 926,968 RCh38/hg38

DDIG-IN 10-fold CV independent test Training: 1,240 YES GRCh37/hg19 13-Sep-20 57 5.8
Testing: 4,016

VEST-Indel 10-fold CV independent test Deletions: 17,606 YES GRCh38 29-Oct-18 125 3.9
Insertions: 8,265

MutPred-LOF 10-fold CV FS-disease: 18,116 YES N.A. N.A. 62 5.8
FS-neutral: 90,135

PredCID 10-fold CV Training: 4054 YES N.A. N.A. 17 9.5
Independent test: 813

SPD_Pred 3-fold CV Positives: 132 N.M. N.A. N.A. 8 4.4
Negatives: 30

PROFOUND 10-fold CV MPD: 153 unlabeled MPD: 7650 N.M. N.A. N.A. 3 5.6
MutationTaster2021 3-fold CV Benign: 11,168,768 Yes GRCh37 24-Mar-21 108 14.9

Deleterious: 236 400 Ensembl 102

aNote: YES: the corresponding tool has software or Web server; N.A., not applicable; N.M., not mentioned. Total site: is the total account of
citations for the corresponding article, with the count recorded up to November 7, 2023. IF: stands for the latest Impact Factor of the journal in
which the article was published.
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enhancing classification accuracy; third, it surpasses
other existing methods in its ability to predict coding
frameshift small indels. The DDIG-IN data are sourced
from PDB76 and UniProt75 and DDIG-in (FS) achieved
impressive MCC, sensitivity, specificity of 0.59, 86%, and
72% for FS indels, respectively.15

(5) VEST-Indel16 specializes in the precise prediction of
pathogenicity for small indels with a remarkable level of
accuracy, and its achievement is attained through a
comprehensive integration of diverse features, such as
AA conservation, structural domains, functional regions,
and contextual information from variation sites, all
skillfully incorporated into statistical models. The
primary source of data for VEST-Indel is ClinVar,21

ensuring a reliable and robust data set. Notably, VEST-
Indel attains an impressive balanced accuracy and
sensitivity of 0.87 and 0.89, respectively, on the test
data.16

(6) MutPred-LOF17 is designed to discern the potential
impact of coding frameshift small indels on protein
function, which leverages random forest, along with a
diverse array of features encompassing AA properties,
structural conservation, sequence conservation, and
domain annotations. Such a comprehensive approach
aims to augment prediction accuracy and effectively
assess LOF variations. The data used for analysis were
meticulously curated from reputable sources, including
ClinVar,21 HGMD,26 ExAC.4 Results from the evalua-
tion of all LOF variants using MutPred-LOF revealed an
impressive AUC of 0.85.17

(7) PredCID18 demonstrates exceptional proficiency in
predicting cancer-related driver small indels, utilizing
data from reliable sources such as HGMD26 and
1000GP.23 By integrating carefully selected biological
features across various levels, including gene, DNA,
transcript, and protein, and employing the XGBoost
classification algorithm, PredCID18 effectively manages
missing values that may arise from different transcript
selections. As a result, it surpasses noncancer-specific
methods in predictive accuracy. Notably, PredCID
accurately identified 150 (94.9%) out of 158 putatively
passenger frameshift indels, exhibiting a performance
level close to that observed on the test data.18

(8) SPD_Pred19 examines the influence of single-point
deletions on protein stability, with a particular focus on
small indels (using data from PDB76 and UniProt75),
which employs computational simulations and stability
prediction tools to elucidate the underlying mechanisms
that govern protein stability, thereby presenting new
opportunities in protein engineering and drug design. By
employing a rigorous cross-validation technique and
utilizing RF, SPD_Pred demonstrated the exceptional
accuracy of 99.4%.

(9) PROFOUND20 assesses variations in folding capacity
caused by MPDs (indels from UniProt75). By integrating
folding-level, context-specific, and site-specific attributes,
it effectively discerns detrimental MPDs from beneficial
deletions. Moreover, the inclusion of evolutionary
attributes substantially improves prediction accuracy.
Through the implementation of 10-fold cross-validation,
PROFOUND reported recall and fallout rate values of
82.2% (86.6%) and 14.2% (20.6%) for MPDs in protein
loop regions, respectively.20

(10) MutationTaster211 is founded upon the Naive Bayes
classifier and represents an advancement over its
precursor, MutationTaster, with the primary objective
of proficiently predicting the impacts of gene mutations
on protein function, notably small indels. This method
incorporates sequence conservation, comprehensive
annotations, and genomic context while effectively
discerning diverse mutation types through the use of
pathogenicity scores and annotations, thus revealing the
extent of the mutations’ impact.11 The data employed in
MutationTaster2 were meticulously gathered from
reputable sources, including 1000GP,23 ClinVar,21 and
HGMD.26 In 2021, MutationTaster202177 was devel-
oped using the RF classifier. The data set used for
MutationTaster2021 was collected from gnomAD,24

ClinVar,21 and HGMD,26 comprising more than 11
million benign variants and 236 thousand deleterious
variants. Through comparative analysis with Muta-
tionTaster2, it was demonstrated that MutationTast-
er2021 achieved a significantly enhanced balanced
accuracy of 93.3%, as opposed to 90.7% for Muta-
tionTaster2, specifically concerning small deletions,
frameshifts, or premature stop codons.77

3.2.2. Predictive Efficacy, Reliability, and Utilization of
Computational Methods. In a bid to furnish a comparative
evaluation of an array of computational methodologies, we
delve meticulously into their predictive efficacy, reliability, and
application spectrum. Each predictor under appraisal will be
individually scrutinized for its merits and constraints within
these parameters.

(1) Predictive Efficacy: PROVEAN,74 in operation since
2012, has amassed an impressive publication count,
underscored by a total site score of 2957. Its unique
clustering algorithm analyzing protein sequences post
amino acid substitutions markedly enhances its
predictive proficiency. SIFT Indel,13 introduced in
2013, exhibits admirable predictive accuracy for
insertions and deletions due to its application of
sequence homology and conservation scores. Despite
possessing a lower site count relative to other predictors,
its performance does not falter. CADD,14 established in
2014, published in a high-impact journal (IF: 30.8),
records a robust Total site score. The amalgamation of a
linear regression/SVM approach with various biological
features bolsters its predictive prowess. DDIG-IN,15

notwithstanding a lesser site score, applies SVM,
accounting for diverse variations, thereby ensuring a
solid predictive performance. VEST-Indel,16 operational
since 2016, targets indels and frameshift mutations
specifically. Its application of the random forest method
enhances prediction accuracy. MutPred-LOF,17 created
in 2017, excels in predicting frameshift mutations,
utilizing random forests, making it tailor-made for
specific categories of variants. PredCID,18 launched in
2021, shows immense potential through its use of
XGBoost combined with gene, DNA sequences, and
protein level data. SPD_Pred,19 despite a limited site
score, incorporates characteristics from diverse sources
and applies the random forest method, making it a
reliable contender for single point deletions. PRO-
FOUND,20 introduced in 2020, is predicated on a
positive-unlabeled technique with a focus on structural

ACS Omega http://pubs.acs.org/journal/acsodf Mini-Review

https://doi.org/10.1021/acsomega.3c07662
ACS Omega 2024, 9, 2032−2047

2037

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07662?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


stability and folding speed. MutationTaster2021,77

incepted in 2021 with a high site score, utilizes the
random forest algorithm, promising significant utility for
predicting the effects of sequence and structural features.

(2) Reliability: Long-standing tools such as PROVEAN and
SIFT Indel validate their reliability. However, the
discontinuation of PROVEAN’s web version may impact
its accessibility. CADD, with its substantial publication
record in a reputable journal, underscores its reliability.
Its multifaceted biological feature functionality enhances
its credibility further. DDIG-IN, VEST-Indel, and
MutPred-LOF have proven their reliability, though
they might be more narrowly focused than some
established contemporaries. Emerging tools like Pre-
dCID and MutationTaster2021 are promising prospects
but necessitate further validation to establish their
reliability credibly.

(3) Utilization: PROVEAN and SIFT Indel, owing to their
well-established usage over several years, have been
widely adopted. With its myriad features, CADD offers
adaptive utilization for diverse variant types. While
DDIG-IN, VEST-Indel, and MutPred-LOF may be
specialized, they still hold substantial utility for particular
mutation scenarios. Novel tools like PredCID and
MutationTaster2021 demonstrate potential that may
resonate with increased popularity pending further
exploration and validation.

To summarize, the selection of a computational method
should be dictated by the specifics of the research question and
variant categories. Tools with proven track records, such as
PROVEAN and SIFT Indel offer reliable performance, albeit
with a limited variant spectrum. CADD distinguishes itself with
a comprehensive approach. Emerging tools like PredCID and
MutationTaster2021, while promising, mandate rigorous
validation, preceding broader adoption. Consequently, re-
searchers should strike a judicious balance between predictive
performance and reliability, while selecting the most suitable
tool for their analyses.
3.3. Comparison of Methods for Predicting Frame-

shift Indels Variation. We downloaded the data (based on
HGMD) classified as pathogenic variants from the GOF/LOF
databases, which comprise 9618 pathogenic variations
(GRCh37).78 It is essential to note that the GOF/LOF data
set encompasses various types of genomic variations, including
frameshift variations, inframe_deletion, inframe_insertion,
start_loss, stop_gained, stop_loss, and synonymous variation.3

In this section, we conducted comparative experiments using
prediction tools, as presented in Section 3.2 to analyze these
genomic variation data. However, due to existing technical
constraints, not all tools could be evaluated. Specifically, the
web servers of DDIG-IN,15 VEST-indel,16 PROFOUND,20

PredCID,18 SIFT Indel13 were unavailable. Additionally, access
to the Web site of SPD_Pred19 was forbidden. Furthermore,
MutPred-LOF17 allows the input of only a single protein at a
time. Considering these limitations, our evaluation focused
solely on three tools: PROVEAN, CADD, and MutationTast-
er2021. The results derived from a comparison of their
performance are comprehensively documented in Table 4.
Upon thorough data assessment, a meticulous comparison

was conducted between PROVEAN, CADD, and Muta-
tionTaster2021 from various perspectives. Four key metrics
(i.e., TP, Accuracy+, Sensitivity+, and Recall+) were considered

to evaluate their performance. From the data in Table 4, it is
apparent that MutationTaster2021 outperforms both PRO-
VEAN and CADD across all metrics. First, MutationTast-
er2021 boasts the highest TP value (8920, 97.37%), indicating
its superior precision in identifying true positive results.
Additionally, MutationTaster2021 surpasses the other two
methodologies in terms of Accuracy+, Sensitivity+, and Recall+,
further cementing its excellent capabilities in predictive
accuracy and identification of positive instances.
However, when examining FN, a significant drawback was

identified with PROVEAN, which registered the highest FN
percentage (19.75%). This suggests a propensity to incorrectly
classify negative results, representing a notable weakness
compared with CADD and MutationTaster2021. On the
other hand, MutationTaster2021 consistently demonstrates a
balance between precision and recall, evidenced by the highest
F1+ score (a critical metric for model performance) of 0.9867.
In conclusion, based on this detailed comparative analysis, it

becomes clear that, among the three methodologies,
MutationTaster2021 emerges as the most efficient predictor.
It not only exhibits higher accuracy in predicting positive
results but also has a lower likelihood of falsely identifying
negative outcomes. By attainment of a commendable balance
between precision and recall, MutationTaster2021 proves to be
a reliable choice for studies centered around genome variation.
3.4. Database Resources. 3.4.1. Databases. In the realm

of genomic variation research, specialized databases are
instrumental in collating and organizing data pertinent to
coding frameshift indels, as indicated in Tables 5−6.
(1) Johns Hopkins University-curated OMIM28 is an all-

encompassing genetic database for human diseases and
genes. With over 15,000 genes and disease-associated
variations including coding frameshift indels, OMIM28

provides exhaustive annotations for variation types,
disease phenotypes, inheritance patterns, and literature
references, which serves as a valuable resource for
evaluating prediction methods’ accuracy in disease-
related genetic variations. The analysis of documented
pathogenic coding frameshift variations in OMIM
provides profound insights into the biological mecha-
nisms underlying these disease-causing variations.

(2) HGMD26 comprises over 250,000 disease-associated
genetic variations, encompassing small coding frameshift

Table 4. Comparison Results of PROVEAN, CADD, and
MutPred2021 on the GOF/LOF Variation Dataa

evaluation values PROVEAN CADD MutationTaster2021

TP (percent) 4600
(80.25%)

7172
(97.02%)

8920 (97.37%)

FN (percent) 1132
(19.75%)

220 (2.98%) 241 (2.63%)

BLANK 3886 2226 810
False Negative
Rate+

0.1975 0.0298 0.0263

Accuracy+ 0.8025 0.9702 0.9737
Sensitivity+ 0.8025 0.9702 0.9737
Recall+ 0.8025 0.9702 0.9737
F1+ 0.8904 0.9849 0.9867
aNote: The False Negative Rate+, Accuracy+, Sensitivity+, Recall+, and
F1+ are all calculated based on the pathogenic variation class (+).
Demonstrated in the formula provided in Section 4.2, when TN and
FP are equal to 0, the values of Accuracy+, Sensitivity+, and Recall+ are
the same.

ACS Omega http://pubs.acs.org/journal/acsodf Mini-Review

https://doi.org/10.1021/acsomega.3c07662
ACS Omega 2024, 9, 2032−2047

2038

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07662?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


indels within well-known genes. The inclusion of
extensive annotations offers crucial insights into
nucleotide and amino acid alterations, disease pheno-
types, and literature references, rendering it an
indispensable resource for the accurate evaluation of
prediction methodologies.

(3) dbSNP,22 managed by NCBI, is a vital repository for
genetic variation, which has emerged as an indispensable
resource for genomic variation studies in humans since
1998. With over 1.5 billion records of genetic variants, it
encompasses diverse populations and regions globally,
including various variation types, including SNPs and
small indels. Importantly, dbSNP22 provides thorough
annotations and curation for indels, furnishing detailed
information about genomic positions, gene structures,
and AA alterations across several biological scales. These
rich data inputs facilitate the examination of distribution
patterns of coding frameshift variations.

(4) Ensembl32 is a comprehensive genomic database and
analysis platform that includes various types of genetic
variations, with a specific focus on coding frameshift
indels. This valuable resource offers researchers a wide
range of user-friendly tools to facilitate data querying
and analysis. Validating and optimizing prediction
algorithms using Ensembl enhances both accuracy and
applicability; additionally, its integration with other
bioinformatics resources significantly boosts its ability
to predict variant effects.32

(5) COSMIC,25 a distinguished database of genetic
variation, accumulates diverse genomic data from
international cancer research centers. Its contents
encompass SNPs, indels, CNVs, and fusion genes.

Detailed annotations for coding frameshift indels
provide valuable insights facilitating extensive inves-
tigations into their role in tumor development.
COSMIC25 also equips researchers with comprehensive
contextual information, which they can efficiently
retrieve via the database’s versatile query options.
Integration with bioinformatics tools and databases
(e.g., TCGA79 and ICGC80) enhances the interpretation
of COSMIC data.

(6) 1000GP23 seeks to reveal human genetic variations
through whole-genome sequencing, which includes
sequences of more than 2,500 individuals from 26
disparate populations, comprising SNPs, indels, CNVs,
and SVs and offering insights into coding frameshift
variations across populations. The project employs
cutting-edge sequencing technologies and rigorous data
processing to ensure high-quality output.23 Users can
retrieve data via FTP, AWS, and Google Cloud Storage,
with API interfaces available for efficient data extraction
and querying.

(7) DGVa,27 EBI’s comprehensive global database for
genomic SVs includes a wide range of SVs such as

Table 5. Database Resources of Coding Frameshift Small
Indels

database
name abbreviations year organizer

OMIM Online Mendelian
Inheritance in Man

1995 Johns Hopkins University
School of Medicine

HGMD Human Gene Mutation
Database

1996 Cardiff University

dbSNP Database of Single
Nucleotide
Polymorphisms

1998 National Center for
Biotechnology
Information

Ensembl Ensemble Genome
Browser

2000 EMBL-EBI

COSMIC Catalogue of Somatic
Mutations in Cancer

2004 Wellcome Sanger Institute

1000GP 1000 Genomes Project 2008 International consortium of
researchers

DGVa Database of Genomic
Variants Archive

2009 EMBL-EBI

Decipher Deciphering
Developmental Disorders

2009 Wellcome Sanger Institute

LOVD Leiden Open Variation
Database

2004 Leiden University Medical
Center

dbVar Database of Genomic
Structural Variation

2010 National Center for
Biotechnology
Information

ClinVar Clinical Variation 2013 National Center for
Biotechnology
Information

ExAC Exome Aggregation
Consortium

2014 Broad Institute of MIT and
Harvard

VarSome 2015 Saphetor SA
gnomAD Genome Aggregation

Database
2016 Broad Institute of MIT and

Harvard

Table 6. Updated Frequency, Variant Types, and Web Sites
of Coding Frameshift Database Namea

database
name variant account

updated
frequency variant types

OMIM Not Given Regular
updates

PM, DI, CNVs, SV, TRE

HGMD 410,743 Regular
updates

PM (SNVs, indel), SV,
small indels, CNVs, RSV,
MH

dbSNP 1.1 billion Regular
updates

SNVs, frameshift, SV,
CNVs, RV, MNVs, US,
NC, SNPs

Ensembl 714 million Regular
updates

SNV, indel, SV, CNV,
Inversion, TR,

COSMIC 2.39 million Regular
updates

PM (SNVs, indel), SV, GR,
CV

1000GP 0.87 million indels Regular
updates

SNVs, frameshift, SV,
CNVs, US, MNVs

DGVa 37,852 Regular
updates

CNVs, SV, MD, SNVs,
SNPs, D/IP

Decipher 12,870 Regular
updates

frameshift, small indels, PM

LOVD 23,030 Regular
updates

PM, DI, CNVs, SV, TRE

dbVar 37.7 million Regular
updates

SV, CV, MD, CNV, UT,
CR, H/DV

ClinVar 2 million Regular
updates

SNVs, frameshift, SV,
CNVs, RV, MNVs, US

ExAC 600,000 indels Into
gnomAD

SNVs, frameshift, SV,
CNVs, US

VarSome Can annotate
arbitrary variants

Regular
updates

Frameshift, small indels,
PM, SNVs, SV

gnomAD frameshift:
1,186,588indels:
122,583,462

Regular
updates

SNVs, frameshift, SV,
CNVs, US

aNote: OMIM, https://www.omim.org/; HGMD, http://www.
hgmd.cf.ac.uk/ac/index.php; dbSNP, https://www.ncbi.nlm.nih.gov/
snp/; Ensembl, https://www.ensembl.org/; COSMIC, https://
c an c e r . s a n g e r . a c . u k/ co sm i c ; 1000GP , h t t p s : / /www .
internationalgenome.org/; DGVa, https://www.ebi.ac.uk/dgva/; De-
cipher, https://decipher.sanger.ac.uk/; LOVD, https://databases.
lovd.nl/shared/genes/; dbVar, https://www.ncbi.nlm.nih.gov/dbvar/
; ClinVar, https://www.ncbi.nlm.nih.gov/clinvar/; ExAC, https://
gnomad.broadinstitute.org/; VarSome, https://varsome.com/; gno-
mAD, https://gnomad.broadinstitute.org/.
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small coding frameshift indels, CNVs, and repeat
sequences, which amasses samples from more than 100
research projects, making it a trusted source of reliable
SV data. DGVa27 has a central role in evaluating the
accuracy of prediction algorithms and seamlessly
integrates with Ensembl,32 EGA,81 and ENA.82 This
integration facilitates cross-database querying and
collaborative analysis, contributing to enhanced pre-
dictions of variation effects.

(8) Decipher30 is a genomic database for SVs, which
catalogs disease-associated coding frameshift indels and
provides bioinformatics tools for variant effect predic-
tion, gene expression queries, and protein domain
analysis, thereby facilitating the study of variation
mechanisms and pathogenicity. Background information
and analytical features enrich our understanding of
disease-causing coding frameshift variations.

(9) LOVD29 maintains an extensive web-based genetic
variation database, providing a versatile platform for
diverse variation data, including coding frameshift indels.
With a curated collection of over 500,000 variant records
spanning known genes, LOVD29 offers practical tools for
the assessment of precise prediction methods and
algorithm validation. Its seamless integration with
OMIM28 and HGVS83 enhances LOVD’s effectiveness
in predicting variant effects.

(10) dbVar,27 an NCBI-maintained robust database for
human genome structural variations, provides a multi-
faceted platform for querying and analyzing genetic
variations such as coding frameshift indels, CNVs, and
repeat sequences. Backed by reputable sources like the
1000 Genomes Project,23 ClinGen,84 DECIPHER,30

dbVar27 houses over 5.7 million variant records that
span known genes. Researchers are afforded substantial
background information and experimental data, facilitat-
ing prediction method evaluation. The seamless
integration with NCBI resources including dbSNP,22

ClinVar,21 and OMIM28 allows dbVar to offer
comprehensive services for querying and analyzing
genetic variations.

(11) ClinVar21 is a globally accessible database that
aggregates genetic variation data from laboratories,
genetic testing enterprises, and research institutions
worldwide. It presents invaluable evidence relating
human genetic variations to health and disease
conditions. ClinVar has particular utility for predicting
coding frameshift indels and is routinely updated to
maintain accuracy. Users can query specific genes,
diseases, or types of variations and access expert
evaluations on variant pathogenicity.

(12) The ExAC consortium4 utilizes global exome sequencing
data to chart genetic variations comprehensively, which
incorporates information from 60,000 individuals free
from disease, providing extensive coverage. Besides,
backdrop information, such as haplotype structure and
population frequencies, assists in understanding varia-
tion origins and evolution. Integration with resources
including gnomAD,24 ClinVar,21 and OMIM,28 allows
for comprehensive querying and analysis of genetic
variations via multiple methods and API interfaces.

(13) VarSome31 is a robust genetic variation database and
annotation platform that seamlessly integrates various
public resources, delivering comprehensive variant

information including coding frameshift indels, gene
function, phenotype features, and literature references.
VarSome31 provides online tools for variant effect
prediction, frequency queries, and protein domain
analysis, optimizing data mining and result interpreta-
tion. It serves as a robust platform for evaluating
prediction methods, empowering researchers to expedite
algorithm validation and optimization.

(14) gnomAD24 comprehensively maps human genetic
variations with sequencing data from over 140,000
individuals, which provides in-depth annotations of
coding frameshift indels allowing thorough investigation
into their distribution, genetic background, and func-
tional consequences across various populations. gno-
mAD24 offers advanced tools for efficient data access and
processing while adhering to stringent quality control
measures. Integration with reputable resources (such as
ClinVar,21 OMIM,28 and HGMD85) augments the
platform’s comprehensive analysis capacity of genetic
variations.

3.4.2. Database Account, Reliability, and Utilization.
From Table 5−6, we conducted a comparative analysis of
various database sources in terms of the number of data sets,
reliability, and utilization.
First, in terms of the number of data sets, VarSome31 (3.3

billion) and dbSNP22 (1.1 billion) far exceed the variant
accounts of other databases, followed by Ensembl (714
million), while Decipher,30 LOVD,29 and DGVa27 have
relatively small scales with less than 50,000 each. Please
note: this statistic is based on the data publicly provided by
each database.
Second, regarding the updating frequency, apart from

1000GP23 and ExAC4 which have finished their updates, all
other databases are updated annually. This demonstrates their
commitment and capability to continually collect and collate
genetic variant information.
Third, onto the reliability aspect, the organizers of these

databases are world-renowned research institutions or
universities, such as Johns Hopkins University School of
Medicine, QIAGEN Bioinformatics, National Center for
Biotechnology Information, European Bioinformatics Institute,
etc. Therefore, we can consider that the data from these
databases have a high scientific reliability.
Furthermore, in terms of the types of variants, these

databases all provide multiple types of variation data, such as
SNVs, indels, SV, CNVs, etc., meeting the demands of different
studies. Additionally, some databases like COSMIC,25

ClinVar,21 etc., particularly focus on including PM, facilitating
clinical related research. Finally, in terms of utilization,
databases like HGMD,85 COSMIC,25 and ClinVar21 have
been widely used in disease research fields due to their high
association with diseases. Large-scale databases like dbSNP,22

Ensembl,32 etc., with their comprehensiveness, hold significant
value in several bioinformatics research domains. Moreover,
emerging databases like gnomAD,24 with its large scale and
comprehensive types of data, is gradually gaining broader
usage.
The information presented above is our comparative analysis

of various database sources. We hope it can be helpful to
readers. If there are any other questions or suggestions, please
feel free to ask them at any time.
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4. EVALUATION: COMMON STEPS AND EVALUATION
METRICS

4.1. Common Steps for Evaluation. The primary focus
of genomic variation research is to assess the impact on gene
functionality, with particular emphasis on studying the effects

of coding frameshift indels. To achieve a thorough and

accurate evaluation of the predictive results, a systematic

approach that integrates valid standards and criteria is essential.

The following steps (as depicted in Figure 3) are employed:

Figure 3. Systematic Evaluation for Coding Frameshift Indels. (A) Data set Preparation, (B) Feature Extraction and Feature Selection, and (C)
Model Optimization and Performance Evaluation.
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(1) Data set Preparation: Empirical data from indels
variation and protein notation databases (such as
ClinVar21 and HumVar86) are collected, providing
details on known protein function changes due to
variations. This benchmark data set is then divided into
training and independent test (0.8:0.2 or 0.7:0.3 ratio).
The training subset is utilized for developing the
predictor, whereas testing subset assesses the efficacy.

(2) Feature Extraction and Model Development: Multiple
features are extracted for each variation,3 encompassing
protein-level attributes (e.g., changes in protein
structure, functional changes in proteins, local profile
information, and protein−protein interactions), AA-level
characteristics (such as physicochemical properties of
wild-type AA, mutant AA, and neighboring AAs),
genome-level attributes (e.g., ExAC_AMR_AF), var-
iant-level features (e.g., variant position and class), and
other annotations (including splice signals and binding
sites). After extracting features, prediction models are
built using methods such as traditional machine learning
methods (such as KNN) as well as deep learning models
(e.g., CNN, GNN, Transformer). These models are then
applied to the independent test group to generate
prediction outcomes.

(3) Model Optimization and Performance Evaluation:
Employ various strategies to enhance the model,
encompassing hyper-parameter tuning, feature selection,
importance analysis, data augmentation, model ensem-
ble, regularization, cross-validation, neural network
architecture search, parameter initialization, and gradient
clipping. Furthermore, calculate evaluation metrics (e.g.,
TPR, ACC) based on predicted and true label outcomes
to comprehensively evaluate model’s performance.

To ensure a prudent selection of the most suitable
prediction method for frameshift effects, it is essential to
compare evaluative metrics derived from various tools and
methods applied to the same data set. Depending on the
volume, quality, and specific attributes of the data, consid-
eration of combined approaches may be warranted. Prefer-
ential treatment should be given to methods that analyze
functional domains when dealing with variations within these
domains. For variations in highly conserved areas, sequence-
alignment-based methods are strongly recommended.
4.2. Evaluation Metrics. A confusion matrix has been

implemented to illustrate the relationship between predicted
and actual results, encompassing TP, FP, TN, and FN. These
components enable the computation of multiple evaluation
metrics, including Sensitivity (Sen)/Recall, Specificity (Spe),
FNR, FPR, Precision, NPV, Accuracy (ACC), FDR, and MCC
(as defined in Formulas 1 to 10). Additionally, the AUROC
provides a holistic measure of a model’s classification efficacy,
capturing the sensitivity-specificity dynamic across diverse
thresholds. Higher AUC values signify superior predictive
performance.87 By calculating evaluation metrics and plotting
curves, we can assess the precision of prediction methods for
coding frameshift indels.

= +Pre TP/(TP FP) (1)

= +Spe TN/(TN FP) (2)

= +FPR FP/(TN FP) (3)

= +FNR FN/(TP FN) (4)

= +NPV TN/(TN FN) (5)

= + + +ER FP/(TP TN FP FN) (6)

= × × + +F 2 TP/(2 TP FP FN)1 (7)

= +Recall/Sensitivity TP/(TP FN) (8)

= + + + +ACC (TP TN)/(TP TN FP FN) (9)

= × ×
+ + + +TN

MCC (TP TN FP FN)

/ (TP FP)(TP FN)( FP)(TN FN)
(10)

5. CURRENT CHALLENGES AND FUTURE DIRECTIONS
5.1. Current Challenges. Technological advancements

have significantly contributed to the field of genomics, yet the
accurate prediction of coding frameshift indices remains a
challenging endeavor. The occurrence of false positive and
negative results not only hinders biological comprehension but
also potentially jeopardizes clinical decision-making pro-
cesses.88

The initial hurdle is the exact forecasting of coding
frameshift indels coupled with the predicament of false
positives/negatives. New-age technology and methods have
certainly propelled the progression in this field; however,
attaining superior predictive accuracy remains an unfulfilled
goal. In response to this persistent predicament, several
remedial steps warrant consideration: (1) Rigorous verification
protocols ought to be integrated during the model’s
developmental phase to ensure the detection of authentic
genetic variations, thereby diminishing the likelihood of
misdiagnosis.89 (2) Incorporation of refined machine learning
methodologies alongside extensive variant data sets can
enhance the predictive models, curtailing inaccuracies and
bolstering precision.90 Additionally, (3) the establishment of
novel statistical methods for estimating confidence intervals of
predictive models could aid clinicians in result interpretation,
subsequently reducing the potential for diagnostic errors.91

Nonetheless, the applicability of the present prediction
instruments extends primarily to human genomic data,
consequently constraining their usefulness across different
species. To overcome this limitation, it becomes essential to
(1) construct extensive multispecies databases that facilitate
the prediction of frameshift indels across diverse species;92 (2)
develop adaptable algorithm frameworks that are attuned to
the distinct genetic characteristics intrinsic to specific species93

and, finally, (3) promote cross-species research endeavors to
illuminate the biological implications of frameshift indels
across various organisms.94

5.2. Future Directions. The field of genomics is currently
witnessing rapid advancements, posing the necessity for
comprehensive exploration in several critical areas:
(1) Embracing Cutting-edge Computational Techniques for

Genomic Analysis: Bioinformatics has experienced
significant progress with the introduction of artificial
intelligence (AI) and deep learning, thereby refining
prediction accuracy. These sophisticated techniques
detect sequence and structural patterns through rigorous
data training, leveraging contemporary strategies such as
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convolutional neural networks (CNNs) and recurrent
neural networks (RNNs).95 Deep learning has been
efficaciously employed to various genomic tasks,
including DNA sequence classification: Predicting the
functional or regulatory role of DNA sequences.96 Gene
expression prediction: Identifying genes that are likely to
be expressed under specific conditions.97 Variant calling:
Identifying genetic variants from sequencing data.98

Genome assembly: Reconstructing the complete ge-
nome sequence from fragmented DNA reads.99 Addi-
tionally, methods like transfer learning and reinforce-
ment learning utilize existing models and data sets to
enhance predictive capabilities, thereby facilitating
meticulous and efficient estimation of genetic variation
effects.100

(2) Implementing Systematic Approaches for Investigating
Coding Frameshift Variations: Modern genomic tools
enable complex analyses such as genome-wide associa-
tion studies (GWAS) and whole-exome sequencing
(WES). These mechanisms aid in identifying coding
frameshift variations in genetic diseases by comparing
data between healthy individuals and patients.101 For
instance, GWAS has identified a frameshift variant in the
BRCA1 gene associated with increased breast cancer
risk.102 Similarly, WES has detected frameshift variants
in several genes involved in diseases like cystic fibrosis,
sickle cell anemia, and Li-Fraumeni syndrome.44,103

Moreover, integrating multiomics data could offer a
comprehensive perspective on the influence of coding
frameshift variations on gene regulation and protein
function.104 This integrated approach helps identify
novel regulatory mechanisms and gene interactions
impacting the development of genetic diseases.105

(3) Utilizing Gene Editing Tools for Correcting Coding
Frameshift Variations: Several gene editing technologies,
such as CRISPR/Cas9106 and homologous directed
repair (HDR),107 have emerged to correct coding
frameshift variations. By precisely introducing or
eliminating genes, they rectify the reading frame,
introducing potential therapeutic avenues for genetic
disorders.108 For example, CRISPR/Cas9 has success-
fully corrected a frameshift mutation causing Duchenne
muscular dystrophy.109 In parallel, HDR has demon-
strated its capacity to correct a frameshift mutation
causing sickle cell anemia.110

(4) Providing Genetic Counseling and Diagnosis for
Diseases Associated with Coding Frameshift Variations:
Genetic counseling and diagnostic efforts are critical in
preventing and managing diseases linked with coding
frameshift variations.111 Comprehensive assessments
involving family history, genetic mapping, and biomarker
evaluations assist in creating personalized preventative
measures and treatment plans, thereby reducing disease
incidence and mortality rates. Genetic counseling can
help individuals at risk make informed decisions
regarding family planning and reproductive choices,
while genetic testing identifies carriers of genetic
mutations, allowing proactive healthcare decisions and
potentially preventing the transmission of genetic
disorders.112,113

Through leveraging computational models, gene editing
technologies, and innovative therapeutics, scientific and

technological advancements enhance our understanding of
coding frameshift variations, enabling effective prevention and
treatment strategies for genetic diseases. Interdisciplinary
collaborative efforts continue to fuel breakthroughs in this
domain.

6. CONCLUSIONS
Coding frameshift variations, shaped by DNA replication,
repair mechanisms, and environmental factors, are common
genetic contributors to diseases. Gaining insight into their
molecular mechanisms is pivotal to understanding genetic
diseases and their implications. Methodological strategies, gene
editing technologies, and genetic counseling aid in the research
and treatment of genetic diseases linked to frameshift
variations. Interdisciplinary collaborations coupled with
technological innovations foster progress. This review focuses
on predicting effects of frameshift variations, delivering an
overview of methodologies, metrics, databases, and resources.
We analyzed the predictive efficacy, reliability, and utilization
of computational methods, and variant account, reliability, and
utilization of database. Besides, we also compared the
prediction methodologies on GOF/LOF pathogenic variation
data. This review highlights challenges and underscores
research and collaboration for algorithm enhancement and
experimental validation. Newfound technologies such as deep
learning and AI contribute to increased prediction accuracy
while considering generalizability across different species.
Experimental validation propels research and provides reliable
evidence.
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